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Preface

The 1st International Symposium on “Brain, Vision & Artificial Intelligence”
(BVAI, Naples, Italy, October 19-21, 2005) was a multidisciplinary symposium
aimed at gathering scientists involved in study of the Brain, Vision and Intelli-
gence, from both the natural and artificial points of view. The underlying idea
was that to advance in each of the above research topics, integration with and
attention to others is necessary. The overall rationale of the BVAI symposium
was based on a multidisciplinary approach of biophysics and neurobiology, visual
and cognitive sciences and cybernetics, dealing with the interactions of natural
and artificial systems.

BVAI was conceived and organized by a group of researchers — active in
the BVAI topics — of the Institute of Cybernetics “E. Caianiello” of the Italian
National Research Council, Pozzuoli, Naples (ICIB-CNR), with the support of
the Italian Institute for Philosophical Studies (IISF), and the help of the Macro-
scopic Quantum Coherence and Computing Association (MQC2). BVAI was
sponsored by the EBSA (European Biophysics’ Societies’ Association) which in
particular provided travel grants for deserving young participants from outside
Italy. The symposium was held under the auspices of the AT*TA (Italian Associ-
ation of Artificial Intelligence), GIRPR (Italian Group of Researchers in Pattern
Recognition), SIBPA (Italian Society of Pure and Applied Biophysics) and SINS
(Italian Society for Neurosciences). BVAI addressed the following main topics
and subtopics:

Brain Basics: neuroanatomy and physiology; development, plasticity and learn-
ing; synaptic, neuronic and neural network modelling.

Natural Vision: visual neurosciences; mechanisms and model systems, visual
perception, visual cognition.

Artificial Vision: shape perception, shape analysis and recognition, shape un-
derstanding.

Artificial Intelligence: hybrid intelligent systems, agents, cognitive models.

The scientific program included the participation of six invited speakers,
selected among international leading scientists in the above mentioned fields:
Igor Aleksander, Imperial College, UK; Dana Ballard, University of Rochester,
USA; Cristiano Castelfranchi, Institute of Cognitive Sciences and Technologies
— CNR, Italy; Péter Erdi, Kalamazoo College, USA; Kevan A.C. Martin, Insti-
tute of Neuroinformatics, ETH/UNIZ, Switzerland; and Enrica Strettoi, Insti-
tute of Neurosciences — CNR, Italy. Furthermore, the program included about
50 contributions from worldwide participants, presented in plenary sessions. The
peer-reviewing process for the papers was performed by the members of the
Scientific Committee of the symposium, including distinguished persons of the
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scientific community, together with a number of additional reviewers, appointed
by the Scientific Commitee members. The accepted contributions were selected
among more than 80 papers submitted to BVAIL

We believe that the papers in this volume and the discussions during the
symposium will provide new insights and constructive thoughts. In particular
we are confident that young researchers will usefully benefit in their work from
their attendance at the symposium and from reading these contributions. We
hope that we made BVAI an enjoyable event both from the scientific point of
view and through the social activities that are also a way to provide new research
stimuli in a more relaxed atmosphere.

We would like to thank the contributors who responded to the Call for Pa-
pers in a very positive way, the invited speakers, the members of the Scientific
Commitee as well as the additional reviewers and, of course, all the partici-
pants. A grateful acknowledgement is due to EBSA, to the Regione Campania,
to IISF, and to ICIB-CNR for their financial contribution that helped us to make
BVATI successful. Finally, we would warmly aknowledge the symposium’s Steer-
ing Committee and the Scientific Secretariat members: without their advice and
constant support, BVAI could not have been realized. A special thanks goes to
the symposium’s Local Committee and Secretariat members for their precious
work.

August 2005 Massimo De Gregorio and Vito Di Maio
Maria Frucci and Carlo Musio
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Towards a Dynamic Neuropharmacology:
Integrating Network and Receptor Levels

Péter Erdi! and Jénos T6th?*

! Center for Complex Systems Studies, Kalamazoo College, Kalamazoo, MI 49006, USA
and Department of Biophysics, Research Institute for Particle and Nuclear Physics of the
Hungarian Academy of Sciences
perdi@kzoo.edu
2 Department of Analysis, Institute of Mathematics, Faculty of Sciences,
Budapest University of Technology and Economics,

Egry J.u. 1., H-1111 Budapest, Hungary
jtoth@math.bme.hu

Abstract. Computational modeling by integrating compartmental neural tech-
nique and detailed kinetic description of pharmacological modulation of trans-
mitter - receptor interaction is offered as a method to test the electrophysiological
and behavioral effects of putative drugs. Even more, an inverse method is sug-
gested as a method for controlling a neural system to realize a prescribed tem-
poral pattern. Generation and pharamcological modulation of theta rhytm related
to anxiety is analyzed. Integrative modeling might help to find positive allosteric
modulators of GABAA a1 subunits as potential candidates for being selective
anxyolitics.

Systems Biology is an emergent movement to combine system level description
with microscopic details. It might be interpreted as the renaissance of cybernetics [3]
and of system theory [4], materialized in the works of Robert Rosen [5]. (For an ex-
cellent review on applying the system theoretical tradition to the new systems biology
see [6]).

To have a system-level understanding of biological systems [1,2] we should get
information from five key features:

function,
architecture,
dynamics,
control,
design.

* Thanks to Global Partnership to sponsor JT’s visit to Kalamazoo College. We benefited
fromDiscussions with Jean-Pierre Rospars (JT), and Ildiko Aradi (PE). Thanks for the mo-
tivation and experimental data to Mihdly Hajos (Department of Neuroscience, Pfizer, Gro-
ton) and to Tamas Kiss, Gergd Orban and Baldzs Ujfalussy, who made the lion share of the
model building and testing both in Kalamazoo and Budapest/Csillebérc. Partial support of the
National Scientific Research Council (Hungary) (Nos. T037491, T047132) are also acknowl-
edged by JT. PE thanks the Henry R. Luce Foundation the general support.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 1-14, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 P. Erdi and J. T6th

Function. From proteins via genes, cells and cellular networks to the function of our
body and mind.

Architecture. From network of gene interactions via cellular networks to the modular
architecture of the brain.

Dynamics. Dynamical system theory offers a conceptual and mathematical frame-
work to describe spatiotemporal patterns of concentrations of biochemical com-
ponents, cellular activity, global dynamical activities (such as measured by elec-
troencephalogram, EEG). Bifurcation analysis and sensitivity analysis reveal the
qualitative and quantitative changes in the behavior of the system.

Control. There are internal control mechanisms which maintain the function of the
system, while external control (such as chemical, electrical or mechanical pertur-
bation) of an impaired system may help to recover its function.

Design. There are strategies to modify the system architecture and dynamics to get
a desired behavior at functional level. A desired function may be related to some
"optimal temporal pattern".

While Systems Biology is now generally understood in a somewhat restricted way
for proteins and genes, its conceptual and mathematical framework could be extended
to neuroscience, as well. Trivially, there is a direct interaction between molecular and
mental levels: chemical drugs influence mood and state of consciousness. "Almost all
computational models of the mind and brain ignore details about neurotransmitters,
hormones, and other molecules." [7].

In this paper we show how to realize the program of Systems Biology in the context
of a new, dynamic neuropharmacology. Also, we offer a methodology to integrate con-
ventional neural models with detailed description of neurochemical synaptic transmis-
sion in order to develop a new strategy for drug discovery. The procedure is illustrated
on the problem of finding selective anxiolytics.

First, we briefly review the functional aspects of our system to be investigated,
namely the neuropsychology of anxiety. The septohippocampal system is known to be
involved in anxiety. Second, the architecture of the real and the model skeleton network
of the septohippocampal system are discussed. Third, since there seems to be a positive
correlation between the theta rhythm (i.e. the dynamics of the system), and the level of
anxiety, the mechanism of theta rhythm generation is reviewed. Fourth, we review the
available data on GABA 4 receptor kinetics to be integrated to the septohippocampal
network.

Finally, we conceptually formulate the inverse problem to have a method for design.
Having sufficient data for building a detailed kinetic model, we should be able to give
advice to drug designers pointing out which subprocess should be modulated to obtain a
desired behavior. The specific goal we are focusing on now is to design anxiolytic drugs
acting on the a2 subunit of GABA A receptors without effecting «v; subunits related to
sedative and hypnotic effects.

1 Function: Anxiety vs Mood Regulation

"Anxiety is a complex combination of the feeling of fear, apprehension and worry often
accompanied by physical sensations such as palpitations, chest pain and/or shortness of
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breath. It may exist as a primary brain disorder or may be associated with other medical
problems including other psychiatric disorders.

A chronically recurring case of anxiety that has a serious affect on your life may
be clinically diagnosed as an anxiety disorder. The most common are Generalized anx-
iety disorder, Panic disorder, Social anxiety disorder, phobias, Obsessive-compulsive
disorder, and posttraumatic stress disorder..." [11]

While the historically used mood regulators acting on the barbiturate or benzodi-
azepine sites of GABA receptors, these drugs have both anxiolytic and hypnotic ac-
tivity. They enhance the action of GABA via an action at separate binding sites of the
GABA 4 receptor.

(Both barbiturates and benzodiazepines shift the GABA concentration-response
curve to the left, but barbiturates also increase the maximum response. They act on
different states, consequently they have different kinetic effects: average open time of
the channel, but not the channel opening frequency is increased significantly by barbi-
turates. As opposed to benzodiazepines, barbiturate receptors do not contain -y subunits
(see later). One more difference is that at high concentration GABA receptor channels
can directly be opened by barbiturates. For a summary see [45]. Anxiolytic activity was
not a particular disadvantage when these drugs were used as hypnotics, hypnosis was
a definite disadvantage when they were used as anxiolytics. Recent discoveries made
possible the separation between hypnotic and anxyolitic activity and selective hypnotic
agents (e.g. zolpidem) are already on the market. Selective anxiolytics are on the pre-
clinical and/or in clinical trial stage.

2 Architecture: The Septohippocampal Skeleton Network

It was demonstrated (see e.g. the seminal book of Gray and McNaughton [12] that the
septohippocampal system is strongly involved in anxiety and related disorders.

In a joint pharmacological and computational work [13,14] effects of the injection
of the positive and negative GABA 5 allosteric modulators diazepam and FG-7142, re-
spectively, were studied. To investigate the dynamical and functional effects of different
pharmacological agents by computational tools a skeleton model of the septohippocam-
pal system was established.

The skeleton network model (Fig. 1) of the hippocampal CA1 region and the septal
GABAergic cells consisted of five cell populations. The hippocampal CA1 pyramidal
cells model was a multicompartmental model modified from [17] and supplemented
with hyperpolatization activated current I, based on [18]. Besides I}, the cell model con-
tained sodium (Iy,), delayed rectifier potassium (Ik), A-type potassium (Ik(a)), mus-
carinic potassium (Ixa), C-type potassium (Ik(c)), low threshold calcium (Ic,) and
calcium concentration dependent potassium (Ikanp)) currents. Active and leakage cur-
rents were described using the Hodgkin — Huxley formalism. For online supplementary
materials, see: http://geza.kzoo.edu/theta/theta.html.

In the hippocampal CA1 region basket neurons and two types of horizontal neurons
were taken into account. Basket neurons formed the fast spiking neuron population of
the pyramidal layer, containing I, and Ix currents. These model neurons were previ-
ously used in [20,21] to account for the population of fast, regularly spiking neurons.
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i (b)

al

i (O-LM) ( i(S)

MS-GABA

)

Fig. 1. Left: Computer model of the hippocampal CA1 circuitry. Neuron populations hypothe-
sised to be responsible for the generation of theta oscillation are shown (pyr — pyramidal cells;
i(O-LM) — horizontal cells projecting to the distal dentrites of pyramidal cells in the lacuno-
sum moleculare layer; i(b) — basket interneurons; i(S) — septally projecting hippocampal hori-
zontal interneurons; MS-GABA - septal GABAergic cells, triangles denote excitatory, dots in-
hibitory synapses). Connections originating and ending at the same population denote recurrent
innervation.

The two types of horizontal neurons represented those interneuron populations
whose somata resided at the oriens/alveus border [19]. These neurons were described
by the same set of equations as their observed physiological properties are similar and
contained sodium, potassium, a high-threshold calcium and hyperpolarization-activated
currents [29]. The basket and O-LM neurons were able to generate repetitive action
potentials autonomously, and O-LM neurons showed adaptation and low-frequency au-
tonomous firing in the theta band.

Medial septal GABAergic neurons were previously described using single com-
partment models by Wang [19]. This cell type evokes action potentials repeatedly in
clusters. Between any two clusters the cell exhibits subthreshold oscillation but no ac-
tion potentials due to a slowly inactivating potassium current, which was added to this
model neuron besides the Hodgkin — Huxley type sodium and potassium currents.

Connections within and among cell populations were created faithfully following
the hippocampal structure. The main excitatory input to horizontal neurons is pro-
vided by the pyramidal cells via AMPA (alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) mediated synapses [22]. Synapses of the septally projecting
horizontal cells [25] and synapses of the O-LM cell population innervating distal apical
dendrites of pyramidal cells [23] are of the GABA  type. O-LM neurons also inner-
vate parvalbumin containing basket neurons [24]. Basket neurons innervate pyramidal
cells at their somatic region and other basket neurons [27] as well. Septal GABAer-
gic cells innervate other septal GABAergic cells and hippocampal interneurons [26,28]
(Figure 1).
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3 Dynamics: Generation of Theta Rhytms

Theta frequency oscillation of the septohippocampal system has been considered as a
prominent activity associated with cognitive function and affective processes. It is well
documented that anxiolytics and hypnotics reduce amplitude of septohippocampal os-
cillatory theta activity, which contributes to their therapeutic effect but causes unwanted
side effects, e.g. cognitive impairment as well [16,15].

This detailed, realistic model was used to examine the generation and control of
theta oscillation in the hippocampal CA1 region. As shown on Figure 2 (A), firing of
neurons of the four populations were not evenly distributed in time, but time intervals
in which firing was significantly reduced were alternated by intervals where enhanced
firing was observed. This synchronized state of neural firing was further confirmed by
the field potential, which exhibited a prominent ~5 Hz oscillation as reflected in the
power spectrum (Figure 2 (B)).

Simulation results showed that key components in the regulation of the popula-
tion theta frequency are membrane potential oscillation frequency of pyramidal cells,
strength of pyramidal cell-O-LM cell innervation and strength of recurrent basket cell
connections. Membrane potential oscillation of pyramidal cells is determined by their
averages, passive membrane parameters and parameters of the active currents. Aver-
age depolarization in our model results from septal cholinerg innervation. An important

16
1.4

12

0.8

0.6

EEG power [mV?]

0.4

0.2

number of cells

0 L L L L L
5 10 15 20 25 30

frequency [Hz]

Fig. 2. Appearance of theta frequency population activity in the firing of cells and the Fourier
spectrum of the field potential. A, firing histograms were calculated by binning firings of all
cells of one of the four populations (pyr — pyramidal cells, i(b) — basket cells, i(O-LM) — oriens-
lacunosum moleculare interneurons, MS-GABA — septal GABAergic cells) into discrete bins.
Resulting graph shows the total activity of the respective population. B, power spectrum of the
field potential. Theta frequency population activity is reflected by temporal modulation of firings
in (A) and the ~5 Hz peak in the power spectrum (B).
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factor is the presence and maximal conductance of the hyperpolarization activated cur-
rent. If I, is present it shortens response times of pyramidal cells to hyperpolarizing
current pulses and more importantly decreases its variance: I, acts as a frequency stabi-
lizer. Synaptic strengths in our description are set by convergence numbers and maximal
synaptic conductances.

An explanation of intrahippocampal theta oscillation generation—based on this
model—includes 7, signal propagation in the pyramidal cell — O-LM cell — basket cell
— pyramidal cell feed-back loop, ii, synchronization of neural activity via the recurrent,
inhibitory GABA 4 connections within the basket cell network and iii, synchronization
of pyramidal cell firing due to rebound action potential generation. It is that the propa-
gation of a single signal throughout this trisynaptic loop would not require the amount
of time characteristic to the theta oscillation (=0.2-0.25 sec), thus in the present case
the population oscillation is created not by the propagation of single signals but rather
the propagation of a “synchronized state” in the network. The observed periodic pop-
ulation activity is brought about by alternating synchronization and desynchronization
of cell activities due to the interplay of the above mentioned synchronizing forces and
some desynchronizing forces (such as heterogeneity of cell parameters and diversity of
synaptic connections), as observed in previous works [21,30].

4 Control: Integrating GABA Receptor Kinetics to the Receptor
Model

4.1 Pharmacological Elements

Receptor Structure. GABA 4 receptors are pentameric structures consisting of multi-
ple subunits. At this moment [31] nineteen subunits have been cloned from mammalian
brain. According to their sequence similarities, they have been grouped into seven fami-
lies: o, 3,7, 9, €, and #. Only a few dozen among the many combinatorial possibilities
exist. The most frequent subtyes two «, two 3 and one -y subunits. The structural varia-
tions imply functional consequnces [31], among others for the kinetic properties.

Drug-Receptor Interaction. A drug/substance may have affinity for the receptor: it
may have the capacity to maintain contact with or bound to receptor. Potency is the
the absolute number of molecules of drug required to elicit response. Efficacy is the
maximum effect obtainable. Therapeutic index: LD5S0/ED50; the larger it is the safer
the drug is.

All the substances binding to any part of the GABA A receptor, except GABA, will
be called modulators below.

Agonists: Chemicals to open or to facilitate opening the C1~ channels thereby enhanc-
ing or creating the inhibitory actions. These are also termed as positive allosteric
modulators.

— Endogeneous agonist: the GABA itself.

— Full agonists: of the benzodiazepine family with sedative effects: e.g.
diazepam, zolpidem.

— Fartial agonists: e.g. bretazenil.
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Inverse Agonists: Chemicals to close or to inhibit opening the C1~ channels (e.g. )
thereby decreasing the inhibitory actions. These are also termed as negative al-
losteric modulators.

— Full inverse agonist of the benzodiazepine type with anxiogenic effect: e.g.
FG-7142.
— Fartial inverse agonists: e.g.

Antagonists: Compounds which bind but have no effect on GABA inhibition. They

have affinity, but no efficacy, e.g. bicuculline.

1. Desenzitization
— prolonged/continuous use of agonist,
— inhibition of degradation or uptake of agonist,
— cell may attempt to bring its response back to normal by decreasing the number
of receptors or binding affinity of receptors.
2. Senzitization
— prolonged/continuous use of receptor blocker,
— inhibition of transmitter synthesis or release,
— cell may attempt to bring its response back to normal by increasing the number
of receptors or binding affinity of receptors.

4.2 The Conventional Tool of Computational Neuroscience

One way to describe synaptic transmission is to use a gating variable similar to the well
known Hodgkin—Huxley formalism:

Isyn = gsyns(v - Esyn) (la)
j‘z = aF (Viwe) (1 — 5) — Bs (1b)
1
F(Vpre) = (1c)

e

with Iy, being the synaptic current, gs,n the maximal synaptic conductance, s the
gating variable of the synaptic channel, E,, the synaptic reversal potential, F(-) is an
activation function, « and [ rate functions describing opening and closing of the gate
of the synaptic channel, Oy, is a threshold.

Figure 3. illustrates the general form of effects of GABA A receptor modulators.

4.3 An Intermediate Level Strategy: The Pharmacokinetic - Pharmacodynamic
Approach

A theoretical framework with intermediate complexity based on pharmacokinetics -
pharmacodynamics (PK/PD) was suggested to model the effects of GABA modulators
on EEG in a series of papers [32,33]. Pharmacokinetics generally is supposed to de-
scribe drug disposition and biophase equilibration, diffusion included. In the applied



8 P. Erdi and J. T6th

180 T T T

170

150

130

110

Increase of IPSP amplitude [%)]

5 10 15 20
dose [arb. units]

Fig. 3. Modelling the effects of allosteric GABAA receptor modulators. In a simple description
of synaptic transfer the strength of synapses was modulated via the gsyn parameter in eq. (1a)
in a dose dependent manner. Inset: modelled inhibitory postsynaptic potentials before (smaller
amplitude) and after (larger amplitude) administration of positive GABA, allosteric modulator.

framework pharmacodynamics might consist of two stages: one for drug-receptor in-
teraction, and another one for the signal transduction processes or stimulus-response
relationship. The stimulus - response function is empirically determined, and intention-
ally neglects the architecture of the system under investigation. While this approach
proved to be an efficient method, we believe that the architecture of the neural circuits
should be taken into account explicitly to get a better understanding of the underlying
neural mechanisms.

4.4 Kinetic Modeling of «; and an a2 Modulators: A Plan

From Pharmacodynamics to Detailed Kinetic Scheme. A more effective, but cer-
tainly most expensive, modelling tool to evaluate the pharmacological effects of the dif-
ferent modulators, or even to give help for offering new putative molecules for drug dis-
covery, is the inclusion of more detailed kinetic studies of GABA receptor
modulation.

Suppose the dose response curve of GABA, is given and we also have the dose
response curve of a modulator or a drug-modulator pair. Then, one can draw a few
qualitative consequences.

It is important to fix, if the effect is measured as a function of drug concentration
which is usually a hyperbola (naturally, without any inflexion point), or, as a function
of the logarithm of the concentration in which case again a saturation curve is obtained
but with an inflexion point at EDs5g.

The effect of different modulators is as follows. If the effect is that the saturation
point (the limit of the dose response curve atinfinite modulator concentration) is smaller
then without the modulator, then the modulator is a partial agonist. If the modulator has
no effect (although it binds to the same binding site or to a site which hinders the
endogenous agonist to act), i.e. the dose effect curve is constant zero, then we have
an antagonist. If the effect of the modulator is a monotonously decreasing curve then
we have an inverse agonist. One may also have a dose response curve shifted to the
right (left); the modified system (modulator, or modulator + endogeneous agonist) has
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a smaller (larger) potency, i.e. a larger (smaller) number of drug molecules are required
to elicit the same response. If the modified system’s curve goes parallel with the original
but below it (i.e. not only its limit is smaller), then the efficacy is decreased.

Kinetic Schemes. Jones and Westbrook [8] established a model for describing the
rapid desensitization of the GABA 5 receptors. More specific kinetic models should be
studied to describe the effects of the different (full and partial) agonists and antagonists.
Baker et al. [34] explained the functional difference between the effects of protophol
(which has hypnotic effect) and of midazolam (a sedative - amnestic drug) based on a
detailed kinetic model.

L,Dy
A

df rs
2kon Kon ds
C <—-L1C< » L2C4 » LzDs
kot 2kofs Tq
al|B

\
L,O

Fig. 4. Basic scheme of GABA A receptor kinetics. C, L1C, LoC denote closed states with zero,
one and two bound ligands respectively. L2O is the open state, while Lo Dy, L2 D, are the de-
senzitized states. Modulators may effect different steps of these complex chemical reaction.

The main difference is that protophol modifies the desenziation processes, more
dramatically the slow desenzitation steps and the modified kinetic parameters. These
differences imply distinct behavior of the network (synchronization, frequency of os-
cillation) and therefore also in function.

4.5 Models of Anxioselective Actions: Search for Data

Recently it became clear that o subunits exhibit a remarkable functional specificity.
Genetic manipulations helped to show that «; subunits are responsible for mediating
sedative effects, while s subunits mediates anxiolytic effects [10]. Preliminary exper-
imental data and modelling studies for the the effects of the preferential GABA 5 a;
and «v positive allosteric modulator, zolpidem and L838, 417 for the septohippocampal
theta activity have been reported [9].

In this study we examined the effects of the a;; and v subtype-selective benzodi-
azepine site ligand zolpidem and L838, 417 on the septohippocampal system. In elec-
trophysiological experiments extracellular single unit recordings were performed from
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medial septum/diagonal band of Broca with simultaneous hippocampal (CA1) elec-
troencephalogram (EEG) recordings from anesthetized rats. Both of the drugs elimi-
nated the hippocampal theta oscillation, and turned the firing pattern of medial septal
cells from periodic to aperiodic, but only the zolpidem reduced the firing rate of the
these neurons. In parallel to these experimental observations, a computational model
has been constructed to clearly understand the effect of these drugs on the medial sep-
tal pacemaker cells. We showed that the aperiodic firing of hippocampo-septal neurons
can reduce the periodicity of the medial-septal cells, as we have seen in the case of
the L838,417. The reduction of firing rates in the case of zolpidem is attributed to the
increase of the synaptic conductances and the constant inhibition of these cells. We
modelled these drug effects by modifying (i) the synaptic maximal conductances of the
GABA synapses. (ii) the constant excitatory drive of the median septal cells and (iii) the
hippocampal input. The incorporation of a more detailed synaptic model is in progress.

Zolpidem increases by concentration-dependent manner the duration and amplitude
of the postsynaptic current, most likely by enhancing the affinity of the receptors for
GABA [35]. It significantly increased the amplitude and frequency of the postsynap-
tic current, but these effects were diminished or absent in neurons from a; knock-out
mice [36].

There seem to be compounds, which might have comparable binding affinity but
different efficacies at the various subtypes, thereby preferentially exerting its effects at
subtypes thought to be associated with anxiety. L838,417 seems to be an an example
for efficacy selective compounds [37], but kinetic or even pharmacodynamic data could
not be found (at least not very easily) in the public domain.

4.6 Modulation of Synaptic and Extra-Synaptic GABA 5 Receptors

There are different mechanisms for postsynaptic modulation. It might be a long-term
change in the number of receptors, a change in the affinity of a ligand, or a change on
ionic conductances [38]. Recently it was emphasized that in addition to the conven-
tional ("phasic") synaptic transmission the extrasynaptic "tonic" GABAergic cell-cell
communication also has a significant functional role [39,40,31]. GABA can activate
receptors on presynaptic terminals or at neighboring synapses (’spillover’). The phasic
and tonic inhibitions are spatially and temporally discrete, and continuous, respectively.
(For a review on non-synaptic communication see [46].) The two distinct mechanisms
of the GABA 4 -receptor mediated inhibition implies different functional roles. Also,
most likely different receptor subtypes mediate the two types of inhibition, and might
be modulated by different kinetic schemes. Future works will show the similarities and
differences among the different kinetic schemes behind the modulatory mechanisms of
the phasic and tonic inhibition.

4.7 Direct Problem: To Simulate Modulatory Effects

Kinetic modeling of synaptic transmission has a flexibility in the level of detailed de-
scription from chemical kinetic to simplified representation [41]. The development of
new pharmacological, electrophysiological and computational techniques make possi-
ble to investigate the modulatory effects of putative drugs for synaptic currents, and
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consequently for local field potentials and even behavioral states. Putative drugs with
given kinetic properties can be tested in silico before (instead of?) real chemical and
biological studies.

5 Design (Inverse Problem): From System Identification to
Optimal Temporal Patterns

We have shown that in a moderately complex conductance-based model of the hip-
pocampal CA1 region theta rhythm generation can be observed and major interactions
between cell populations and within cells responsible for the phenomena can be iden-
tified. These results qualify the model for consideration as a useful tool in the hands
of pharmacologists, physiologists and computational neuroscientists to complete their
repertoire of available tools in the search for efficient and specific drugs.

Desired pattern

_w increased coghnitive function
€90 S anxiety!

Septo-hippocampal

system — | Modelled pattern | ———» Comparision

e non-mgatching %
Modification of model parameters and paftern \
modification of pharmacology

Further testing

Fig. 5. Computational neuropharmacology—an idealized method for drug discovery. See text for
a description.

Figure 5 is an oversimplified scheme offered for finding finding a modulator to set
optimal septohippocampal EEG pattern.

In order to decrease anxiety first a desired EEG pattern shold be defined. Anxyoli-
tics should reduce the amplitude the theta amplitude (but preserving the cognitive per-
formance and avoiding sedative hypnotic side effects). Computational analysis should
offer a best kinetic scheme and rate constant to modulate te fixed network to minimize
the deviation from the desired "optimal pattern". (Network architecture is supposed to
be fixed. By neglecting this assumption we should turn from neuropharmacology to
neurosurgery...) Most likely there are more than one possibilities to reach the goal, and
model discrimination and parameter estimation techniques may help to narrowing the
alternatives.

As it is known from chemical kinetics [43,47] sensitivity analysis shows that in a
kinetic scheme there are "more and less important" components and reactions. It helps
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to answer the question, whether how to modify the structure of a given drug to change
the reaction rate constants in the desired direction—and leaving everything else intact.

6 Discussion, Further Research

The aim of the present paper is to offer conceptual and mathematical frameworks to
integrate network and receptor level descriptions for investigating the effects of poten-
tial drugs for the global electrical patterns of a neural center, and and for the behavioral
states (mood, consciousness etc.). Once we have understood (i) the basic mechanisms
of rhythm generation, (ii) the elementary steps of the modulatory process, we shall a
be able to give advice to drug designers pointing out which subprocess and how to be
modulated to reach a given goal.

Specifically, we briefly reviewed some aspects of GABA 4 receptor kinetics, and
the effects of (full and partial) agonists, antagonists and inverse antagonists to septo-
hippocampal theta rhytms. The specific goal we are focusing is to design anxiolytic
drugs with as small as possible side effects. While is is known that positive allosteric
modulators acting on GABA 5 «; subunits are potential candidates for being selective
anxyiolitics, integrative computational modeling would help to find the appropriate ki-
netic properties of potential drugs.
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Abstract. The evolution of the structure of the neocortex is one of the
most important events in the chain that led to the human brain. The pa-
leontological evidence shows that the human brain expanded two-fold in
size over three million years, while modern chimpanzees still have brains
about the size of the earliest hominids. The brains of chimpanzees and
modern humans have a similar anatomy, so the vast difference in their
size (400ml vs 1400ml) is due to an expansion of the cerebral cortex,
rather than the development of entirely novel brain structures. Here we
explore in what way the neocortical circuits are common to all mam-
malian species. We define a canonical structure that can be identified in
all cortical areas and in all land-based mammalian species where data
are available. This structure has recurrent excitatory and inhibitory loops
formed by local neurons as a feature of its design. Quantitative studies
from our laboratory show that the input from the sensory periphery
forms less than one percent of the total input to the primary visual
cortex in the cat. Thus the major synaptic input to a cortical neuron
comes from its neighbors. We provide a conceptual model that offers
an operational view of how the canonical circuit of the neocortex might
operate.

1 Out of Africa

We all come from Africa, although some of us perhaps more recently than others.
It is in Africa where we find the chain of evidence that shows how we inherited
such a large brain. Three million years ago, Australopithecines walked upright in
Africa. These early members of the hominid branch had small bodies, and brains
about the size of modern chimpanzee (400ml). One and a half million years later,
the fossil record shows that the brain size of Homo erectus was about 800ml,
which already shows a remarkably fast expansion in brain size. Modern humans,
however, have an even larger brain sizes (1400ml), although curiously, modern
brains are smaller than their immediate ancestors - early modern Homo sapiens
and Homo neanderthalis (1550ml). When normalized for body weight, we find
that the size of the hominid brain has nearly doubled in a brief three million years
(see [1]). The usual question that arises is, why? What drove evolution so fast,
since evidently, the hominid line branched from the line that led to modern apes
very recently (within the last 10 million years)? A rather less frequently asked
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question is, how do you make a brain expand so much in so few generations,
yet have it still work so well? Not only has it continued to work well, but it has
added capacities that make human brains seem qualitatively different from all
other primates. It is competent to a degree that is simply not seen in our cousins
the apes, yet gene mapping suggest that modern apes and humans have 95% of
their DNA in common ([2]). It is evident that the way in which we use our brains
is radically different from apes. This is evident in humans’ unique ability to use
language and manipulate symbols, and is also clearly evident in the invention
and use of tools.

For most of this time of brain expansion, the ancestors of modern humans
made stone tools, the earliest of which were found in the Oldovai gorge in Tanza-
nia and date from about 2.5 million years. These Oldowan tools were essentially
of two types: a crude chopper or scraper, and sharp flakes that were produced
by making the chopper. They offer an intriguing view of their maker’s intelli-
gence and how the homids of the time were thinking and behaving. But, after
the invention of these first stone tools, there was a period of stasis: the same
basic tools were used for over a million years unchanged. Only with the emer-
gence of Homo erectus about 1.7 million years ago, did a new tool technology
develop, called ’Acheulian’ after the site St. Acheul in France where they were
first discovered. Homo erectus started making larger tools than those of the
Oldowan’s, like a pick, a cleaver, and most characteristically, a tear-drop shaped
hand axe. Once these Acheulian tools had been invented, there was again one
million years of stasis and it was only in the last 250,000 years that new tools
were invented by the archaic Homo sapiens. Thus, there is no strict correlation
between the size of the brain and the development of more varieties of tools.
Rather, it seems that as their brain size increased hominids discovered new ways
of using it. These new ways of using the brain may also have driven the evolution
of the morphology of the hand, which in turn allowed more sophisticated tools to
be made.

But this is speculation. What is more certain is that the endocranial casts
taken from the fossil skulls show that the increase in the size of the brain was
mainly due to an increase in the size of the cerebral cortex. The question to
ponder is how in 150,000 generations or so, over the 3 million years, can the
size of the brain be doubled? If the neuron density in the early brains was the
same as modern humans, then the 400ml brain would contain about three billion
neurons compared to the eleven billion in human brains. Over 3 million years,
8 billion new neurons have to be added to achieve current human brain sizes. If
we take a generation to be 20 years, this means that every generation would have
to have add, on average, 60,000 cells to their brain. Since each cubic mm of the
neocortex contains about 50,000 to 100,000 neurons, this addition makes a tiny
addition to the total volume. How would such an increment in neuron numbers
be achieved? Since it takes only 33 divisions to generate eight billion neurons
from a single neuroblast, double this number of neurons can be generated if each
neuroblast just went through one more division before differentiating. Thus an
increment of even 60 000 neurons requires that only a few neuroblast continue
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in the cell cycle during neurogenesis. It is worth noting in passing that human
neurogenesis occurs over about three months and so on average the human brain
adds 1400 new neurons per second, and about one and a half million synapses
per second during this phase. In the face of this plenitude and speed, it seems
more a problem to not make too many neurons (although many neurons do die)
than to make exactly the required number.

In the event, the raw size of the brain is not the issue, since we see that
it correlates poorly with the invention of new tools. What is more critical is
how the new neurons are wired together. Here there is a potential generation
gap, for 3 million years seems too short to accept that all the new neurons have
been required because novel circuits have evolved. We seem to share all the
same neural structures as non-human primates. What seems to be the major
difference is one of quantity ([3] pp. 390). We don’t seem to have a differently
designed brain from our cousin primates, but one that is three times bigger than
it should be for a primate of our weight. It seems more likely therefore that since
most of the new neurons added over the past 3 million years have been used
in the construction of more cerebral cortex, the additional cortical circuits were
modeled on the existing designs.

The appalling thought is then that the success of hominid evolution is due to
chance mutations that led to the construction of more pieces of the same evolu-
tionary successful and well-tested circuit. The additional new pieces would form
new or expanded cortical areas, and would be connected into the older pieces
according to prevailing rules of connectivity. In this sense they were following
exactly the same pattern that was seen during the evolution of mammals. From
its modest beginnings in the first mammals, the cerebral cortex became larger
and more and more differentiated, in the sense that it could carry out a wider
range of functions. Similar trends are evident in modern mammals, where in
rodents the cerebral cortex that forms a volume of about 40% of their brain,
whereas in monkeys its forms about 70%, and in humans it forms about 85% of
the entire brain. Thus, while the reasons for the rapid expansion of the hominid
brain remain a mystery, most of the new neurons were most likely built into
circuits whose design had already proved their worth during the evolution of the
mammalian brain.

2 Cortical Foundation

The question is of course, what is so special about the cerebral cortical circuits?
In particular, what is so special about the circuits of the neocortex, which form
the greater part of the cerebral cortex? The comparative anatomy of these cir-
cuits still remains sketchy and the detailed anatomy of any has until recently
been unknown. However, an important insight into the organization of these
circuits was provided by experiments that recorded the intracellular response
of the cortical neurons to an electrical pulse stimulus applied to the incoming
fibers (Fig. 1). These experiments ([4,5,6]) were performed in cat primary visual
cortex in vivo. The response for neurons through the depth of the cortex was,



18 T. Binzegger, R.J. Douglas, and K.A.C. Martin

sthal swm rec

thal

Fig. 1. Configuration of the experiment [6] that generated the data described in Fig. 2.
Two pairs of fixed stimulating electrodes (sthal, swm) were placed in the thalamus (thal,
grey ellipse), and in the white matter (wm, vertical lines) immediately beneath the grey
matter (gm, hatched) respectively. Individual cortical neurons were impaled by a mobile
glass microelectrode (rec, black). This electrode recorded the intracellular voltage of
the neuron, and its response to stimulation of cortical afferents, whose somata lie in
the thalamus, and whose axons ascend to gm via wm.

at first glance, stereotypical. The pulse elicited at short latency (1-2ms) a depo-
larization of short duration (5ms), followed by a long lasting hyperpolarization
(200ms duration) (Fig. 2). This pattern of excitation followed by inhibition has
been detected in all other cortical areas where this experiment has been done
([7,8,9,10] ).

Although these physiological results agreed with those of a number of pre-
vious studies, what made this study different from pervious ones was that the
neurons were not only recorded intracellularly, but they were labeled with a
dye (horseradish peroxidase) during the recording. This meant that the type of
neuron could be determined and that the position of the neuron in the cortical
layers was known exactly. This information turned out to be critical for what
followed, for a closer look revealed that the time taken to reach to maximum
hyperpolarization was far longer for neurons lying in the superficial layers of the
cortex (layers 2 and 3) than those of the deeper layers (layers 5 and 6). Our
interpretation of these results is that the initial excitatory response of all corti-
cal neurons is rapidly quenched by inhibition, but that the inhibition is stronger
in the deep layers. This explained the much shorter time-course of the initial
depolarization in the deep layer neurons.

These combined physiological and anatomical data provided the essential ob-
servations for the first version of a model of the cortical circuitry that attempted
to capture this functionality. Its diagrammatic form is shown in Fig. 3. The cir-
cuit captured the laminar differences in the responses of the excitatory neurons
through the depth of the cortex. It also captured a key computation feature of
the cortical circuit - its recurrence. This feature is reflected in all three groups of
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Fig. 2. Results derived from the experimental configuration described in Fig. 1 ([6]).
The four intracellular recordings at left are typical of those obtained following subcor-
tical stimulation (whose time of application is indicated by stimulus artefact). Traces
a,b were recorded from histologically identified pyramidal neurons in the superficial
layers of cortex, whereas c,d were recorded from deep pyramidal cells. In all cases the
response is dominated by an approximately 300ms period of hyperpolarizing inhibi-
tion. The latency to maximum hyperpolarization is correlated with the depth of the
neuron in the cortex (right sub-figure). The latency to this maximum is longer in the
superficial pyramids than in the deep ones. A single inhibitory neuron recorded in layer
4 (open circle) exhibited a hyperpolarizing response that was qualitatively similar to
the pyramidal neurons of the superficial layers. In superficial pyramids the inhibition
is preceded by a phase of excitation (arrowed) lasting some 20ms. This phase often
contains a few sub-peaks (b, enlarged inset), suggesting that the stimulation evokes
superimposed waves of excitation. In some neurons (at all depths) there may be a late
phase of excitation (arrowed in d). The source of this event is unknown.

neurons depicted in the model: the superficial and deep layer excitatory neurons,
and the class of inhibitory neurons. Clearly this model is a radical simplification
of the complexity of the real cortical neurons. Nevertheless, even in its simplicity
it provided the key step from the abstract recurrent networks explored by Hop-
field and others, to a biologically-based model of a cortical recurrent network. As
the first such network based on in vivo functional data, its value was in providing
a bench-mark model for the local circuit. It provided a canonical cortical cir-
cuit for theoretical explorations of a wide number of issues, including orientation
tuning, direction tuning, working memory, chaos, etc. ([5,11,12,13,14,15]).

One important point to establish was to what extent the canonical circuit
from sensory cortex was generalizable. To explore this, we have undertaken an
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Fig. 3. The ’canonical microcircuit’ is the minimal circuit necessary to explain exper-
imental results reported in [4,5], as exemplified in Fig. 2. The circuit is composed of
two populations of recurrently connected excitatory neurons; one superficial (pyrami-
dal neurons of layer 2/3 and spiny stellate neurons of layer 4); and one deep (pyramidal
neurons of layer 5 and 6). A third population of inhibitory neurons exerts a stronger
effect on the deep excitatory population than the superficial one.

extensive search of the comparative literature to understand the nature of the
anatomical evidence for similar excitatory circuits in other cortical areas and
other species ([16]) These common feature concern not only the connections be-
tween local circuits, but also the connections to circuits in other areas. Although
there are nominally 6 cortical layers, little is known of the connections of layers
1 and 2, and here they are essentially subsumed under layer three. Layer 4, the
major thalamorecipient layer, shows the most variation. Area 17 of the old world
monkey is now divided into 4 sublayers, but one of these (layer 4B) is not a tha-
lamorecipient layer and should probably be considered a subdivision of layer 3.
In the motor cortex, layer 4 is residual, and the thalamic afferents terminate
mainly in the lower part of layer 3. However, if debates about what are actually
the homologous layers in different areas and different species is set aside for the
moment, the basic pattern of interlaminar and interareal connections is as shown
in Fig. 4.

There are a number of common features in addition to the thalamic projec-
tion to layer 4 that can be noted. One is that the output from a local circuit to
subcortical structures, such as the thalamus or superior colliculus, arises princi-
pally from the deep layers in all areas. The layer 6 pyramidal neurons provide
a feedback to the thalamic relay nuclei, whereas the layer 5 pyramidal neurons
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Fig. 4. Graph of the dominant interactions between significant excitatory cell types in
neocortex, and their sub-cortical relations ([16]). The nodes of the graph are organized
approximately spatially; vertical corresponds to the layers of cortex, and horizontal to
its lateral extent. Directed edges (arrows) indicate the direction of excitatory action.
Thick edges indicate the relations between excitatory neurons in a local patch of neo-
cortex, which are essentially those described originally by Gilbert and Wiesel [17,18]
for visual cortex. Thin edges indicate excitatory connections to and from subcortical
structures, and inter-areal connections. Each node is labeled for its cell type. For cor-
tical cells, Lz refers to the layer in which its soma is located. P indicates that it is an
excitatory neuron (generally of pyramidal morphology). Thal denotes the thalamus,
and Sub other subcortical structures, such as the basal ganglia.

project to the pulvinar and motor structures, such as the spinal cord and supe-
rior colliculus. A stereotypical projection pattern is also seen for the interareal
connections (see e.g. [19]). The rule of thumb for the interareal networks is that
projections resembling those of the thalamocortical projections, i.e. terminating
principally in the middle layers of cortex, originate from layer 3 and layer 6
neurons and are called ’feedforward’ projections. Interareal projections that ter-
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minate outside layer 4 are called 'feedback’ projections. The same neurons whose
axons form the local circuits also form the long distance connections between
areas. Thus, the local network is embedded in a large scale cortical network.
However, the contribution of excitatory synapses by a given cortical area to
another is exceedingly small, amounting to less than one percent of the total
excitatory synapses in an area. An estimate of the number of synapses found
for any given projection has been extremely difficult to come by and there are
very few direct measurements. We have recently made the first complete inven-
tory of all the synapses contributed by the neurons that form the local circuit
in the cat’s primary visual cortex ([20]). To make this estimate, neurons were
recorded intracellularly in vivo, and filled with horseradish peroxidase, which
labels the entire dendritic and axonal tree. The single neurons were then recon-
structed in 3-D, (Fig. 5) and the laminar position of every synaptic bouton and
every segment of of dendrite was mapped. We then applied a simple rule ("Peters
rule’) that the different classes of neurons connect with each other in proportion
to which they contribute dendrites or synapses to a given volume of neuropil.
Applying this simple rule to all the classes of neurons that had been recov-
ered in the intracellular recordings, we derived a series of synaptic maps for the

Fig. 5. Coronal view of reconstructed cells representing the different cell-types present
in the visual cortex of the cat ([20]). Axons are shown in black, dendrites in grey.
Boutons are ignored for visibility. Cell-types are indicated at the top. Abbreviations:
'b2/3’, 'b4’, 'b5’ basket cells in layer 2/3, 4 and 5; ’db2/3’ double bouquet cell in layer
2/3; 'p2/3’, 'p4’, 'pb’, 'p6’ pyramidal cells in layer 2/3, 4, 5 and 6. ’ss4’ spiny stellate
cells in layer 4. Spiny stellate cells and pyramidal cells in layer 5 and 6 were further
distinguished by the preferred layer of the axonal innervation (’ss4(L4)’ (not shown),
'ssd(L2/3)’, 'p5(1L2/3)’, 'p5(L5/6)’, 'p6(L4)’ and 'p6(L5/6)’). 'X/Y’ thalamic afferents
of type X and Y. Horizontal lines indicate the approximate cortical layers L1, L2/3
(layer 2 and 3 were merged), L4, L5, L6. Also indicated is the white matter ("wm’).
Scale bar is 300um.
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Fig. 6. Number of synapses involved in the connections between excitatory neurons
between layers, including the X-type and Y-type afferents from the dLGN ([20]). A-D:
Each arrow is labeled with a number indicating the proportion of all 15-10'%excitatory
synapses in area 17 that are formed between only excitatory neurons. The proportion
of all asymmetric unassigned synapses that the excitatory neurons in each layer receive
is 0.01% (layer 1), 5% (layer 2/3), 3% (layer 4), 4% (layer 5), and 16% (layer 6). These
synapses are presumably formed by the afferents originating outside area 17.

various classes. Figure 6 shows for example the map for the connections between
the major classes of excitatory neurons, where the numbers given express the
percentage of the total population of excitatory synapses found in area 17, as
assessed by quantitative methods ([21]). This map of excitatory connections re-
veals that even within the local circuits, there are multiple sources of excitation,
and that most of them involve only a few percent of the synapses. Considered
numerically, most connections are 'weak’, as indicated by the thin connecting
lines in Fig. 6. However, there are notable exceptions, particularly within layers,
as indicated by the bold connecting lines.

The excitatory cells in layer 4 consist of two major classes, the spiny stellate
cells and the star pyramidal cells. The data show that the thalamus, which
provides the major drive to the visual cortex, provides only 0.6% of the synapses
made with these layer 4 excitatory cells. This estimate seems extraordinarily low,
expecially given the textbook model that the pattern of thalamic input provides
the major excitatory drive to layer 4, which, it should be re-emphasized, is the
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major thalamorecipient layer. However, this estimate of such a small fraction of
thalamocortical synapses is supported by direct experimental studies (e.g. [22]).
These estimates and experimental data indicate that the major excitatory input
to layer 4 comes from local neurons. The principal local excitatory inputs to layer
4 neurons are from other layer 4 cells themselves, and of course the strongest
connection between any of the cortical layers is between the layer 6 pyramidal
cells and neurons in layer 4.

The (numerically) strongest connections are formed between the layer 2/3
pyramidal neurons. Fully 22% of the excitatory synapses are made between these
neurons. The inhibitory neurons similarly form a plexus of convergent input to
each other and to the excitatory cells of cortex (described in more detail below).
Thus, the anatomical weight of connections is already sufficient to provide the
skeleton for a rich polyneuronal circuit of excitatory neurons consisting of many
weak connections and a few strong connections.

Double
Bouquet
(calbindin / calretinin) L2/3P

L6P

VA4

Basket
(parvalbumin)

Chandelier
(parvalbumin)

Fig. 7. Schematic showing the proposed distinction between the effects of "horizontal’
and ’vertical’ smooth cells [16]. Parvalbumin positive ’horizontal’ smooth cells make
multiple synaptic contacts on the crucial dendritic output path (apical dendrite, soma,
and initial segment) of a representative superficial pyramidal neuron. The trajectories
of calbindin / calretinin positive double bouquet axons pass vertically through the
dendritic fields, making contact with some of them at various locations ranging from
proximal to distal.
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3 Differential Inhibition

The inhibitory neurons have smooth dendrites, use the neurotransmitter gamma
amino butyric acid (GABA) and are found in all layers, where they form about
20% of the neurons and about 15% of the synapses. Unlike the pyramidal cells,
their dendritic trees are local and usually confined to one layer. Their axonal trees
are also local, and even the basket cells which have the most laterally extensive
axons, spread far less laterally than the axons of spiny stellate and pyramidal
neurons. However, lateral inhibition can be effected di-synaptically, via the long
lateral collaterals of the spiny stellate or pyramidal cells, which have smooth
neurons as a small fraction (20%) of their targets. Other smooth cell types,
particularly the double bouquet cells, have axons that extend vertically through
several layers in a columnar fashion.

Amongst the excitatory cells, all but the layer 6 pyramidal cells form their
synapses mainly with dendritic spines. The smooth neurons, by contrast, form
synapses with all parts of the neuron, including the cell soma, the initial seg-
ment of the axon, the dendritic shaft and dendritic spines (Fig. 7). However,
this targeting is not indiscriminate, for the basket cells and chandelier cells tar-
get the proximal regions of pyramidal neurons (soma, proximal dendrites and
axon initial segment), whereas the double bouquet cells target the distal den-
drites. These two classes of smooth neurons can be distinguished on the basis
of their expression of calcium-binding proteins. The basket cells and chandelier
cells express parvalbumin, while the double bouquet cells express calbindin or
calretinin. The reasons for this different expression of calcium-binding proteins
is unknown, but the differences in the site of action of the inhibition may have
important computational consequences.

The dendrites are the only sites of excitatory input to a cortical neuron and
are the means whereby synaptic integration occurs, both locally on single den-
drites and collectively at the soma. The double bouquet cells, whose inhibitory
synapses form on the distal dendrites, can therefore act to reduce the excitatory
current that flows down individual dendrites towards the soma. The soma and
the axon hillock are the sites at which the action potential is initiated, and so
the basket and chandelier cells can act to reduce the net spike output of the
neuron. This dual control allows for separable fine tuning of both inputs and
outputs.

The role of inhibition is critical for our thinking about the range of operations
of the cortical circuits. Since, qualitatively the rules of connection seem common
to all areas so far studied, the claim for canonical circuits, rather than a series
of very different specialized circuits, seems reasonable. We have thus extended
the notion of the canonical circuit towards a generic computational circuit that
is strongly biologically based (Fig. 8) ([16]). In this circuit, the pyramidal cells
of layers 2 and 3 are the major site of integration of the inputs arising from
subcortical (e.g. thalamic) streams and from other cortical areas. Thus they can
combine information arriving from the sensory periphery as well as processed
information arriving from the recurrent circuits within the same area and from
other cortical areas. The goal of this superficial sub-circuit is to resolve salient
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subcortical, intra- & inter-areal input

local feedback

co-operative
feature resolution
Layer 2/3
(input interpretation)

competition

output selection
Layer 5

(output selection)

competition

Sub-cortical output

Fig. 8. Simple model of cortical processing incorporating the principal features of cor-
tical circuits ([16]). A patch of superficial pyramidal neurons receive feedforward input
from sub-cortical, inter-areal, and intra-areal excitatory sources. They also receive re-
current input from other local superficial and deep pyramidal cells. These inputs are
processed by dendrites of the superficial pyramidal neurons (upper gray rectangles,
Layer 2/3) whose signal transfer properties are adjusted dynamically by the pattern
of 'vertical’ smooth cell inputs (obliqgue dark gray arrows). The outputs of the super-
ficial pyramids participate in a selection network (e.g. soft winner-take-all), mediated
by the ’horizontal’ smooth cells (upper horizontal dark gray line). These outputs of
the superficial pyramids adjust the pattern of vertical smooth cell activation. In this
way, the superficial layer neurons within and between patches, and within and between
areas, co-operate to resolve a consistent interpretation. The layer 5 pyramids (lower
gray rectangles) have a similar soft selection configuration (lower dark gray line) to
process local superficial signals and decide on the output to motor structures.

features of the input. The vertically-oriented arcades of the double bouquet cell
axons act to adjust dynamically the signal transfer properties of the distal den-
drites, while a selection network, mediated by the inhibitory basket cells, allows
a co-operative computation between the pyramidal cells to resolve the features
through a soft winner-take-all (WTA) mechanism. In this way, the superficial
circuit may thought to explore alternative interpretations of current data against
a priori knowledge stored in its connections. The prevailing best hypothesis is
held in the deep sub-circuit, where again a co-operative selection obtains con-
sistent motor output to be signaled by the layer 5 pyramidal cells to subcortical
motor nuclei.

The concept of canonical cortical circuits is a powerful one, in that it provides
not only an explanation for the laminar structure of the cortex but also offers
universal functions for these canonical circuits in the different cortical areas.
Thus, while each cortical area has a unique set of connections to subcortical and
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cortical structures, nevertheless the fundamental way it acts on its inputs may
be common to all areas.
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Abstract. Fast and reliable unsupervised spike sorting is necessary for
electrophysiological applications that require critical time operations
(e.g., recordings during human neurosurgery) or management of large
amount of data (e.g., recordings from large microelectrode arrays in be-
having animals). We present an algorithm that can recognize the wave-
form of neural traces corresponding to extracellular action potentials.
Spike shapes are expressed in a phase space spanned by the first and
second derivatives of the raw signal trace. The performance of the algo-
rithm is tested against artificially generated noisy data sets. We present
the main features of the algorithm aimed to on-line real-time operations.

1 Introduction

The study of brain functions has been mainly performed by electrophysiologi-
cal means in the past decades. There is an increasing interest in using multi-
site microelectrode recordings thanks to the miniaturization of the hardware.
The study of cognitive functions by arrays of microelectrodes introduced in the
brain of behaving animals [7] and clinical applications such as human neuro-
surgeries embedding a chronic electrode for deep brain stimulation [2] require
a quick analysis of the biological signals. Following appropriate signal filtering
the extracellular recordings correspond to the compound activity of the neurons
located near the microelectrode tip. Under stationary recording conditions, it
can be assumed that a neuron generates action potentials—spikes— with similar
dynamics of the membrane potential. Then, the extracellularly recorded wave-
forms of the spikes generated by one same neuron are assumed to be nearly
identical, as they depend on the type of the neuron and some environmental pa-
rameters such as the location of the neuron with respect to the microelectrode,
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the density of the neuropil, etc.. This means also that different waveforms should
be assumed to correspond to action potentials generated by different neurons.
Spikes which are similar in shape to each other should be clusterized into an
homogeneous group such that the group is assumed to include all spikes gener-
ated by one same neuron. The principal idea of spike sorting consists to detect
as many groups as possible on the basis of the signal waveform analysis. The
first step in most spike sorting techniques is the detection of waveforms that
correspond to spikes in the raw signal. The classification of detected spikes into
specific clusters requires the characterization of the shape of each spike. To this
aim several procedures have been used, such as principal component analysis
[8], independent component analysis [6], wavelet transform[4], and probabilistic
model[5]. The classification directly corresponds to spike sorting in most algo-
rithms, implying that these methods are well suited for off-line analysis. Critical
time constraints, like those imposed by human neurosurgery aimed to select the
optimal target for implanting chronic electrodes, push towards the development
of on-line spike sorting techniques. Template-based spike sorting algorithms are
adequate to the on-line task. However, most of the commercially available tech-
niques of this kind require manual operation by experienced user for selection
of templates, which reduce the advantages of this approach. In the present pa-
per we present a template-based spike sorting algorithm which can recognize
spikes and find templates automatically after unsupervised learning. Represen-
tative “signature” signals are defined as the spikes which are the nearest to the
center of gravity of the respective clusters. Clusterization is performed with an
improved heuristic version of a technique where distances between spikes are
defined in the phase space spanned by the first and second derivatives of the raw
signals [1].

2 Methods

2.1 Architecture of the Application

We developed a software application to implement and test our algorithm. The
application is composed of two parts, i.e., the computation engine and the user
interface. The computation engine was written in ANSI C, and the graphical user
interface was built with multi-platform compatibility on Labview 7.1 (National
Instruments Corp., Austin, TX, USA). We also developed a command-line user
interface written in ANSI C, which can be included for off-line batch processing.
Mac OSX (10.3.6) on G5 Power Mac (Dual 2.5 GHz PowerPC G5 with 2.5 GB
DDR SDRAM) and an A/D data acquisition board (NI-PCI-6250, by National
Instruments) were used to develop the application.

2.2 Unsupervised Spike Recognition Algorithm

Detection of Events. The detection of the neuronal spikes in the raw signal is
the first step of the algorithm. At this stage the term “spike” is ambiguous be-
cause it assumes that the algorithm can recognize what a “spike” means. In fact
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the algorithm cuts out segments of the raw signal which satisfy several criteria.
The set of these segments should contain all potential spikes but some segments
could be noisy traces that satisfy the criteria by chance. Let us call such poten-
tial spikes events. The first and second derivatives of the raw signal were used
to detect the events. Since the method of computing derivatives has a filtering
effect [1], the derivatives are less affected by noise, in particular with respect to
lower frequency components that may be generated by muscles twitch or cardiac
artifacts. The first and second derivatives express the underlying nonlinear dy-
namics of the membrane potential of neurons, which are generally described in
theoretical neuron models which can reproduce neuronal discharges successfully.
The trajectory of a spike in the phase space contains richer information about
its dynamics than its waveform. Let us define a threshold as m + ko where m
and o represent the mean and square root of the variance of the first derivatives,
respectively. k is a coefficient set by the the user. Whenever the first derivative
of the raw signal crosses either the upper or lower threshold, then the threshold
crossing is considered as an occurrence of an event.

Templates Selection. A segment of raw signal which represents a typical shape
of an extracellularly recorded neuronal spike is referred to as a “template” in
this manuscript. The spikes generated by one particular neuron are supposed to
be characterized by shapes similar to the template of that neuron. In addition,
the spikes of the same neuron are assumed to form an homogeneous cluster in
a phase space, given a measure of dissimilarity between two spikes. Then, the
number of clusters should correspond to the number of different neurons near the
tip of the microelectrode that generate an action potential whose extracellular
trace is large enough to be discriminated from the background noise.

A learning procedure based on an iterative computation is implemented to
form clusters of detected events and to select the templates, defined as the
events nearest to the center of gravity of their corresponding clusters. At the
first round, an arbitrary event is taken as a provisional template. Provisional
templates are assumed to converge towards “optimal” and stable templates
after the following iterative procedure. The distances between the i-th event
to all provisional templates are computed, such that if the i-th event fell in-
side a super sphere with a certain radius centered on a provisional template,
the i-th event is assigned to the cluster represented by that provisional tem-
plate. This test is sequentially performed for all events. Notice that in the case
an event lies at the intersection of several super spheres, then that event is
counted as a member of all those clusters. Conversely, in the case an event
lies outside any previously described super spheres, then the event is itself
considered as a new provisional template. At the end of a round of the it-
eration, each event nearest to the center of mass of its corresponding cluster
is considered as the renewed provisional template to be used for distance cal-
culation at the next round of the iteration. The radius of the super spheres
is estimated from the distribution of the distances between all-to-all events.
The first local peak of this histogram is fitted by a Gamma probability density
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function. Then, the distance corresponding to the peak of the fitted Gamma
p-d.f. is used as the default radius, which is kept fixed throughout the iterative
procedure.

Templates Optimization. The procedure of templates selection described so
far did not include any a priori knowledge information about the waveforms of
bioelectrical signals. Events with strange profiles satisfying the above described
procedure could be included as potential templates until the end of the proce-
dure, leading to the degradation of the overall performance of the algorithm.
Furthermore, since the procedure allows an event to be a member of more than
one cluster, several templates could be defined from clusters with overlapping
events. One way to solve this problem consists to merge those clusters that rep-
resent closely related populations of signal traces. Such overall post-processing,
called template optimization procedure, includes the three following steps. (1)
The elimination of spurious templates consists to discard the waveforms without
a clear positive peak or with a peak appearing at the extremes of the event. (2)
The two nearest templates, i.e. those characterized by the minimal distance, are
merged if their distance is less than the default radius. Thus, the two clusters as-
sociated to these templates are merged and a new template is determined by the
event closest to the center of gravity of the newly formed cluster after merging.
This procedure is repeated until all templates are separated by a distance larger
than the default radius. (3) In the third step, the specific radius is calculated for
each template based on the statistics of the events in the cluster. The specific
radius is then used for spike sorting.

2.3 Spike Sorting

The above two processes, i.e., templates selection and templates optimization,
can be performed off-line. Spike sorting is the task applied to the data stream.
It consists to associate a newly detected event with one of the templates. If the
source of the data stream is the data acquisition board, the task can be per-
formed as on-line real-time operation because spike sorting can be achieved very
quickly. The distances between any new event to all templates are evaluated. In
the case the shortest distance is smaller than the specific radius of the template
that gives the minimal distance, then the new event is assigned to that tem-
plate. Otherwise, the new event is discarded and thrown into a 'noise’ cluster
formed by those events not assigned to any template. According to this proce-
dure an event can be sorted only into one cluster and double detection artifacts
are avoided.

2.4 Measure of the Dissimilarity

The dissimilarity between two events z(t) (k = 1, 2) was defined as the distance
ds, 2, in the phase space spanned by time, and by the first and second deriva-

tives of the raw signal. Let :v,(cl)(t) and x,(f) (t) represent the first and second
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derivatives of z(t) (k = 1,2), respectively. The first and second derivatives were
normalized before calculation of the distance (denoted as ﬁi‘,(cl)(t) and 93,(62) (t)).
Let us consider W (t) a user-defined piecewise-linear bell-shaped weight function
ranging from 0 to 1, corresponding to the knowledged weight of the 'phase’ of
an extracellular spike (e.g., steepness of the depolarization, repolarization, after-
potential hyperpolarization, etc.) in the sense of the neurophysiology. Let k; be
a phase shift factor. The distance was defined by the following equation

Aoy s = | D@V = 3+ k)2 + @D @) - 30+ k)W) (1)

We considered three measures of the distance, referred to as 'normal distance’,
‘minimal distance’, and ’aligned distance’. In the case of normal distance, k; = 0.
In the case of minimal distance (as defined in [1]) k¢ in Eq. 1 is an integer value
in [-2, 2] which gives the minimal value of

VED @) =200 k)2 + G20 - 220 H k)2 kel-2.2 ()

for each ¢. In the case of aligned distance, k; in Eq. 1 corresponds to a constant
value, that is a phase shift factor calculated for ¢ at the peak of raw signal of z (¢).

3 Results

3.1 Application of Unsupervised Spike Recognition

In the application with graphical user interface (GUI) the users can select the
operation mode according to the type of data stream, i.e., off-line mode for the
analysis of WAV formatted files that contain the raw signal, and on-line mode
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Fig. 1. Main window of the application with graphical user interface. There are several
buttons to control the application at the top of the window. The waveform shows
the raw signal. The small chart, just below the waveform, indicates the time series
corresponding to the occurrences of detected events.
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s

Fig. 2. (a) Status view of spike sorting. Three charts display the sorted events, grouped
in different clusters. Below of each chart, the histogram of distances is displayed. (b)
A window shows all events which were not classified as members of any clusters.

for the analysis of a signal recorded with the data acquisition board. Users can
easily shift from one mode to the other without restarting the application. In
each operation mode, the application provides three utilities: a signal viewer
showing only the event detection, the template learning utility including the
template-to-all error distributions and the spike sorting utility. The application
with GUI can be operated by users intuitively. The main window of the ap-
plication (Fig. 1) shows the waveform of the raw signal. During spikes sorting,
the application provides a window to display all spikes which were sorted into
clusters. Those events are superimposed on templates (Fig. 2a). In this window,
the users can vary and tune the value of the template-specific radius for each
template individually. An additional window displays the events which are not
sorted to any clusters (Fig. 2b). The application can be used through a command
line interface that provides the possibility to work in batch mode and process
large amounts of data in a semi-automatic way. In this mode the application
loads a configuration file that contains all required parameters and the path to
access and load the WAV formatted files. The data is processed at first to find
templates following the unsupervised learning procedure. Then, the application
rewinds the data file and starts sorting spikes from the begin of the file. The
output of the application is a formatted file called “spike data file” that contains
the multivariate time series corresponding to the the timing of spike occurrences
according to the inter-spike-intervals. This file can be processed for time series
analysis, e.g. for the study of patterns of neuronal activity in clinically recorded
data. The templates found during one run of the application might be of interest
for spike sorting on other data sets. The users can save the templates as XML
formatted files (one template per file), according to the experimental condition
or date, and build libraries of templates.

3.2 Performance Test

The performance of the unsupervised spike sorting (USS) was tested with ar-
tificially generated data. The base test set, noiseless, included three types of
templates (T1, T2 and T3) distributed randomly in time at a mean rate of
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Table 1. Dependency of unsupervised spike sorting performance on the threshold for
the event detection. Sorting errors were shown in percentage with respect to the event
number involved in the test data set. o represents the deviation of the data. Type III
error never occurred and was not shown in the table. The template-specific radius was
fixed at 99%. The aligned distance was used for the measure of dissimilarity of events.
T1, T2 and T3 represent templates type 1, 2 and 3 of the test data set.

Low Noise High Noise
Threshold 1.90 20 230 190 20 2.30
T1 0.1 0.1 0.1 3.1 3.1 4.2
Type I error T2 0.5 0.1 0.3 0.4 0.4 0.4

T3 1.0 1.0 1.1 1.4 3.7 5.2
All 0.5 0.4 0.5 1.6 2.4 3.3
T1 0.2 0.2 0.2 0.1 0.1 0.1
Type II error T2 0.0 0.0 0.0 0.0 0.0 0.0
T3 0.0 0.0 0.0 0.0 0.0 0.0
All 0.1 0.1 0.1 0.1 0.1 0.1
Total unsorted events 4660 4296 3663 5164 4474 3530

7.5 spikes/s for each template. The total duration of the data was 3 min. From
this set we generated two more test sets by adding two different levels of noise,
i.e. high noise (SNR=2.51 dB) and low noise (SNR=3.55 dB) [3]. The evaluation
was based on three potential sorting mistakes. Type I error were due either to
undetected events or to detected events that were not classified into the tem-
plates clusters. Type II error corresponded to noisy traces wrongly classified
into one of the templates. Type III error corresponded to a misclassification, i.e.
spikes belonging to a given template that were sorted in a wrong cluster. Table 1
shows the dependency of USS performance on the threshold for event detection.
In the test set with low noise, both Type I and Type II errors occurred very
seldom (0.5% and 0.1%, respectively). With higher levels of noise we observed
that larger thresholds led to an increase in Type I errors (up to 5.2% for tem-
plate T3) but Type II error remained as lows as 0.1%. Notice that we observed
no Type III errors in the test set used here. The noise distribution also affects
the measure of dissimilarity between events because this measure was based on
the shape of signal trace of the events. The calculation of dissimilarity between
events played an important role in the template learning since the radii used
to form clusters were calculated according to the distribution of the distances
between events. Since the test data was generated by adding noise uniformly
to the original noiseless data set, all three types of templates in the test data
were supposed to be equally distorted by noise. If the algorithm is sufficiently
robust against noise, it is expected that the distribution of the distances become
smoothly broader according to probability theory and the radii estimation be-
come larger than that for noiseless test data. In this latter case there is a high
peak with zero width at distance zero in the histogram of distance distribution,
since all events assigned to the same cluster are identical, i.e., the distance be-



36 Y. Asai, T.I. Aksenova, and A.E.P. Villa

(a)

=]
o
ra

U'.

o
[

50
0

Fig.3. Dependency of the distance distribution on the definition of the dissimilar-
ity. (a) Signal traces of templates. The top, middle and bottom panels correspond to
templates T1, T2 and T3, respectively. Panels (b), (¢) and (d) show the histogram
of distances calculated by the normal distance, minimal distance and aligned distance
methods, respectively.

tween them is zero. Figure 3 shows that USS could discriminate correctly the
templates T1, T2 and T3 of the test data with high level of noise and allows to
compare the methods for computing the template-to-all distances. Notice three
small peaks between 0 to 1 in the top panel of Fig. 3b, i.e. histogram calculated
following normal distance. The events corresponding to these three peaks were
very similar in waveform to each other meaning that events originally belonging
to the same template in the noiseless test data were perturbed by the noise and
split into three sets. This perturbation affects the estimation of the radius and
provokes an unstable evaluation of dissimilarity between events. The same ten-
dency could be seen in the bottom panel in Fig. 3b. In case the error distribution
were calculated by minimal distance and aligned distance, a sharp peak appeared
near to the left end of each panel (Fig. 3c and 3d) which suggested that these
methods are more robust for the error estimation.

3.3 Example of Clinical Data

The unsupervised spike sorting was applied to the analysis of electrophysiolog-
ical data recorded from patients with Parkinson’s disease, during the surgical
operation aimed to implant a microelectrode for chronic deep brain stimulation
of STN in the University Hospital of Grenoble[2]. The event detection threshold
was fixed at 20. The aligned distance was used for the measure of dissimilar-
ity of events, and the template-specific radius was set at 99%. Figure 4 shows
templates after learning and optimization.
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Fig.4. Three clusters identified from an electrophysiological recording in the human
subthalamic nucleus. The raw signal trace is shown in Fig. 1. Each panel in the upper
row shows the statistical distribution of the distances from the template to all other
events (the solid curve), and its fit by a Gamma p.d.f. (dotted curve) used to calculate
the template-specific threshold indicated by a vertical tick. The raw signal profiles of
the representative neural spikes of each cluster are shown in the lower row.

4 Discussion

We have presented a new algorithm for unsupervised spike sorting (USS) and
demonstrated its performance with test data that included two levels of noise.
The formation of clusters during the learning procedure is clearly separated
from the spike sorting in the present algorithm. This architecture is important
for the development of a real-time on-line oriented application. The template
learning is a computationally intensive task because it requires to calculate the
dissimilarity between all-to-all events. The user can define the duration of the
learning interval. In the test case this duration was set equal to 30 seconds and
1395 events were detected. This means that at least 1395x1394/2 = 972315 times
calculations of the dissimilarity are required. The sorting of a newly detected
event does not require much calculation power (e.g., the distances between the
new event and, at most, six templates), and suits the requirements of on-line
real-time applications.

The USS method achieved good performance levels by combining a good
detection quality, avoiding detection of spurious events, and quality of classifi-
cation, avoiding misclassification of detected events. Even if additional events
which are not neural signals were detected, this would not cause serious trou-
ble if those events can be eliminated by the classification procedure. Spurious
events require more computation resource for processing, but this is a liminal
problem with ever-growing processing power. However, if events which are neu-
ral signals are not detected, this immediately pulls down the performance of the
spike sorter, because it increases the Type I error. In the case shown in Table
1, the highest error was observed for T3 in data with high noise and with large
threshold. This is due to the shape of the signal trace of T3 (c.f. Fig. 3a bottom
panel), characterized by a small elevation of the membrane potential in the phase
of depolarization, leading to small increasing of the value of the first derivative.
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In such case the crossing of the upper threshold might not occur and provoke
the undetection of the event. If we consider the lower threshold crossing, events
belonging to T3 satisfy the criterion of the event detection (data not shown).
The feature of selecting upper threshold crossing, lower threshold crossing, or
both of them, was already implemented in the proposed USS application. It was
shown that minimal and aligned distances as the definition of the dissimilarity
between events could provide good result with robustness against noise. From
the viewpoint of the required computation resources, the calculation with the
minimal distance took about 1.5 times longer processing time than the one with
the aligned distance. Since we aimed at developing real-time on-line USS ap-
plication the dissimilarity defined by the aligned distance was preferred as it
provided good performance and faster computation.
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Abstract. We study the dynamics of neural activity in networks of interactive
neural populations with periodic forcing. Two extreme cases of connection ar-
chitectures are considered: (1) regular and homogeneous grid with local con-
nections and (2) sparse random coupling. In the network of the first type, a
propagating wave has been found for excitatory-to-excitatory local connections.
It was shown that in the network with random excitatory and inhibitory connec-
tions about 60% of neural populations work in the oscillatory regime and some
of these oscillations are synchronous. We discuss the regime of partial synchro-
nization in the context of the cortical microcircuit.

1 Introduction

Rhythms, waves and synchronization of neural activity have been observed in differ-
ent brain structures for many years (e.g. [7, 10]). Oscillations and/or synchronization
accompany sensory processing such as visual recognition, auditory processing, and
odor detection (e.g. [1, 8, 11]). Behavioral data also show oscillations (e.g. [2]). The
state of awareness, for example, can be related to wave patterns (e.g. [15]).

Current theories and models of information processing in the brain include those
that postulate that neurodynamics of interactive populations, rhythms, and synchroni-
zation of neural activity play a fundamental role (e.g. [12, 18]). The principle of syn-
chronization of neural activity is also used as a basic hypothesis when modeling the
associative memory (e.g. [4]); feature binding (e.g. [3]) and attention (e.g. [5]).

In this paper we study the relationship between the connection architecture and
neural dynamics of a network, a correspondence between the coupling structure of
neural elements and the functional behavior of the network. We consider two different
cases of connection architecture:

(1) Homogeneous local connections on a grid. In this case we have found several
interesting dynamical regimes: wave propagation, bump-like activity, persistent activ-
ity caused by a short stimulus presentation.

(2) Sparse random coupling. In this case we have found that about 60% of neu-
ral populations work in an oscillatory regime of irregular (chaotic) oscillations
and the other approximately 40% of neural populations demonstrate stable sta-
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tionary neural activity. Forcing by a periodic input signal results in a regime of
partial synchronization: some oscillators are synchronized (phase locked) with
the input signal and other oscillators either demonstrate stationary activity or anti-
phase oscillations.

We hypothesize that the regime of partial synchronization is extremely important
for the modeling of microcircuits, which are the main building blocks of information
processing in the brain. Let us consider a neural population of excitatory and inhibi-
tory neurons with a specific coupling architecture, connection strengths, inputs, etc.
Such a neural population which performs a specific function is often called a micro-
circuit (cortical microcircuit, functional microcircuit, local microcircuit, cortical col-
umn, etc). A microcircuit (MC) is defined by its internal connection architecture and
the external input which delivers an input signal to the MC. The MC can demonstrate
different dynamical responses (specific neural activities) to the presentation of a spe-
cific set of input signals which the MC learns during the developmental stage. For
example, the MC of the visual cortex, that is responsible for identification of a verti-
cal bar, will show a high neural activity on presentation of input signals correspond-
ing to a vertical bar or a bar with almost vertical orientation and the response rate of
this MC will be significantly lower on presentation of an input signal related to an-
other bar orientation. We suppose that according to a stimulus driven learning proc-
ess, the MC adjusts its parameters to demonstrate a regime of partial synchroniza-
tion to presentation of an appropriate set of stimuli. In the regime of partial synchro-
nization some sub-population of neurons works coherently and the MC shows a sig-
nificant increase in population firing rate. The number of coherently spiking neurons
in the regime of partial synchronization should be large enough to provide a firing
rate which can be identified at the next level of information processing. The detailed
mechanism of adjustment of the coupling architecture, connection strengths, connec-
tion delays, and other parameters is still unclear. It is known that two processes are
important: (1) the genetically defined processes of “local rules” which controls axon
growth and synapse formation by markers, labels, etc; (2) a random component of
developmental process which allows probabilistic choice of particular direction of
axon growth and synapse formation. Of course, both processes are input driven. The
resulting structure which appears during the development period depends on the in-
terplay of these two processes and it is important to understand the relation between
deterministic and stochastic components.

In fact in this paper we consider two extreme cases of connection architecture:
highly organized regular and homogeneous local connections and random sparse
connections and we study the dynamics of neural activity under periodic stimulation.
We believe that the connection architecture of the MC includes both a sub-net with
local connections and subnet with random connections. Interplay of these two sub-
networks defines the resulting dynamics of neural activity. Models of interactive
neural populations with different connection architectures represent an important
paradigm in the description of the dynamics and synchronisation of neural activity
(e.g. [9, 14]). These models shed some light on our understanding of neural mecha-
nisms of information processing in the nervous system.
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2 Model Description

We consider the Wilson-Cowan model of interactive neural populations [16]. In par-
ticular, this model of a neural oscillator contains both an excitatory neural population
E (¢t) and an inhibitory neural population 7, (f). Let us suggest that identical oscilla-
tors are arranged in a 2D grid with local connections between neighboring oscillators
of the first and second order. The dynamics of the network is described by the
equations:

9E, =—E +(k,—E)*S (cE —c +P+V),

dt (1)
dl

d_t” =—I +(k —-1)*S,(c.E,—c I +W), n=12,..,N.

Here c,c,, c,, ¢, are the coupling strengths between populations of the n™ oscillator;
0,), pe e} is the
monotonically increasing sigmoid-type function given by the formula:
S, (x) =1/ +exp(-b,(x— 49[)))) —-1/(1+ exp(bp@p ) k,=1/§ (+e0). Parameter val-
ues are: ¢, =16,c, =12,c, =15,c, =3, 6, =4,b, =1.3,0, =3.7,b, =2, P =15 and
the choice of these values corresponds to the oscillatory regime of a single neural
oscillator studied in [6]. In this regime, a single neural oscillator has one attractor in
two-dimensional phase space, which is a stable limit cycle.

Coupling between oscillators is described by the terms V, and W, which define the
type of connections. For example, for excitatory-to-excitatory connections these

terms are:
V,=B)E +a) E,.
jeN) jeN? (2)
W, =0.

P, is the external input to excitatory population; S, (x) =S (x:b

P’

Here N is a set of first order neighboring nodes of the n"™ excitatory population (this

set includes the eight closest nodes of the grid); N is a set of second order neighbor-

ing nodes of the n™ excitatory population (this set includes the sixteen nodes of the
grid which are next to the closest ones); £ and « are the strengths of homogeneous

connections of the first and second order respectively.
We consider the boundary conditions on the opposite sides of the grid to be identi-
cal and the resulting surface is a torus.

3 Wave Propagation in a Network of Locally Coupled Neural
Oscillators

Spatio-temporal patterns of neural activity were studied for both a 1D network with
local connections (a chain of oscillators) and a 2D network on the toroidal surface. It
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Fig. 1. 2D wave propagation. There is a constant source of oscillatory activity- a square region
at the centre contains oscillators in the oscillatory mode. All other oscillators are in the regime
of low stationary activity. Six moments of wave propagation on the torus (opposite sides of the
grid are considered to be identical) are shown. The last frame shows a complex and irregular
pattern of spatial activity.

was shown that the regime of propagating waves exists in the case of excitatory to excita-
tory connections. In the case of other connection types (excitatory to inhibitory, inhibitory
to excitatory and inhibitory to inhibitory) the regime of propagating waves was not found.

Fig. 1 shows wave propagation over a 2D grid on the torus surface. Each oscillator
receives excitatory local connections from excitatory populations of oscillators allo-
cated in the first and second order nodes (equations 1 and 2). External input to each
oscillator is chosen to produce a low stationary activity (E, = 0) in independently
working oscillators (P, = 0.8) and this means that the total grid is a passive medium
with a low stationary activity. To initiate the wave propagation we change the exter-
nal input value (P, = 1.5) of oscillators allocated in a square region in the centre of the
grid. This value of external input corresponds to the oscillatory regime but due to
excitatory-to-excitatory connections the total excitation received by an oscillator of
this group is large enough to keep this oscillator in a stationary state of high activity.
Thus, the square region in the centre of the grid is considered as a source of propagat-
ing waves. It is interesting to note that inside of a propagating wave, neural activity
has a complex and fast changing structure (e.g. see left-bottom frame in Fig. 1). On
the boundary, the wave interacts with itself and this result in a complex spatial pattern
of neural activity. Fig. 1 shows activities of excitatory populations at 6 sequential time
steps. A video clip of the propagating wave is available from the following webpage:
http://www.tech.plym.ac.uk/soc/staff/roman/home2.htm.

The wave’s speed and distance of propagation depends on strengths of local con-
nections (¢, ). For example, in the case of weak coupling, the wave propagates a

short distance only, the wave’s amplitude decays, and the wave disappears. In the
case of medium values of connection strengths, the speed of wave propagation can be
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Fig. 2. 2D waves propagation and interaction. There are two identical sources of propagating
waves. Wave interaction results in a complex pattern of spatial activity. Different frames show
spatial activity patterns of excitatory populations at sequential times.

very slow and a bump-like structure of neural activity exists for a long time. This kind
of persistent activity is traditionally considered as a model of short-term memory.

Wave propagation is stimulus-dependent and it has been found that short time
stimulation can also result in the appearance of a permanent source of propagating
waves. Let us suppose that similar to the stimulation procedure described above, the
external input to the oscillators allocated in the central square region of the grid have
been changed to P, = 1.5 for a short time only and after that they have been returned
to P, = 0.8, which corresponds to a low stationary activity of a single oscillator. Thus,
a short-term stimulation has been applied to a passive medium and it results in the
emergence of persistent spatio-temporal mode of propagating waves.

Fig. 2 shows interaction of two propagating waves. As in Fig. 1, we consider the
2D grid on the torus with local connections of excitatory-to-excitatory type and the
same parameter values. The only difference is that in this case we have two perma-
nent sources of propagating waves. The waves demonstrate non-linear interaction
resulting in the appearance of a complex spatial pattern of neural activity. Fig. 2
shows activities of excitatory populations progressing with time. Two propagating
waves interact and generate a ring-like structure (see right-top frame in Fig.2) which
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surrounds both sources of propagating waves. This combined source of propagating
waves can be considered as a new source of propagation of a larger wave. The wave
reaches the boundaries of the grid and interacts with itself giving rise to a complex
spatio-temporal pattern. A video clip of propagating and interacting waves is avail-
able from the following webpage: http://www.tech.plym.ac.uk/soc/staff/roman/
home?2.htm.

4 Oscillations in a Network with Random Connections

4.1 Model Description

Here we consider a neural network of interactive Wilson-Cowan neural populations
x,(t) with all-to-all connections and random values of connection strength, external

input, and parameters of the sigmoid function:

d
S o x4 (k—x)*S alx, +P),

dr =x 3)
n=12,...,N.

Here « is the connection strength from population j to population n, values of these

parameters are random and uniformly distributed in the interval [-20,20]; P, is the
external input to the n™ population, values are random and uniformly distributed in
the interval [0,2]; k =1/S(4+e); S(x)=S(x;b,,0,) is the monotonically increasing

sigmoid-type function which has already been used in Equation (1); values of b, are

n?

random and uniformly distributed in the interval [1,7]; values of &, are random and

uniformly distributed in the interval [2,10], N=300.

Connection strength values are distributed in a range which includes both positive
and negative values, therefore the influences of the n™ neural population to other
populations are either excitatory or inhibitory. We do not prescribe specific connec-
tions which can result in oscillatory activity; instead we expect that oscillations will
emerge as a result of the interplay between excitation and inhibition.

4.2 Distribution of the Fraction of Oscillating Populations

Simulation of neural activity of a network with random parameters shows that each
neural population has either stationary neural dynamics or irregular oscillations. Fig. 3
(left frame) shows typical dynamics of neural populations in the network with random
parameters. The right frame in Fig. 3 shows the dynamics of the network with random
and sparse connections. In this case 97% of randomly selected connections have been
deleted (the connection strength has been made equal to zero). It is interesting to note
that increased sparseness results in a more regular oscillatory pattern.

Let u be the fraction of populations with an oscillatory dynamical regime (regular

or irregular) in a network with all-to-all connections and random parameters. This
characteristic 4 is a random variable because any repetition of simulation generates a
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Fig. 3. Examples of neural activity dynamics in the network with random parameters (left
frame). The right frame shows dynamics in the network with sparse random parameters.

Fig. 4. The distribution of the fraction of oscillating populations in the network with randomly
selected connections, input parameter values, and parameters of the sigmoid function

new value of g . The histogram of the u -distribution is shown in Fig. 4. The mean

of random variable is 0.6 and it means that about 60% of neural populations demon-
strate the oscillatory regime and the other populations (about 40%) show stationary
activity.

4.3 Partial Synchronization by Periodic Input

Here we consider the model of interactive populations with all-to-all connections and
randomly chosen parameters (equation 3). Connection strengths ¢ are random and
uniformly distributed in the interval [-2,2]; P, are random and uniformly distributed in
the interval [0,0.5] for all oscillators except ten oscillators (shown in the central part
in Fig. 5) which have the periodic input P(¢) =10*sin(2*z*¢/40); b, are random
and uniformly distributed in the interval [1,7]; values of €, are random and uniformly
distributed in the interval [2,10], N=200.
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Fig. 5. Regime of partial synchronization with periodic input signal in a neural network with
very sparse random connections. Periodic forcing was applied to ten neural populations (in the
centre of the frame) and some populations work in phase with the periodic signal. There are
anti-phase and quiescent populations.

We study the dynamics of this network with random connections and a strong pe-
riodic forcing with period 40 ms. We have found that the dynamics of any population
belongs to one of the following 4 classes: (1) regular periodic oscillations in-phase
with the periodic input signal; (2) regular periodic anti-phase oscillations; (3) irregular
chaotic dynamics without any visible period; (4) steady state activity. Neural popula-
tions which demonstrate in-phase oscillations are in the regime of partial synchroniza-
tion. We have found that decreasing the number of connections (or increasing sparse-
ness) results in decreasing the number of irregular oscillations. Fig. 5 shows dynamics
of 100 neural populations with random connections, periodic forcing, and 90% of
connection strengths equal to zero. In this case of very sparse connections, the regime
of partial synchronization is easily visible. It is interesting to note that repetition of the
same simulation with different initial conditions and other parameters fixed demon-
strates another pattern of partial synchronization.

5 Discussion

The study of spatio-temporal patterns of neural activity is a fundamental problem of
theoretical neuroscience. For example, it is important to investigate how the spatio-
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temporal activity depends on coupling parameters and external stimulation. Such
study can be considered as an initial step in the investigation of neural network learn-
ing procedures which adjust parameter values in such a way that the resulting pattern
of spatio-temporal activity corresponds to a desirable pattern. Here we have studied
the dynamical behavior of average activity of neural populations. This type of model's
activity is related to EEG experimental recordings as well as to local field potential
experiments.

To study spatio-temporal patterns we use an approach of discrete interactive neural
populations allocated in the grid nodes (compare with other approaches based on
intergro-differential equation model [13, 17]). Advantages of our approach are: (1)
easy to implement; (2) requires a low computational power; (3) flexible in adjustment
of connection types (connections between excitatory and inhibitory populations). Our
study of wave propagation shows that a wave propagates in the system of interactive
oscillators in the case of excitatory-to-excitatory connections. Similar simulations
with other connection types show that the wave’s amplitude rapidly decays (compare
with [14]).

Simulations of neural networks with random connections show that even in the
case of random and sparse connections, the oscillatory regime is typical for many
neural populations. The regime of partial synchronization has been found in networks
with random and sparse connections and periodic forcing. We consider this result to
be a first step in modelling of the MC development. Further process of self-
organization of connection architecture and parameter calibration by stimulus driven
learning will result in the appearance of the regime of partial synchronization of a
significant amount of neural populations as a MC’s response to the presentation of a
specific stimulus. These results will be discussed in another publication.
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Abstract. Fast Spiking GABAergic interneurons, also coupled through gap
junctions too, receive excitatory synaptic inputs from pyramidal cells and a
relevant problem is to understand how their outputs depend on the timing of
their inputs. In recent experiments it was shown that Fast Spiking interneurons
respond with high temporal precision to synaptic inputs and are very sensitive
to their synchrony level. In this paper this topic is investigated theoretically by
using biophysical modelling of a pair of coupled Fast Spiking interneurons. In
particular it is shown that, in agreement with the experimental findings, Fast
Spiking interneurons transmit presynaptic signals with high temporal precision.
Moreover, they are capable of reading and transferring high frequency inputs
while preserving their relative timing. Lastly, a pair of Fast Spiking interneu-
rons, coupled by both inhibitory and electrical synapses, behaves as a coinci-
dence detector.

1 Introduction

Experimental findings suggest that networks of inhibitory interneurons contribute to
brain rhythms by synchronizing their firing activities and that of the principal cells [1,
2]. Moreover, it was found that they are interconnected also by electrical synapses and
play a key role in the emergence of network oscillations [3-14, 22]. Here, by starting
from the experimental results reported in [4] and by using a biophysical modelling of
each Fast Spiking (FS) interneuron we study the spike transmission properties of
these cells.

2 Methods

FS interneurons are not capable of generating repetitive firing of arbitrary low fre-
quency [15]; thereby they have type II excitability property [16]. Experiments carried
on FS cells reveal that they have high firing rates (up to ~ 200 Hz), average resting
membrane potential of =72 mV and input resistance ~ 89 M2 ; their action potential
has a mean half-width ~ 0.35 ms, average amplitude ~ 61 mV and after-
hyperpolarization amplitude ~ 25 mV [3-5, 17, 22].

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 49-58, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2.1 Model Description

Our HH-like biophysical model of an FS interneuron, well accounting for the features
quoted above, is defined by the following equations:

Cdvydt = Ig - gna m3h(V'VNa) —gxn(V-Vg) — g (V-V)), (1a)
dx/dt = (Xe- X) | Ty X = 04/ (04 + B), T.= 1/ (e + Bo), (x=m, h, n), (1b)

where C = 1uF/cm® and Iy is the external stimulation current. The maximal specific
conductances and the reversal potentials are respectively: gy, = 85 mS/cm?, gx = 70
mS/em?, gr=0.15 mS/em* and Vi, = 60 mV, Vg = -95 mV, V, = - 72 mV. The kinetic
of the Na* current was modeled by using recordings from hippocampal FS interneu-
rons [18]: m.(V) = 1/{1+exp[-(V+V,)/k,]1}, ho(V) = 1/{1+exp[(V+V))Ik,]}, 5.(V) =
0.03+1/{3exp[(V+V,,)/13]+ 3exp[-(V+V,)/17]}, 5,(V) = 0.5+1/{0.026exp[-(V+V,,)/8]+
0.026exp[(V+V,)/7]}, with V,,= 25.1 mV, V,= 583 mV, k,= 11.5 mV, k,= 6.7 mV.
The kinetics of the fast-delayed rectifier component of potassium current was taken
from [19]: ¢, = [-0.019(V-4.2))/{exp[-(V-4.2)/6.4]-1}, B, = 0.016exp(-V/vaup). The
value of parameter vayp was modified to get an after-hyperpolarization amplitude of
the action potential of ~ 25 mV: the adopted value was vagp = 13 mV. In this model
the onset of periodic firing occurs through a subcritical Hopf bifurcation for I = 1.42
UAlem® with a well defined frequency (~ 14 Hz), according to type II excitability
property (data not shown) [16].

2.2 Synaptic Coupling Modeling

The electrical and chemical synapses are modeled as follows. The inhibitory postsy-
naptic current at time ¢ > ty is defined by I() = gsy S7(t) (Vpos(t)- Vrer) = sy 25 8(t - 1)
(Vpost(t) - Vgey), where gg, is the specific maximal conductance of the synapse (in
mS/em’ unit), s(t) = [exp(-t/Tpecay) - exp(-1/Trise) |/ Maxp[exp(-t/Tpecay) - €xp(-t/Trise) ] 1
(G =1, 2,...,N) are the times at which the presynaptic neuron generated spikes, Tpecay
and Ty are the decay and rise time constants of the inhibitory postsynaptic current.
The electrical synapse is modeled as Ir; = g5 (Ve - Vpost), Where gg is the maximal
conductance of the gap junction (in mS/cm” unit). In the following the adopted con-
ductance values for the inhibitory and electrical synapses are (for both cells), respec-
tively, gg, = 0.1 mS/cm® and gz = 0.02 mS/em’.

2.3 Synaptic Background Activity Modeling

To reproduce the in vivo conditions the synaptic background activity was modeled
according to [20]. The total noisy synaptic current is the sum of two currents, one
excitatory and the other inhibitory, described as follows:

L) = g, (V(1)- V.)+ g (V(1)- V), (2a)
dg. (D/dt = (g, i(1) - guo.0)Tei +Dei’” Wi, (2b)

where g, are average conductances, T.; are time constants, D,; are noise diffusion
coefficients, Ge,iz = 0.5D, T, ; and W,; denotes Gaussian white noise of unit standard
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deviation and zero mean. The values of the other parameters are: V, = 0 mV, V; = -75
mV, g.o = 0.0121 mS/em?, gip = 0.0573 mSlem?®, 6, = 0.025 mS/cm?, 6; = 2.56,, T, =
10.49 ms, t; = 2.728 ms [20].

3 Results

Let us first study how excitatory synaptic inputs affect the firing rate of the FS cell
model in the presence of synaptic background bombardment. The excitatory postsy-
naptic current (EPSC), which depolarizes the FS interneuron (see panel a of figure 1),
is modeled as follows: IEpsc(t) = ngsc[exp(-l/TDecay) - exp(-t/‘cRise)]/Max{,}[exp(—t/‘cDec.dy)
- exp(-t/Trise)]. The parameter values, Tgise = 0.4 ms and Tpecy = 2 ms, are chosen to
mimic the experimental time course of the EPSC from a pyramidal cell to an FS cell
[4]. To increase the discharge rate arising from the synaptic background activity, the
FS cell is injected with constant depolarizing current to get a firing frequency of ~ 22
Hz in absence of EPSC (see panel b of figure 1). As expected, the presence of EPSCs
lead to increasing the discharge rate of the postsynaptic cell and this can be seen by
inspecting the panels c¢) and d) of figure 1. The spike histogram exhibits a sharp peak
located just to the right of the peak of the EPSC (panel e). The estimated latency be-
tween the peak of the EPSC and that occurring in the histogram is ~ 2 ms and is of the
same order of magnitude as the experimental one of ~ 1.7 ms [4]. Each spike histo-
gram reported in this paper was obtained as follows: the times of occurrence of spikes
e (=1,2,..,N), falling in a given time window were recorded for all trials (Nriu),
then the histogram of the 7, values was built by using a bin size of 0.2 ms (with N up
to 33000). The impact of the EPSC on the postsynaptic firing rate was quantified by
the temporal precision of spike transmission according to [4]. With this aim in mind
we fitted the shape of the peak of the spike histogram by a Gaussian function and the
spike precision was defined as twice the standard deviation of this distribution. Such a
measure is shown in panel f) of figure 1 against the amplitude of the EPSC showing
that the precision of spike transmission improves as ggpsc increases (the estimated
average value of spike precision was ~ 1.02 ms + 0.3 ms). These findings agree with
the corresponding experimental results [4]. In conclusion these results imply that FS
cells are capable of representing the pattern of the presynaptic spikes with high fidel-
ity as suggested in [4].

Now, to investigate the response to high frequency inputs, the cell is injected with
two EPSCs separated by a time delay of 4 ms, and the results are displayed in the left
panel of figure 2. The spike histogram exhibits two distinct peaks and this means that
the cell model is able to transmit high frequency signals (up to 250 Hz) while preserv-
ing the presynaptic timing. The height of the second peak is smaller than that of the
first one, and this phenomenon is a direct manifestation of paired-pulse depression (in
agreement with experimental results). By increasing the time delay between the two
pulses the difference between the two heights decreases (data not shown). As shown
in [4] the velocity of membrane depolarization can affect the probability that one cell
generates a spike. To reproduce this phenomenon, the FS cell model was injected with
two EPSCs having different rise time constants and the results are shown in the right
panel of figure 2. The peak corresponding to the slow rise EPSC is lower and larger
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Fig. 1. Transmission properties of excitatory presynaptic inputs by the FS cell model. a) Time
course of the EPSC; b) spike firing of the FS interneuron model in the presence of synaptic
background activity; c) spike histogram for a cell receiving an EPSC pulse at time 7 = 200 ms
with N7,;us = 250; d) superposition of the time courses of the cell membrane potentials ob-
tained in several trials; e) latency between the EPSC peak (thick line) and that of the histogram;
f) spike precision against the EPSC amplitude. For panels (a-e) it is ggpsc = 10 pA/ cm®.
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Fig. 2. Spike histograms of the FS cell output. Left: Tgjse = 0.4 15, Tpecay = 2 ms, the time delay
between the two EPSC pulses is 4 ms. Right: the time delay between the pulses is 400 ms, but
they have different rise time constants. For the first pulse (at # = 200 ms) the parameters values
of the EPSC are Tgis. = 0.4 ms, Tpecay = 6 ms, for the other one (at £ = 600 ms ) they are Trje =
5.8 ms, Tpecay = 6 ms. For both panels it is ggpsc = 12 HA/ cm? and Ny, = 1500.

than the other. This means that the spike precision depends on the rising kinetics of
the presynaptic pulse: the faster the rising phase of the pulse the higher the temporal
precision of spike transmission.

Also, in order to investigate how the decay time constant of the EPSC affects the
transmission properties of the presynaptic inputs, the cell model is injected with
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EPSCs which have different values of Tpec,y and for each value of this parameter the
number of trials was Ny, = 1500. When the decay time constant of the EPSC pulse
is 2 ms the spike histogram exhibits a single peak; as Tpec,y increases, other peaks of
lower amplitude appear (data not shown). This phenomenon arises due to the depolar-
izing effect of the EPSC, which now covers a larger time window. For each Tpec,y the
time separation between these peaks is of the same magnitude and their appearance
can be explained as follows. Once the cell has fired a spike there is a time interval Ty
(the recovery phase) where, in spite of the depolarizing effect of the EPSC, the prob-
ability that a new spike is generated is low. Obviously the value of T(; depends on the
kinetics of the ionic currents defining the model, and its value provides an estimation
of the time separation between the peaks observed in these numerical experiments.
Moreover, as Tpecay increases, the corresponding Ty value slightly decreases (data not
shown). Therefore these results show, in agreement with the experimental results, that
the kinetics of the EPSC strongly affects the transmission of the information con-
tained in the presynaptic signals.

Within the context of neural information coding an interesting problem is to under-
stand how the output of a population of coupled FS cells depends on the synchrony
level of the inputs they receive. In fact, as experiments suggest, the synchronization of
the discharges of a population of neurons could be relevant for cognitive tasks [21].
Moreover FS cells, receiving strong inputs from thalamus, could be implicated in the
transfer of the sensory information to the cortex [22]. Thus, it is important to check
whether FS cells behave as coincidence detectors. Recently this issue was addressed
experimentally and it was shown that a pair of FS interneurons, coupled through in-
hibitory and electrical synapses, is sensitive to the relative timing of their inputs [4].

In particular, a time separation between the inputs of the order of 1 msec promotes
a synchronous generation of action potentials in both cells, whereas for larger separa-
tions (~ 5 msec) the firing of one of them is strongly reduced [4]. Therefore, a pair of
FS cells is capable of distinguishing synchronous from asynchronous inputs, i.e. be-
haves as a coincidence detector. Here the problem is approached by investigating the
capability of a pair of FS cell models, connected by a single inhibitory synapse plus
the electrical one (i.e. the same network architecture as that investigated experimen-
tally [4]), to detect synchronous excitatory inputs. In this case, in keeping with the
experiments, the simulations are carried out in absence of background synaptic activ-
ity. To reproduce the membrane potential fluctuations occurring in in vitro conditions,
each cell model is injected with a Gaussian random current of small amplitude (¢ =
0.3 pA/cm®). The two EPSC pulses are of the same amplitude, but separated by a time
delay At, with cell 1 receiving the first EPSC pulse. According to the experiment
performed in [4] only cell 2 is inhibited and the results are shown in figure 3 for sev-
eral Ar values. Let us first consider the case in which, in absence of any coupling,
each EPSC pulse elicits a spike with probability 1. When the time delay, Af, between
the two pulses is lower than ~ 2 msec both cells discharge with high probability,
whereas for At values ~ 5 msec the firing probability of cell 2 is close to zero. This
effect is mainly due to the inhibition that cell 2 receives from cell 1. In fact, as the
time delay between the pulses is further increased (Ar = 18 msec), the magnitude of
the inhibitory input received by cell 2 is reduced and its firing rate is restored.
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The overall results shown in figure 3 imply that if the inputs to the two cells occur
synchronously (4f < 2 msec ) both cells generate action potentials. When the time
interval between the pulses increases (Af > 2 msec ) the firing rate of cell 2 becomes
smaller and smaller until cell 1 alone is discharging.
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Fig. 3. Spike histograms of two identical FS cell coupled by inhibitory and electrical synapses
in the presence of a time delay between the EPSC pulses. For all panels it is gg, = 0.1mS/cem?,
gz = 0.02 mS/cm?, ggpsc =7 WA/ cm?, I = 0.5 pAlem?, 6 = 0.3 wA/em* and Nyyqs = 500. The
rise and the decay time constants of the EPSC pulses are, Tgise = 0.4 mS, Tpecay = 2. ms, TESpPEC-
tively, while the corresponding quantities for the inhibitory synapse are Tgis. = 0.25 mS, Tpecay =
2.6 ms.

This means that the network of coupled FS cells behaves as a coincidence detector
when the firing probability of each cell is 1 in absence of coupling. To better under-
stand these findings the firing probabilities of both cells are displayed in figure 4
against the time delay and in several coupling conditions. The firing probability of
each cell is defined as p = Ng/ Ny,iq5, Where Ny is the total number of spikes generated
by the cell during the trials. From the middle panel it follows that in absence of inhibi-
tory coupling both cells discharge with probability one, independently of the value of
the time delay between the pulses. In this case our system does not behave as a coin-
cidence detector. However, the data displayed in the right panel of figure 4 clearly
show that it is the presence of inhibitory coupling that confers the capability of behav-
ing as a coincidence detector to the network of coupled FS cells. However, as we will
see, this explanation of the behaviour of the network does not hold in general. In par-
ticular, we investigate how the network of coupled FS cells behaves in more realistic
conditions: i.e. when, in the absence of coupling, the firing probability of each cell is
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lower than 1. With this aim in mind the amplitude of the EPSC is decreased until the
firing probability of each cell, in absence of coupling, becomes ~ 0.77. The corre-
sponding firing probabilities are displayed in figure 5 against the time delay between
the two EPSC pulses. From the left panels it follows that the network behaves as a
coincidence detector: both cells fire when the time delay between the two EPSC
pulses is a few milliseconds (1-3 ms). As At is further increased (3 msec < At < 6-7
msec) the firing rate of cell 1 decreases drastically and for longer time delays the
firing rate of both cells is strongly depressed. This behaviour, as can be deduced from
the results reported in figure 5, is determined by the presence of the electrical cou-
pling. A qualitative explanation of this behaviour is the following: when the electrical
coupling between the two cells is on the depolarization amplitude of cell 1 reduces.
This occurs because the presence of the electrical coupling lowers its input resistance.
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Fig. 4. Firing probabilities of a pair of identical FS cells receiving EPSC pulses of amplitude
gepsc = 7 WA/ cm? separated by a variable time delay. Parameter values are the same as those
used for figure 3. The values of the inhibitory and electrical coupling conductances are reported
at the top of each panel. For all panels the open circles represent the firing probability of cell 1,
the solid squares that of cell 2, and N7,y = 500.
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Fig. 5. Firing probabilities of a pair of identical FS cells receiving EPSC pulses of amplitude
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figure 4. The values of the inhibitory and electrical coupling conductances are reported in the
top of each panel. For all panels the open circles represent the firing probabilities of cell 1,
while the solid squares those of cell 2, and Nz, = 500.
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Fig. 6. Time course of the membrane potentials and of the electrical coupling currents of a pair
of identical FS cells coupled by inhibitory and electrical synapses, with gg, = 0.1mSlem?, gy =
0.02 mS/cm?, gepsc = 5.5 YA/ cm?, At = 25 msec. Gray lines: cell 1; black lines: cell 2.

In other words when the current through the gap junction flows from cell 1 to cell 2
(Vy > V, ) the membrane potential of cell 1 is less depolarized for the presence of an
outward current, while that of cell 2 is more depolarized. This explain why the firing
probability of cell 2 is higher than that of cell 1 for 3 msec < At < 27 msec (see left
and middle panels of figure 5). Thus, the firing probability of cell 1 is smaller than
that in absence of electrical coupling (see the left and right panels of figure 5). As an
example, figure 6 shows the time course of the membrane potential and the electrical
coupling current for both cells in the case At = 25 msec and for Ny, = 1. It can be
seen that during the depolarization phase of both cells (see the left panel) their corre-
sponding electrical coupling currents are outward (right panel) as predicted. For At
values higher than 27 msec each cell strongly depresses the firing activity of the other
cell and, as before, this occurs for the presence of the electrical coupling (see the left
and middle panels of figure 5).

4 Conclusions

In this paper, by using a biophysical model of an FS interneuron, the capability of
these interneurons of reading and transmitting their presynaptic inputs were investi-
gated by simulations. Initially we studied how EPSC pulses from a pyramidal cell to
an FS one affect its firing properties in the in vivo conditions. To do that the model
cell was injected with a noisy current generated with the algorithm proposed in [20]
and then we showed that, in agreement with the experimental results, an FS cell is
capable of representing with high fidelity the pattern of the presynaptic spikes (see
figures 1, 2, 3). In particular it was shown that both the rise and decay time constants
of the EPSC affect the transmission properties of the presynaptic inputs. Moreover we
found that high frequency presynaptic signals are encoded with high fidelity.

Next we investigated whether a small network of coupled FS cells is capable of
distinguishing synchronous from asynchronous inputs by using the same network
architecture as experimentally investigated in [4]. We found that the output of this
network is sensitive to the relative timing of the inputs. In particular, when the time
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separation between the inputs is less than 1-2 msec, the probability that both cells
generate action potentials is high, while for larger separations (~ 5 msec) the firing of
one of them is strongly reduced. These simulation results suggest, in keeping with the
experimental results in [4], that a network of coupled FS cell models operates as a
coincidence detector.
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Abstract. We studied the emergence of cell assemblies out of locally
connected random networks of integrate-and-fire units distributed on a
2D lattice stimulated with a spatiotemporal pattern in presence of in-
dependent random background noise. Networks were composed of 80%
excitatory and 20% inhibitory units with initially balanced synaptic
weights. Excitatory—excitatory synapses were modified according to a
spike-timing-dependent synaptic plasticity (STDP) rule associated with
synaptic pruning. We show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell as-
semblies characterized by an internal pattern of converging projections
and a feed-forward topology not observed with an equivalent random
stimulation.

1 Introduction

Massive synaptic pruning following over-growth is a general feature of mam-
malian brain maturation [11]. Pruning starts near time of birth and is com-
pleted by time of sexual maturation. Trigger signals able to induce synaptic
pruning could be related to dynamic functions that depend on the timing of
action potentials. Spike-timing-dependent synaptic plasticity (STDP) is a change
in the synaptic strength based on the ordering of pre- and postsynaptic spikes.
This mechanism has been proposed to explain the origin of long-term poten-
tiation (LTP), i.e. a mechanism for reinforcement of synapses repeatedly acti-
vated shortly before the occurrence of a postsynaptic spike [8,2]. STDP has also
been proposed to explain long-term depression (LTD), which corresponds to the
weakening of synapses strength whenever the presynaptic cell is repeatedly ac-
tivated shortly after the occurrence of a postsynaptic spike [7]. The relation
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between synaptic efficacy and synaptic pruning [3,9], suggests that the weak
synapses may be modified and removed through competitive “learning” rules.
Competitive synaptic modification rules maintain the average neuronal input
to a postsynaptic neuron, but provoke selective synaptic pruning in the sense
that converging synapses are competing for control of the timing of postsynaptic
action potentials [12,13].

This article studies the emergence of cell assemblies out of a locally con-
nected random network of integrate-and-fire units distributed on a 2D lattice.
The originality of our study stands on the size of the network, between 8,100
and 12,100 units, the duration of the experiment, 500,000 time units (one time
unit corresponding to the duration of a spike), and the application of an original
bio-inspired sSTDP modification rule compatible with hardware implementation
[4]. In this study the synaptic modification rule was applied only to the exc—exc
connections. This plasticity rule might produce the strengthening of the connec-
tions among neurons that belong to cell assemblies characterized by recurrent
patterns of firing. Conversely, those connections that are not recurrently acti-
vated might decrease in efficacy and eventually be eliminated. The main goal of
our study is to determine whether or not, and under which conditions, such cell
assemblies may emerge from a large neural network receiving background noise
and content-related input organized in both temporal and spatial dimensions.

2 Model

The complete neural network model is described in details in [5]. Some aspects
that were not discussed in that reference are presented here, along with a sketch
description of the model. Integrate-and-fire units (80% excitatory and 20% in-
hibitory) were laid down on a squared 2D lattice according to a space-filling
quasi-random Sobol distribution. Network sizes of [90 x 90], [100 x 100], and
[110 x 110] were simulated. Sparse connections between the two populations of
units were randomly generated according to a two-dimensional Gaussian density
function such that excitatory projections were dense in a local neighbourhood,
but low probability long-range excitatory projections were allowed [5]. Edge ef-
fects induced by the borders were limited by folding the network as a torus.

All units of the network were simulated by leaky integrate-and-fire neu-
romimes. The state of the unit (spiking/not spiking) was a function of the
membrane potential and a threshold. After spiking, the membrane potential
was reset, and the unit entered an absolute refractory period set to 3 ms for
excitatory units, and 2 ms for inhibitory units. Each unit received a background
excitatory input (corresponding to a depolarization of 60 mV) that followed an
independent and uncorrelated Poisson process of mean A = 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and postsynaptic units and the
changes in synaptic conductance as a result of Ca?t influx through the NMDA
receptors. In the current study we attributed a fixed activation level (meaning
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no synaptic modification) A;;(t) = 1, to exc—inh, inh—exc, and inh—inh synapses
while activation levels were allowed to take one of Aj;(¢t) = {0, 1,2, 4} for exc—exc
synapses, A;;(t) = 0 meaning that the projection was permanently pruned out
(see [5] for more details).

3 Stimulus Protocol

Each simulation was running for 5-10° discrete time steps (1 ms per time step),
corresponding to about 8.5 minutes. After a stabilization period of 1 s with-
out any external input, a stimulus was presented every 2 seconds. Overall this
represented 250 presentations of the stimulus along one simulation run. Three
stimulus durations were used: 50 ms followed by 1,950 ms without any external
input, 100 ms followed by 1,900 ms without any external input, 200 ms followed
by 1,800 ms without any external input. The stimulus was composed of vertical
bars uniformly distributed over the 2D lattice surface, each bar being 1 column
wide. The number of bars composing the stimulus was a function of the simu-
lated network sizes: 9 bars for [90 x 90] networks, 10 bars for [100 x 100] networks,
and 11 bars for [110 x 110] networks, such that the bars were always distant of 10
columns one from another and spanning all over the available surface. At each
time step during stimulus presentation, the bars were simultaneously moved one
column to the right, such that each bar slipped over the entire surface of the
network.

The stimulus was applied only to a fraction of the population formed by
excitatory units; these units are called input units. The number of input units
used for the simulations was a ratio (i.e. 3, 5, 7, or 10%) of the initial number
of excitatory units. For a [100 x 100] network, 10% of input units corresponds
to 800 input units, i.e. 10% of the 80% excitatory units of the 10,000 units.
The stimulus applied on a particular input unit provoked a depolarization on
its membrane with amplitudes equal to 0 (i.e. no stimulation), 30, 40, 50, and
60 mV, depending on the protocol. Notice that the stimulus amplitude was
selected in the beginning and did not vary during the simulations.

The three following presentation protocols were applied: (i) 'No stimulation’:
this condition corresponds to a stimulation of zero amplitude which is necessary
to check computing artefacts that might be associated to the programming rou-
tines used to “stimulate” the units; (ii) 'Random stimulation’: at each stimulus
presentation, the input units were randomly chosen, such that the input units
changed at any new stimulus presentation; (iii) Fized stimulation’: the input
units were selected in the beginning of the simulation run and remained the
same at any new stimulus presentation. The total amount of applied stimulation
is equal in both random and fixed protocols.

To summarize the stimulation procedure, let us consider the following exam-
ple. For each of the input units, randomly selected among the 10% of excitatory
units, of a [100 x 100] network stimulated with a 100 ms stimulus, one stimulus
presentation resulted in a sequence of 10 external inputs equally distributed in
time every 10 ms. At the network level, each stimulus presentation corresponded
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to a spatiotemporal sequence characterized by 10 groups of 80 synchronously
excited units stimulated 10 times during 10 ms.

4 Computer Implementation

The simulator was a custom C program that relies on the GNU Scientific Library
(asr) for random number generation and quasi-random Sobol distribution im-
plementations. With our current implementation and setup at the University
of Lausanne, a 10,000 units network simulation for a duration of 500 seconds
lasted approximatively 3 hours, depending on the network global activity. We
performed simulations with both fixed and random input stimulations, using
the same model parameters and pseudo-random number generator seed, and
compared the cell assemblies that emerged. Network activity was recorded as
a multivariate time series akin of multisite multiple spike train recordings at a
resolution of 1 ms. The firing pattern of each unit could be characterized by first-
and second-order time domain analyses using the programs and tools accessible
from the OpenAdap.Net! project.

The complete status of the network was dumped when the simulations were
stopped, providing information on the strength of the connections after the STDP-
driven synaptic plasticity and pruning. A set of custom scripts were used to
extract emerged cell assemblies from the dumped status. The extracted weighted
and oriented graphs were further analyzed by means of a tool built on top of
the Java Universal Network/Graph Framework (JUNG?). Some typical graph
measurements were computed, including the number of incoming projections
(Kin, in-degree) and outgoing projections (kou:, out-degree) for each vertex of
the graph.

5 Results

The pool of excitatory units whose incoming and/or outgoing excitatory pro-
jections were not entirely pruned and that were not directly depolarized by the
external stimulus was identified at time t= 500 seconds (from the beginning of
the simulation). Among the units of this pool a subset of units is selected on the
basis of their connection pattern to— and from the pool itself. The units with
at least three strong incoming (k;, > 3) and three strong outgoing projections
(kout > 3) within the pool are dubbed strongly interconnected units (SI-units).

The activity of all the ST-units was affected by the fized stimulation presen-
tation. Fig. 1 shows the response of two SI-units to an external stimulus lasting
200 ms, during the fixed stimulus presentation. About 22% of the SI-units were
strongly inhibited during the stimulus presentation (e.g. Fig. 1a), despite the fact
that the stimulus was delivered only to excitatory units. This effect is due to
the activity of the local inhibitory units that receive excitatory projections from

! http://www.openadap.net/
2 http://jung.sourceforge.net/
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Fig. 1. Response of two strongly interconnected sample units to 50 presentations of the
fized stimulation between time ¢ = 450 and ¢ = 500 seconds from the simulation start.
Network size: [100 x 100]; background activity: 5 spikes/s; stimulus duration: 200 ms;
stimulus intensity: 60 mV; ratio of input units: 10%; fized stimulation protocol. (a,
b): peri-event densities (PSTH) for the last 50 presentations of the stimulus; smoothed
with a Gaussian kernel, bin=5ms. Dashed line corresponds to the mean firing rate;
dotted lines represent the 99% confidence limits assuming a Poissonian distribution.
Time zero corresponds to the stimulus onset; (¢, d): corresponding raster plots.

the input units. The peristimulus histogram of the other SI-units showed that
the firing rate strongly increased during the stimulus presentation (e.g. Fig. 1b)
with a “primary-like” response pattern, despite the fact that none of the units
belonging to this pool was directly stimulated.

The effect of the different stimulation protocol was complex. The overall
number of ST-units found in absence of stimulation was similar to the number of
SI-units found with random stimulation (n = 400, 6% of excitatory units not di-
rectly stimulated). In the fized stimulation protocol, the number of SI-units was
much smaller (about 2%), but depended on the stimulus-induced depolarization
amplitude (Fig. 2). Conversely, in the random stimulation protocol condition,
we did not observe a significant change of the number of SI-units in response to
stimulus intensity.

During the process of pruning only the modifiable connections that kept a
sufficient level of activity driven by the STDP rule could “survive”. Then, the first
step for searching an oriented topology after 500 seconds consisted to detect the
excitatory neighbourhood of the SI-units. This neighbourhood corresponds to
the set of those excitatory units that send a projection to the SI-units, receive
a projection from the SI-units, or both send and receive projections. Thus,
this neighbourhood may also include input units, i.e. the units that are directly
receiving the stimulus. The ratio between the number of input units belonging
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Fig.2. Example of the location of strongly interconnected units as a function of the
amplitude of the stimulus-induced depolarization. Network size: [100 x 100]; stimulus
duration: 200 ms; input units: 10% of the excitatory units; fized stimulation protocol.

to the neighbourhood and the number of ST-units defines the index of connected
units (1cU). The larger the 1cU, the larger the influence of the input units on
the ST-units.

The value for the 1CcU was computed for different network dimensions, stim-
ulus durations and ratio of input units during the fized stimulation protocol
(Fig. 3). With a ratio of input units equal to 3%, we observed that the value
of 1cU was almost zero and independent of the other parameters, because the
amount of stimulus delivered to the network was not sufficiently large to let
appear a noticeable stimulus-driven pruning. Such pruning appeared with 5% of
input units and became clearly visible with 7 and 10% of input units. It is worth
to note that a stimulus lasting 200 ms provoked an effect similar to a stimulus
lasting 50 ms. The “network size” effect is not so interesting by itself, as it is
consistent with the fact that the smaller the network, the larger is the impact of
a certain ratio of the input units. Besides, the application of a parameter scal-
ing factor introduced in [5] almost suppressed the size effect (compare Fig. 3a
and b).

The evolution of k;, and kg, for the ST-units and their neighbourhood was
studied as a function of the simulation duration for a [100 x 100] network. The
state of the network was analysed at ¢ = 50, ¢ = 200 and ¢ = 500 seconds
(Fig. 4). In the beginning of a simulation, an average excitatory unit receives and
sends projections to about 190 other excitatory units, i.e. ki, = kour = 190 (see
Fig. 4a). The variability comes from the projection two-dimensional Gaussian
density function (see Model description). As no new connections are established
during the simulation, k;,, and k.,: can only decrease under the pressure of the
pruning process. Some units tend to loose their incoming connections first, others
tend to loose their outgoing connections first. The existence of other processes
combining different speeds for the loss of input and output connections results
in the smear of points visible in Fig. 4b-d.

We observed that as soon as ¢ = 50 seconds, corresponding to 25 stimulus
presentations with the fized stimulation protocol (Fig. 4d), the evolution of the
SI-neighbour units k;, and k., was different from the other two protocols.
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Fig. 3. The index of connected units (ICU), i.e. the ratio between the number of input
units and the number of SI-units, as a function of the ratio of input units, stimulus
duration, and network dimensions. Labels of stimulus duration: o: 50 ms; x: 100 ms;
e: 200 ms. (a): simulations performed with unscaled parameter values for all network
sizes; (b): like (a) except for the size-specific scaled variables defined in [5]. Stimulus
intensity: 60 mV; fixed stimulation protocol.

Plots for ¢ = 200 and ¢ = 500 seconds show that most units have k,,; <
kin, which indicates that the pruning modified the topology of the connections
and favored the emergence of a converging pattern. The comparison of these
degrees between t = 200 and ¢t = 500 s (Fig. 4e-g vs. Fig. 4h-j) shows that
the tendency to loose outward projections continued during the last part of
the simulation. In particular, notice that a large part of the neighbourhood
population lost all its input connections (k;, = 0); these units ’survived’ only
because the background noise maintained some of their outward connections
timely tuned with the discharges of their targets.

Figure 4 shows that the distribution patterns, for the random stimulation
protocol (Fig. 4¢,f,i) and in absence of stimulation (Fig. 4b,e,h) are very similar.
A random stimulus could not drive any significant effect, which was somehow
expected, but it was necessary as a control experiment to detect any bias intro-
duced in the simulation program. In the fized stimulation protocol (Fig. 4g.j),
we observed n = 415 units with 30 < k;,, < 130 at ¢t = 200 s that are main-
tained at t = 500 s. There are only 26 units with these properties in the other
two conditions. This population is composed of 407 input units belonging to
the neighbourhood. These input units maintained a large k;,, because of the
synchronization of their activity during the stimuli presentations. The vast ma-
jority of the input units ( > 85%) were presynaptic with respect to the SI-units,
thus confirming that the topology organized towards a feed-forward converging
pattern of connections.

In the fized stimulation protocol, the number of incoming and outgoing pro-
jections of the SI-units was k;, ~ 180 and 3 < Kk, < 20. It is important to
notice that the distribution of the k;, of the SI-units did not change in time.
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Fig.4. Evolution of the out-degrees (kout) vs. in-degrees (kin): (o) SI-units; (-) SI-
neighbour units. (b, e, h): in absence of any input (362 SI-units, 6,954 neighbours);
(¢, f, 1): random stimulation protocol (425 SI-units, 6,996 neighbours); (a, d, g, j7):
fized stimulation protocol (123 SI-units, 6,762 neighbours). (a): initial situation at
t = 0 is identical for all three protocols; (b, ¢, d): at t = 50 seconds; (e, f, g): at
t = 200 seconds; (h, %, j): at t = 500 seconds; Note the scale of vertical axis koy: is 200
in panels (a-d), and 40 for panels (e-j). Network size: [100 x 100]; stimulus duration:
100 ms; input units ratio: 10%.
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In fact, the ST-units were characterized by an input pattern very close to that
they had since the very beginning of the simulation. Different random seeds gen-
erated different populations of SI-units but the number of these units did not
vary much as a function of the random seed.

6 Discussion

The main result has been to show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell assemblies
of excitatory units when associated to STDP-driven pruning. The vast majority
of the connections that are modifiable by the spike-timing dependent plasticity
rule were eliminated during the first thousands time steps of the simulation run
[5]. Among the remaining active synapses, almost all were characterized by the
highest possible activation level, in accordance with previous results [12].

We observed that the unsupervised pruning mechanisms tended to organize
a feed-forward cell assembly of strongly interconnected units on top of the input
units selected by the pruning process. Inhibitory responses observed in the pool
of the SI-units are due to a balanced network reaction to the overall increased
firing rate by increasing the activity within the pool of inhibitory units. The con-
nectivity pattern of SI-units, initially set at random, appeared to match some
requirements for maintaining almost all the input connections. The interpreta-
tion is that the cell assembly formed by the SI-units was initially determined by
chance and when the pruning process started to select the active connections,
these were maintained because of their connectivity pattern, thus letting emerge
a particular circuit that was embedded in the network at time ¢t = 0. However,
the emergence of the diverging projections was much more difficult to observe
than the convergence.

The self-organization of spiking neurons into cell assemblies was recently de-
scribed in a study featuring large simulated networks connected by STDP-driven
projections [6]. They studied the spatiotemporal structure of emerging firing
patterns, finding that if axonal conduction delays and STDP were incorporated
in the model, neurons in the network spontaneously self-organized into neu-
ronal groups, even in absence of correlated input. The study [6] emphasizes the
importance of axonal conduction delays that we did not initially consider in
our model.

The choice of our neuromimetic model was justified by its compatibility
with a novel hardware architecture [14]. Instead of leaky integrate-and-fire neu-
romimes, the use of biophysical models of neuromimes based on the Hodgkin-
Huxley framework with multistate neurons and the associated multidimensional
synapses [10] could bring better insight into the biological rationale of the emer-
gence of cell assemblies by synaptic pruning.
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Abstract. We propose a new method to analyze time series recorded by
single neuronal units in order to identify possible differences in the time
evolution of the considered neuron. The effect of different dynamics is
artificially concentrated in the boundary shape by means of the inverse
first passage time method applied to the stochastic leaky integrate and
fire model. In particular, the evolution in the dynamics is recognized by
means of a suitable time window fragmentation on the observed data
and the repeated use of the inverse first passage time algorithm. The
comparison of the boundary shapes in the different time windows detects
this evolution. A simulation example of the method and its biological
implications are discussed.

1 Introduction

Time series recorded from neuronal units are generally studied via statistical
methods, with correlograms and higher order descriptions, or with the help of
mathematical models. In these last instances the typical approach describes the
spiking activity as a renewal process and attributes all the recorded data to a sin-
gle dynamics. For example, in the stochastic leaky integrate and fire (LIF) model
the classic assumptions require that, after each spike, the membrane potential
is reset to its resting value while its underthreshold dynamics are described via
the same diffusion process during the entire observational time. The Ornstein-
Uhlenbeck (OU) process is largely used for this purpose [1,4,7,8,9,18,19] but also
diffusion processes with time dependent drift term appear in the literature [16].
The interspike time intervals (IST) are then described via the first passage time
(FPT) of the process through a boundary, possibly time depending, and the
comparison of the theoretical and experimental distributions is used to validate
the model or to explain the observed dynamics [14,15]. A second application
of the models in this context has been recently proposed in [13] where the in-
verse first passage time (IFPT) method is applied to determine the shape of the
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boundary that generates the observed data when the underthreshold dynamics
are modeled via an OU process.

Generally stochastic models are built to analyze experimental data and use
the same model to describe the totality of the observed data. Indeed all the
data are attributed to a single sample without differentiating between possible
different dynamics. One admits a non stationary behavior, by considering a time
dependent input or a time varying threshold, but all the IST are considered as
generated by the same dynamics. On the contrary, the use of classical methods
for time series analysis shows, in some experimental instances, a change of the
neuronal dynamics during the observational time [10]. The necessity to recognize
changes in the neuronal dynamics during the observational time clearly arises
when one considers recordings from a neuron that alternates periods of sponta-
neous and stimulated activity. The use of the time series methods can reveal the
existence of different dynamics but loses the interpretation of these dynamics
that can be obtained with the use of mathematical models. Here we propose
a method to analyze recorded ISI on sufficiently large time intervals with the
help of stochastic models and of the IFPT method [20]. The leading idea of this
new method is to determine suitable successive shifting time windows and to
analyze the observed data applying the IFPT method to the moving window.
The underlying diffusion process is not changed during all the analysis in order
to detect differences between the different dynamics by means of discrepancies
in the shapes of the boundary. The repetition of the analysis with different time
windows and with different shifting times for the window can detect the times
when the neuronal dynamics have changed.

This work is devoted to validate the proposed method, hence the results
presented in Sect.4 consider only simulated data while the application of the
method to experimental data will be the topic of a future work.

2 Model and Mathematical Background

Here we sketch the main features of the so called stochastic LIF model while we
refer to the literature [11,18] for its derivation and its biological motivation. In a
LIF model the time evolution of the membrane potential between two consecutive
neuronal firing is described through a stochastic process X = {X;;¢t > 0} and
the IST are identified with the FPT of the process X through a threshold S(t)

T =inf{t > 0|X; > S(t)}, (1)
whose probability density function is

d
g(t) = SP(T <) )
Different diffusion processes have been used to model the membrane potential
evolution [8], here we focus on the OU process that is one of the most largely used
thanks to its mathematical manageability. Hence, we describe the subthreshold
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time evolution of the membrane potential by means of a stochastic process,
fulfilling the stochastic differential equation

dXy = (=3¢ + p) dt + odW, 3)
XO =0

where the constant p characterizes the neuronal input, § > 0 reflects the spon-
taneous voltage decay in absence of input and o > 0 is a constant related with
the variability of the neuron input. A spike is elicited any time that the pro-
cess crosses the boundary S(t), then the process X starts again according to
a renewal process. This assumption is necessary to identify the time series of
successive spike times (71, ..., T) as a sample of size N extracted from a popu-
lation with distribution g(¢). Therefore the stochastic LIF model is completely
described when one knows the OU parameters and the boundary shape function
with its parameters. According to this approach one can determine the FPT dis-
tribution using one of the numerical [12] or simulation [5,6] methods proposed
in the literature and this formulation of the problem is called direct first passage
time problem. Alternatively, if the process with its parameters and the FPT
distribution are assigned, one can determine the corresponding threshold shape.
This is the inverse first passage time problem formulation and one of the numer-
ical algorithms [20] for its solution are the basis of the method that we propose
in Sect.3. The IFPT algorithm applied here requires the knowledge of the FPT
distribution that can be approximately obtained from experimental data via the
kernel method or via other numerical approaches.

3 Moving Window Inverse FPT Method

The study of the ISI trains of a neuron by means of the FPT of the OU process
generally considers the observed ISI as a part of a single sample. This assumption
tacitly implies that the dynamics of the neuron do not change during the obser-
vational time. However, also under spontaneous activity, different inputs from
neighborough neurons can activate the observed neuron determining different
dynamics on successive time intervals. This fact becomes extremely relevant
when the data comes from a neuron of a network activated with external input
during the recording interval.

Here we want to determine changes in the neuron dynamics during the ob-
servational period from the simple analysis of the ISI trains recorded from the
neuron, assuming the absence of further information on the inputs and on the
external stimulations during the observational period. We also want to recover
the times when these changes happened and to describe the different dynamics
on the different intervals.

To obtain these features, in analogy with the classical methods of time-
frequency analysis [3], we consider a window of fixed amplitude. The amplitude
can be alternatively defined or by fixing a time interval or by fixing the number
of spikes considered in the sample. We apply the IFPT method and we introduce
a shift of assigned lag. Also the lag can be alternatively defined as a fixed time
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interval or as a fixed number of spikes. Then we repeatedly shift the window
of this assigned lag, performing each time the study with the IFPT method. If
no change in the boundary shapes is observed on successive shifted windows,
we conclude that a unique behavior characterizes the observational time. In this
case no remarkable differences arise between the shape of the boundary com-
puted using the observed data all together or using the set of windows. On the
other hand if the process changes its dynamics inside the observed interval, the
shapes of the boundary corresponding to different windows change. A careful
choice of the shifting lag and of the windows amplitude, or a suitable rescaling
of the window amplitude, suggests the times when the dynamics of the neuron
change. Note that the choice of the window amplitude is constrained by the ne-
cessity to have a sufficiently large sample to apply the IFPT method. However
a large window increases the risk to lose the dynamics change. This fact could
be balanced introducing smaller shifting times. Difficulties can arise when there
are frequent changes in the dynamics and one deals with rare events. It is clear
that a careful choice of windows amplitude and shifting lags requests a detailed
preliminary study on their role but our goal here is principally to describe and to
test the proposed approach. Examples discussed in this paper use lag and win-
dow amplitude defined through the number of spikes. This choice simplifies the
analysis and allows a first check on the reliability of the method. Note that this
choice implies the use of windows characterized by different time amplitudes.

The application of the IFPT method on each window, maintaining the same
diffusion process for all the analyses, compacts all the information on the evo-
lution of the process dynamics into the boundary shape. The advantage of this
choice is the possibility to compare deterministic functions in spite of compar-
ing stochastic processes. However as one has recognized two different boundaries
on successive windows one can reinterpret the result in terms of two different
diffusion processes crossing the same constant boundary. Indeed a space trans-
formation can always send differences in the boundary shape into differences
between the processes [11].

Since the IFPT method requests the use of a smooth approximation of the
FPT probability density function here we approximate it via the kernel method
on the data [2,17]. Since the IFPT method is highly sensible to an error on the
right tail of the FPT density we apply the method on the 90% of the probabilistic
mass.

4 Results

In order to check the reliability of the proposed method we apply it to simulated
data. Different choice can be made for the boundary shape of the simulated
process but for this first investigation we will limit ourselves to the case of a
boundary that assume different constant values. We simulate 3 samples, with
sample size N = 10°, from an OU process with § =1 ms™!, x = 0 mVms~! and
02 = 2 mV?ms—! and boundaries S; = 2, mV Sy = 2.5 mV and S3 = 2 mV,
respectively. Note that for simplicity we use a standardized process but a simple



Inverse First Passage Time Method 73

space time transformation makes the considered parameters values biologically
compatible [11]. Since the IFPT algorithm converges after some iterations, the
boundary estimates are not reliable for small time. Hence, we plot the computed
boundaries starting when the method becomes stable.

As a first step in our analysis we apply the IFPT method to the total sample
of size 3-10°. Figure 1a shows the resulting histogram and its continuous approx-
imation obtained via the Epanechnikov kernel method [17] while in Fig.1b the
boundary obtained with the IFPT method is plotted. Note that the merging of
all the data determines misleading results on the boundary that appears linearly
increasing. This fact is due to the merging of the three samples as it is shown in
Fig.2 where the histograms and the corresponding boundaries, computed via the
IFPT method, for the three separate samples of size 10° are plotted. This last fig-
ure confirms the reliability of the IFPT method discerning the three boundaries
used in the simulations.

a) b)
0.07
25
0.06 /
0.05 2
= 0.04 E 15
° 0.03 =
. &
0.02
0.5
0.01
0 0
0 10 20 30 0 10 20 30
t [ms] t [ms]

Fig. 1. a) Normalized histogram and its continuous approximation obtained via the
kernel method (Epanechnikov kernel) of the data. Three samples of size N = 10°
generated as the FPT of an OU process with parameters # =1 ms™ !, u = 0 mVms™!
and 02 = 2 mV?ms™! through the boundaries S; = 2 mV, Sz = 2.5 mV and S35 = 2
mV respectively, are merged in a single sample. b) The boundary obtained with the
IFPT method.

Figures 3 and 4 illustrate the application of the moving window IFPT
method. We show the different boundaries obtained shifting a window of size
N = 10° of a lag step L = 10*. In Fig.3, from the bottom to the top, we illus-
trate the boundaries corresponding to the successive windows obtained with a
shift of lag k- L,k = 0,1, ...,10 while in Fig.4 from top to bottom, we illustrate
the boundaries corresponding to the successive windows obtained with a shift
of lag k- L,k = 10,11, ...,20. Note that the bottom boundaries in Figs.3 and
4 consider only samples from the process with boundary to S = 2 mV, while
the top boundaries in these figures correspond to the sample from the process
with boundary S = 2.5 mV and are correctly recognized constant. The instances
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Fig. 2. Normalized histograms and its continuous approximation obtained via the ker-
nel method (Epanechnikov kernel) for the three separate samples of size 10° generated
as the FPT of an OU process with parameters § = 1 ms™", x = 0 mVms ™' and o2 = 2
mV?ms™! through the boundaries a) S; =2 mV, c¢) Sz = 2.5 mV and €) S3 = 2 mV
and the corresponding boundaries obtained applying the IFPT method b) S; =2 mV,
d) S2 =2.5mV and f) S3 =2 mV.

when the sample contains a mixture from two different samples determine lin-
ear boundaries with a slope depending on the weight of each sample in the
mixture.

The changes of the boundary shapes as we shift the window indicate a change
in the observed dynamics. In order to detect the time when this change happens,
the analysis can be repeated with smaller windows sizes and/or smaller shift lag.

Different shapes of the boundary will be tested in a more comprehensive
future work where the method will also consider experimental data. Here we
limit our analysis to the constant boundary instance. Linear boundaries have
been determined in [13] using experimental data. In that paper the nature of
the boundary was used to obtain a classification method for ISI simultaneously
recorded from a set of neurons. The results illustrated in Figs.3 and 4 suggest
that a linear boundary can be determined by a change of the dynamics involving
two different constant boundaries.

The method has been also checked with simulated samples of size N = 1000
obtaining similar results.
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Fig. 3. From bottom to top, boundaries corresponding to successive windows of size
N = 10® obtained with a shift lag k- L,k = 0,1, ..., 10 with L = 10*. The boundary
shape computation is stopped when the 90% of the probability mass of g(t) is reached.
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Fig. 4. From top to bottom, boundaries corresponding to successive windows of size
N = 10° obtained with a shift lag k- L, k = 10,11, ..., 20 with L = 10*. The boundary
shape computation is stopped when the 90% of the probability mass of g(t) is reached.

5 Conclusions

The example discussed here validates the new proposed method in the case of
a sample generated with different constant boundaries. In order to have a more
complete vision of the power of the method other cases should be considered.
In particular, we plan to analyze the case of periodically oscillating boundaries,
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with different periods on disjoint intervals. Furthermore, a planned extensive
theoretical study will help the choice of the window and of the shift lag in the
case of experimental data.
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Abstract. The search of the code underlying the transmission of in-
formation through the different stages of integration of the brain is a
very active investigation field. Here, the possible involvement in the neu-
ral code of global population oscillatory activities has been discussed.
The behaviorally important rhythmic activities of the hippocampal CA3
field have been analyzed to this aim. The genesis and the features of such
activities have been studied by the computer simulation of a model of
the entire CA3. The simulation demonstrated the ability of the network
of inhibitory interneurons to control nicely the transmission of activ-
ity through the pyramidal population. The results suggested that the
hippocampal formation and the CA3 field—in particular—could be or-
ganized in a way to allow the passing of excitatory activities only during
specific and narrow time windows, confined by inhibitory barrages pos-
sibly linked to attentional processes.

1 Introduction

The neural information flows in brain along the multiple stages of the neural
circuitry, starting from the primary (sensorial) cortices, till the Hippocampus
and superior areas and back. The problem of the modalities according which
the information is coded within the neural populations of brain, is very elusive
and yet there are no clear indications about its nature. The most common hy-
potheses about such code, the "rate code” and the ”temporal code”, received
contrasting evidence and the issue remains controversial. The rate code hypoth-
esis assumes that the neurons, basically noisy, can transmit information only via
the mean rate of spiking. This hypothesis is based on the common observation
that recorded sequences of spike intervals in cortical pyramidal neurons are so
highly irregular to support the existence of important random influences on its
genesis [13,14,15,24]. The more recent temporal-code view, partially based on the
assumption that the rate code proposal produces a too poor code, retains that
the information is conveyed by the precise order of the inter-spike time intervals,
or in a weaker form, it is related to the precise time of the first spike after an
event [1,2,16,17].

The base of a new hypothesis on the rules governing the transmission of infor-
mation in brain is discussed here. This hypothesis considers the global oscillatory
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activities in neural populations as the possible base of a temporal code, very dif-
ferent from that outlined above. Synchronous oscillatory activities constitute
one of the most characteristic aspects of the brain activity and are associated
closely to behavioral states. Rhythmic oscillations in the gamma (20-80 Hz) and
theta (4-15 Hz) ranges are among the most prominent patterns of activity in
Hippocampus [3] and both rhythms are believed to be essential products of the
hippocampal machinery. The theta rhythm is commonly supposed to be pro-
duced in the hippocampus by activity coming from medial septum and entorhi-
nal cortex. Recent experimental and theoretical articles support the hypothesis
that the network of inhibitory interneurons in the Hippocampus generates in-
trinsically the gamma rhythm. Both rhythms are present during the exploratory
activity in awake animals and are related to learning, memory processes and
to cognitive functions [19,4]. Some fast (80-200 Hz) [6] and ultra-fast (200-500
Hz) [10] oscillations have been also recorded in the hippocampus (and cortex)
of several animals and in man.

The CA3 field of the Hippocampus, one of the most significant components
of the limbic system, has been used here as a case study to evaluate the new hy-
pothesis. In particular, the global reactions of CA3 to its inputs and the precise
spatio-temporal behavior of excitatory and inhibitory waves invading the CA3
field have been closely investigated. The results suggested that this field is orga-
nized as an inhibitory filter which allows the passing of excitatory activities only
during narrow time windows. They are strictly confined by inhibitory barrages
possibly linked to attentional processes.

2 The Kinetic Model

Based on a kinetic theory of neural systems, formulated several years ago [20,22],
a set of differential equations was constructed for the description of the activity
of the CA3 neural field. This theory translates the action potentials traveling
within the neural fields along the axonic branches in massless particles. They
move freely within the neural systems until they collide with a neuron. The
collision can result in the absorption of the impulse by the neuron and in this
case the subthreshold excitation of the neuron increases or decreases accord-
ing to the quality, excitatory or inhibitory, of the absorbed impulse. When the
subthreshold excitation reaches the threshold value (here assumed equal to 1
for simplicity) the firing occurs and a stream of new impulses is emitted within
the neural field. After the firing the neurons go in refractoriness state, for a pe-
riod of time 7. The functions fs(r,v,t) and g« (r, e,t) describe, respectively, the
impulse velocity distribution and the distribution of the subthreshold neuronal
excitation within the neural field. Whereas, 1 (r) denotes the local density of
neurons. The variables r,v, e and t are associated to the position, the veloc-
ity, the subthreshold excitation and the time, respectively. The index s refers
to the different action potentials traveling within the neural field (CA3 pyrami-
dal short range, CA3 pyramidal long range, CA3 inhibitory fast and CA3 in-
hibitory slow, Enthorinal Cortex pyramidal, Mossy Fibers from Dentate Gyrus,



80 F. Ventriglia

Medial Septum (cholinergic or inhibitory)) and the index s’ is associated to
the different families (pyramidal, inhibitory fast and inhibitory slow) of neurons
present in CA3. Moreover, s, denotes a generic impulse coming from external
sources and sz denotes a CA3 generated impulse. The time evolution of the
two distribution functions is governed by the following set of coupled differential
equations:

vtfs(ravat) +v- vrfs(ravat) +fs(ravat)(25’ws’(r) ‘ v | US’S) =
Ss(r,v,t)0(s — se) + fi(r,v)Ny (r,t)0(s — sz)

—I‘/‘

+1o) /A Eoa(r,x') dr’ / F N = T Y ass— s (1)

(%

Vigs (r,e,t) + ule, —e)Vege (r,e,t) = [gor(r, e — €,t) — go (1, €,1)]
+Ny (r,t —75)(e — €r)
+ M, (r,t)0(e)d(e — eo) (2)

where the functions §(.) and 6(.) denote the Dirac and the step functions, respec-
tively; e, and ey are the resting potential and the maximum hyperpolarization
level of the neurons and o4 is the absorption coefficient, p is the decay con-
stant of the subthreshold excitation, and A is the surface covered by CA3. The
functions f*(r,v), f°(v) are linked to the velocity spectra of impulses emit-
ted in different conditions. The function £y s(r,r’) is an origin/destination ma-
trix for long-range impulses, and f/ (v") denotes the velocity distribution along
these paths. S(r,v,t) is a source term denoting the impulses entered in CA3
from external sources. When this source term is present in equation 1 (for
specific values of the index), the other two source terms on the right mem-
ber (related to CA3 generated impulses) must be considered null. The other
functions present in the above equations have the following expressions and
meanings:

No(r,t) = / g (r, e, t)de 3)

—e(r,t)

denotes the probable number of neurons in r firing at time t;

—e(r,t)
vtMs’(r7 t) = / s’ (I‘, €, t)d@ - Ms’ (I‘, t)9(e) (4)
0

is a differential equation associated to the probable number of neurons in r which
stay in maximum hyperpolarization level at time t;
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is the excitation absorbed by the neurons in r at time t (mean number of ab-
sorbed impulses of type s). Denoting by Es(r,t) the mean Post Synaptic Poten-
tial associated to excitatory or inhibitory impulses—a positive function for exci-
tatory impulses, negative for inhibitory ones—the following convolution equation
furnishes the time course of the net excitatory effect on the subtreshold neurons
in r at time t:

t
s (r,t) = ;;1/0 Es(r,t) - Igs(r,t —t)dt'. (6)

In the above equations, use is made of the conditions that the function gy (r, e, t) =
Oife<Qorife>1.

This mathematical model has been utilized to carry out a series of compu-
tational experiments. The space-time course of some macroscopic parameters
(local frequency of spikes, local mean sub-threshold excitation, number of fir-
ing neurons), which have close analogy with the in vivo recorded activity of
the CA3 field (population spike trains, local field potentials), has been ana-
lyzed to obtain information on its ability to simulate oscillating hippocampal
activity.

3 Oscillatory and Spiraling Activity

The genesis of the above mentioned rhythmic oscillations in gamma and theta
ranges has been investigated by computational experiments which simulated the
reaction of the CA3 model to external stimuli. All the results described in this
paper were based on a model having the space dimensions of the entire CA3 field
of the rat. From the Atlas of Rat Brain [12] CA3 has space dimensions of 8mm
long (septo-temporal axis) and 3mm large (transverse axis). Also the neuronal
densities and parameters of connectivity have been computed by values from lit-
erature (see [23], where the values of the impulse velocity spectra, of £ and of the
absorption coefficients oy s are also reported). Based on the neuronal density val-
ues about 300.000 pyramidal neurons and 30.000 fast and 30.000 slow inhibitory
neurons constituted the simulated CA3 field. Excitatory stimuli originated from
Entorhinal Cortex both via Dentate Gyrus (through the Mossy Fibers) and by
a direct path have been simulated. Also, in some simulations, inhibitory or exci-
tatory influences from Medial Septum have been studied. Dentate Gyrus input
was assumed to be conveyed by layered mossy fibers distributed along parallel
strips of pyramidal neurons (stratum lucidum), each strip being 3mm long and
50um large and containing about 6.250 mossy fibers and 87.500 mossy synapses.
The amplitude of the strip (50um) was dictated by the space step utilized in
the simulation (see the Appendix where the values of other basic parameters are
presented). The Dentate Gyrus input to each strip was constituted by random
volleys, whose arrival times were distributed according to a Poisson distribution,
while the duration and the amplitude were Gaussian distributed. Often the vol-
leys along the different strips were correlated. The CA3 field was also reached
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Fig. 1. Time course of the firing frequencies of the excitatory (smaller values) and
inhibitory (higher values) neuronal populations in CA3. The ordinates denote the per-
centage of firing neurons, with reference to the respective total populations. The time
is in sec.

by Poissonian inputs originating from the direct Entorhinal Cortex path. In ex-
periments in which a concurrent input from Medial Septum was simulated, some
inputs inhibited selectively the inhibitory neural populations of CA3. The most
interesting activities were shown when the inhibition conveyed by the neural
population producing slow inhibitory effects was considered constantly inhibited
by inputs coming from Medial Septum. In these simulations the frequency of
the global activity, both for excitatory and inhibitory neural populations, was
in the range of the theta rhythm. A typical time course is presented in figure
1. A theta rhythm with a frequency of about 10H z is evident from this figure.
Interestingly the percentage of pyramidal cells involved in the firing activity is
only a small fraction of the total population, about 2% in mean. Small ripples,
at very high frequency, are also shown by the oscillations associated to the firing
of the fast inhibitory neuronal population. The interest of these results is linked
also to an ongoing debate about the drive to the global activity of CA3 field
[18], which motivated some authors to suggest the necessity of gap junctions
among pyramidal axons to sustain such activity. That this is not necessary has
been demonstrated herein. In fact, the excitatory activity flowing along the long
range pyramidal axons (Schaffer collaterals), with a velocity low enough to pro-
duce delays of 10 — 20ms, and the slow decay of the Post Synaptic Potentials in
the excitatory synapses on inhibitory neurons (massively charged by the pyrami-
dal population discharge) can sustain the firing of the inhibitory population for
about 50 milliseconds. The excitatory and inhibitory activity had a patterned
displaying on the entire CA3 field. The time course can be described as fol-
lows. At some time, depending on the assumed characteristics of the Poisson
distribution governing the Dentate Gyrus and the Entorhinal Cortex inputs, the
first volleys of impulses began to propagate in one or more strips of CA3. The
absorption of impulses drove some pyramidal neurons to fire action potentials.
This induced firing in other pyramidal and in fast inhibitory neurons (the slow
inhibitory neurons being assumed inhibited). In some milliseconds a patterned,
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Fig. 2. Time course of the density of impulses produced by the whole pyramidal neu-
ronal population in CA3 (about 300.000 neurons). Two, not complete, reverberations
are shown invading the entire CA3. The duration of the displayed activity is 12.5ms.
After 2 more milliseconds all the excitatory activity vanishes. The white is related to
the maximum value of the intensity.

self-organized activity began to appear in the neuronal firing, which stabilized
and propagated throughout the entire CA3 field, involving both the pyramidal
and the inhibitory neurons. The induced firing of fast inhibitory neurons pro-
duced a so high level of inhibition that the pyramidal neurons were reduced
to a silent state. In such a way they remained unable to react to new inputs
originating from the simulated sources. The patterned activity of the inhibitory
neural population remained active for several periods of time, as long as they
had sufficient drive on their excitatory synapses. After some time, the decaying
of the residual excitation on inhibitory neurons reduced gradually their firing.
The decaying of the inhibition permitted the inputs to ignite again some of the
neurons of the pyramidal strips. A new cycle began with a patterned activity
that could be slightly or strongly different form the previous one. In figure 2 the
activity of pyramidal neurons is presented by using the local density of impulses.
[To show with greater precision the time course of the activity, in this figure and
in the subsequent ones, the interval of time among the frames is not constant. In
some parts the time is accelerated, in others it is lagged.] In figure 3, the waves
associated to the propagation of fast inhibitory impulses are presented. The re-
sults presented in these two figures are very attracting, since spiraling activities
are manifested. In fact, while spiral waves are not difficult to find in natural,
not-neural systems [26], in neural systems the evidence is scarce. Only some rare
articles report the observation of spiral waves in neural tissues [7] and [8]. As
asserted by [7], the difficulty arise because, to demonstrate a true spiral wave,
the medium under study must be relatively smooth and isotropic and a ”phase
singularity” should be observed at the center of the activity. This is a distinctive
sign that differentiates spiral waves from other kinds of rotating waves. In a pre-
vious work [21], based on a simpler version of the kinetic theory, some rotating
waves of neural activity, traveling outward from a center, have been found. But
to produce them a very particular stimulation had to be utilized. In the present
case the production of spiraling activity occurs in a very natural way, since it
is due to the interference of two different activities, which spread on the neural
field.
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Fig. 3. Time course of the density of impulses produced by the whole fast inhibitory
neuronal population in CA3 (about 30.000 neurons). A spiraling activity is shown
invading the lower sector of CA3 field. The starting time is the same of Figure 2. Tms
of additional activity are shown in the lower row. 9 frames in this row, by starting from
the third, are separated only by éms. The spiraling waves stop only after further 44ms
of activity (not shown).

Fig. 4. Time course of the density of impulses produced by pyramidal neurons in CA3.
The total time displayed is 18ms. After the last frame the pyramidal activity vanishes
in about 2ms.

Fig. 5. Time course of the density of impulses produced by inhibitory neurons in CA3.
The total time displayed is 18ms. After the last frame the inhibitory oscillating activity
persists for further 42ms.
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A different kind of activity is shown in figures 4 and 5. It occurred at
times subsequent to those of figures 2-3. Also these figures show activities
related to pyramidal (figure 4) and fast inhibitory (figure 5) neuronal pop-
ulations. In the present case, a single traveling wave is shown by pyramidal
population firing which induces an oscillating activity in the inhibitory neu-
ral population. It, gradually, invades the entire CA3 field. Intriguingly, a back-
wash behavior is shown in the lower right zone of figure 5, where a local nu-

cleus of oscillation interferes with activity coming from the upper zone of the
field.

4 Discussion

From the study by computer simulation of the neural activity of the CA3 field of
Hippocampus, some remarkable features of the neural dynamics have been ob-
served. Under appropriate driving inputs, some activity self-organized within the
pyramidal neuron population and spread to the entire CA3 region. In the wake of
the excitatory activity, stable and well-organized oscillatory activities occurred
within the inhibitory neural population. They presented a sort of complex and
persistent remnant, or trace, of the spatio-temporal behavior of the previous
pyramidal activity. These oscillations continued for periods of time much longer
than the activity in driving pyramidal neurons. During this time, the pyramidal
neurons being very efficiently inhibited could not generate new activities. The
inhibition of the slow inhibitory neurons could modulate the duration of the
inhibitory periods. This was obtained by simulating an input originating from
Medial Septum. In such a way, the frequency of the global pyramidal activity
could range from 1.5Hz to 11Hz (results not shown). Hence, the global activity
of the CA3 field was organized in such a way to present specific time windows
for the generation of excitatory activities, conveyed by pyramidal neurons. These
activities were separated by long periods of inhibition. This suggests that a sort
of temporal coding—with a meaning quite different from the common view—is
associated to the function of the entire CA3, that seems to operate in the follow-
ing way. Among all the inputs from cortical regions arriving to CA3 field, only
those which reach it in appropriate time intervals, that can be also under the
control of activities in behavior-linked sub-cortical nuclei (like Locus Coeruleus
and Median Raphe), are able to trigger global activities and can produce ef-
fects on the brain regions driven by CA3. Other volleys, which arrive either too
late or too early, are not able to filter through the inhibitory barrage, and in
such a way they are neither able to induce global reactions of CA3, nor can
modify the evolving patterned inhibitory activity. Hence, the information they
convey is not allowed to pass to other brain stages. In such a way, a free pe-
riod of time with a duration of 50 — 80ms is reserved to the successful inputs,
during which they can drive activities in cortical regions without interferences
by competing inputs. These activities may result in learning, memory and other
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cognitive effects. A link between the theta rhythm and an attention mechanism
has been hypothesized also by the long experimental activity of Vinogradova [25].
A similar, but weaker hypothesis on the inhibitory activity in Hippocampus has
been proposed in [5]. These authors suggest that oscillating inhibitory networks
may provide temporal windows for single cells to suppress or facilitate their
synaptic inputs in a coordinated manner.

This kind of functioning, which seems to be characteristic of the Hippocam-
pus being produced by its specific organization and by the peculiar connectivity
of the CA3 field, could be also present in cerebral cortex. This hypothesis, how-
ever, can not be extended to all the cortical areas, since the primary cortices show
a different organization [9,11]. The primary visual cortex—for example—seems
to be organized in a large number of more or less identical elementary process-
ing units, the columns, each of which contains the complete machinery for the
analysis of a small part of the visual field with respect to all possible stimulus
features. An incomplete list contains columns specialized for orientation, ocular
dominance, color selectivity, direction of movement, spatial frequency, disparity,
and stimulus on- or offset. Since the primary cortices seem to use a different cod-
ing, a global neural population oscillatory code could be only hypothesized for
cortical structures at higher stages (multimodal and associative cortices). The
difficulty to unveil such a code at those levels could be due to the complexity
of the cerebral cortex and of its activities, which could mask it. Moreover, the
inhibitory barrage could be more smoothly controlled at the cortical level and
more subtle effects could result.
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Appendix

The following values have been utilized by the numerical procedure solving the
kinetic equations: time step: dt = 0.125ms, space step: dx = dy = 50um.

In this way each grid point was representative of a small square of neural mat-

ter with a side length of 50um in which 30 excitatory neurons, 3 fast and 3 slow
inhibitory neurons, in mean, were contained and the entire model simulated the
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activity of 60x160 modules. The resting levels e, of different neurons were: e,, =
0.34 (corresponding to —75mV)—pyramidal neurons, e, = 0.67 (corresponding
to —62.5mV)—fast inhibitory neurons, e,s = 0.34 (corresponding to —75mV’)—
slow inhibitory neurons. The periods of absolute refractoriness and the synaptic
delays were: 7, = 15ms, 7y = 7, = 1.75bms and tg, = toy = tos = 0.5ms,
respectively. The slow-IPSP onset time had value £, = 30ms. The long-distance
impulses in the absorption-free zone assumed a constant velocity v’ = 60cm/s.
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Abstract. The problem of the code used by brain to transmit infor-
mation along the different cortical stages is yet unsolved. Two main
hypotheses named the rate code and the temporal code have had more
attention, even though the highly irregular firing of the cortical pyra-
midal neurons seems to be more consistent with the first hypothesis. In
the present article, we present a model of cortical pyramidal neuron in-
tended to be biologically plausible and to give more information on the
neural coding problem. The model takes into account the complete set of
excitatory and inhibitory inputs impinging on a pyramidal neuron and
simulates the output behaviour when all the huge synaptic machinery
is active. Our results show neuronal firing conditions, very similar to
those observed in in vivo experiments on pyramidal cortical neurons. In
particular, the variation coefficient (CV) computed for the Inter-Spike-
Intervals in our computational experiments is very close to the unity and
quite similar to that experimentally observed. The bias toward the rate
code hypothesis is reinforced by these results.

1 Introduction

The problem of how information is coded in brain is perhaps the hardest chal-
lenge of modern neuroscience. The general agreement on this issue is that in-
formation in brain is carried by neuronal spike activity, although the way in
which the information is coded in the series of spikes, generated both directly
by subcortical nuclei and indirectly along the several areas of the brain’s neural
hierarchy, remains controversial. Two main hypothesis face each other in this re-
spect. The first assumes that information can be coded by spike frequency and,
accordingly, it has been defined as rate (or frequency) code. This hypothesis rests
on the fact that the time sequences of spikes produced by cortical (pyramidal)
neurons are so highly irregular to support the idea of a predominant influence of
randomness on their genesis [20,21]. In fact, a Poisson process (a typical example
of stochastic processes) can adequately describe the spike sequences observed in
cortical pyramidal neurons. A rich investigation field, based on stochastic models
of neuronal activity, arose from this finding [8,14,15,18,27,28]. The randomness
of the Inter Spike Intervals (ISIs) implies that information cannot be coded in

* This work has been partially supported by a project grant given by Istituto di
Cibernetica E. Caianiello for the year 2005.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 89-98, 2005.
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the precise temporal pattern of spikes in the sequence. Neurons are then con-
sidered as integrate-and-fire devices which integrate all the inputs (excitatory
and inhibitory) arriving to neurons from dendritic and somatic synapses. A fine
balancing of excitatory and inhibitory inputs determine the firing probability
of the neuron as well as the ISIs. Hence, only the firing frequency (averaged
on appropriate time intervals) can be considered as the candidate for coding
information [22]. Viceversa, a more recent view assumes that the precise spike
times, or the inter-spike interval patterns, or the times of the first spike (after an
event) are the possible bases of the neural code. This constitutes the temporal
code or coincidence detector hypothesis. The main motivation for this view is the
belief that the transmission of information is based on the synchronous activity
of local populations of neurons and, consequently, the detection of coincidences
among the inputs to a neuron is the most prominent aspect of the neuronal
function [1,2,23].

Several attempts, both computational and experimental, have been carried
on to identify the causes of the high irregularity of the firing patterns. In some
experiments on brain slices, synthetic electrical currents, constructed in a way
to simulate the true synaptic activity, have been applied to somata of pyrami-
dal neurons in order to obtain the irregular ISIs produced by neurons naturally
stimulated by synaptic activity [25]. On the other side, several computational
models, with different level of complexity, have been proposed for the same pur-
pose ([13], among many others). In some models the variability of synaptic input
has been singled out as the cause of the output variability. In others, the main
focus has been given to the structure and the status of the neuron receiving
the stimuli. Comparison both of experimental and computational results, still
gives contradictory interpretations and this could be due to the contrasting ap-
proaches used for modeling and simulation. The lack of a precise definition of
the code machinery induced recently some authors to consider the possibility
that brain uses not a single coding system but a continuum of codification pro-
cedures ranging from rate to temporal [26]. In the present paper, we made an
attempt to study ISIs variability by using a computational model of a pyramidal
neuron having a complete synaptic structure featuring that of an hippocam-
pal neuron. To this aim, we simulated the activity of the entire set of synapses
(inhibitory/excitatory) connected both to dendrites and soma, by using experi-
mental data on glutamatergic and gabaergic synaptic currents and data obtained
in our previous studies on single synaptic activities [29,30].

2 Model

To study the coding properties of the pyramidal firing we constructed a model
of neuron by using anatomical information from pyramidal neurons in CA1 (and
CA3) field of the hippocampus for which a fairly complete description both of
the dendritic structure and of the synaptic distribution is available. A general
description of such a neuron can be made by dividing it in compartments ac-
cording to the anatomical position of the components in the hippocampal fields.
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In this way our neuronal model has a set of modules called respectively: stratum
lacunosum-moleculare, shaft, stratum radiatum, stratum lucidum, soma, stratum
oriens and azon. Each of the above modules has its set of functional (inhibitory
and excitatory) synapses which are arranged according to data from literature.

2.1 Model of Pyramidal Neuron

Information on the the main structure of hippocampal pyramidal neurons ob-
tained from literature divided dendrites of pyramidal neurons in CA1 field of Hip-
pocampus into three main layers: oriens, radiatum, and lacunosum-moleculare.
In the CA3 field, a lucidum layer (formed by the mossy synapses of axon termi-
nals coming from granular neurons of Dentate Gyrus) must be added. Different
authors have carefully computed the length and spatial distribution of these
dendrites and have computed also the number of synapses in each stratum, their
quality (inhibitory or excitatory) as well has the number and quality of synapses
on the soma and the axon [3,7,16,17]. The gross, total numbers for CAl are:
31000 excitatory synapses and 1700 inhibitory synapses. About their distribu-
tion within the strata, the following values can be obtained: 12000 excitatory
synapses in stratum oriens, where the inhibitory synapses are estimated to be
about 600; 17000 and 700 respectively excitatory and inhibitory in the stra-
tum radiatum; and respectively 2000 excitatory and 300 inhibitory in stratum
lacunosum-moleculare. The article in [16] reports only space densities for the
two classes of synapses for pyramidal neurons in CA3. These values can be uti-
lized to compute the distribution of synapses on a single neuron by using the
result that 88% are excitatory and 12% are inhibitory. Also the percentages
of excitatory synapses in different strata have been computed and so we know
that they are almost 30% in lacunosum-moleculare, 28% in radiatum, 18% in
the lucidum, 1% on soma, and 23% in oriens. Percentage of inhibitory synapses
are: 33% in lacunosum-moleculare, 19% in radiatum, 10% in stratum lucidum,
9% on the soma and 29% in stratum oriens. The distribution of the inhibitory
synapses discloses that about 89% are positioned on dendritic shafts, 9% on
soma, and 2% directly act on the initial segment of the azon (i.e., very close to
the hillock). If we use the total value obtained for the synapses on pyramidal
neurons of CA1, and divide it in 88% excitatory and 12%, from the above per-
centage we can compute the following numbers for a pyramidal neuron of the
CA3 field of the hippocampus. The numbers for the excitatory synapses in dif-
ferent strata are: 9300 in lacunosum-moleculare, 8700 in stratum radiatum, 5500
in the stratum lucidum, 300 on the soma, and 7000 in the stratum oriens. The
inhibitory synapses results to be : 1300 in stratum lacunosum-moleculare, 750 in
stratum radiatum, 400 in the stratum lucidum, 350 on the soma and 1150 in the
stratum oriens.

2.2 Mathematical Description

To compute the Excitatory (and Inhibitory) Post Synaptic Potential (EPSP
and IPSP) produced at the axon hillock by a generic excitatory (and inhibitory)
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synapse located at a specific position on some dendrite (or shaft or soma) we
based ourselves on the method described by Kleppe and Robinson [10]. They
computed the activation time course of the AMPA receptors of a generic exci-
tatory synapse located on a dendrite by analyzing the time course (recorded at
the soma) of the co-localized NMDA receptors. They assumed that the opening
time of single NMDA ionic channels is so short (only about 1us) that it could
be considered as a step function. Hence, they computed the filter response of the
dendrite to an impulse function (Dirac’s ) and to a step function. In such a way
they were able to obtain, by the time course of currents recorded at the soma,
that of AMPA phase currents at the synapse. We inverted this procedure and,
by knowing the time course of AMPA currents produced at each synapse, we
computed the time course of currents at the hillock. From our previous compu-
tational experiments on synaptic diffusion and EPSP-AMPA generation [29,30]
and from experimental data in literature [6] we could establish the time course
of AMPA currents produced at excitatory synapses. Similar behaviors were sur-
mised for inhibitory currents. The current time course at the synapses has been
described by the following equation:

1) = K <exp Lﬂ —exp [ntD (1)

where 7 is the activation time constant, 7 is the decay time constant and K is
a scaling constant. The contribution of each inhibitory and excitatory synapse
to the membrane voltage at the hillock was computed by the following equation
which provide the filtered time curse at the soma:

o M / oo [57] e [1] o)
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where L is the distance between the site of the synapse and the point of the axonic
hillock, in units of A (the space constant of the dendrite), T is the time in units
of 7,,, (the membrane time constant), and k is an appropriate constant related
to the peak amplitude of the AMPA current. From the summed synaptic current
at the soma and by using the following differential equation, we computed the
Post Synaptic Potential (PSP) :

d

gV O+ =VIG—1(t) =0 (3)
where V(t) is the membrane potential, C' is the membrane capacitance, G is
the membrane conductance, and V,.(= —=70mV) is the resting potential. Typical
values for these parameters can be found in [11]. Dividing by G, this equation
translated into:

Vi) = -vil- . @)
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At the last, the following discrete time equation was used to compute the
PSP, V(t), by the synaptic current I(t):

A

Tm

I IR (5)

V(t+A)=V(t) o

1—

where V.5 is the constant ‘fA.

n

3 Simulation

From a geometrical point of view, we considered the pyramidal neuron as com-
posed of the compartments described in the following. A soma of spherical shape
from which depart a shaft and an azon; the starting portion of the shaft forms
the stratum lucidum. With the apex on the starting portion of the shaft, a first
set of dendrites arise and are disposed in a conical volume forming the stratum
radiatum. A second set of dendrites forms the stratum lacunosum-moleculare ar-
ranged in a semi-conical volume positioned on the top of the stratum lucidum.

800 -
600 -
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P : e 200

—_— o 100
200 -200 =100

Fig.1. A pyramidal neuron. The shape is obtained by plotting the synaptic positions

in 3D. The units are in um.

On the opposite side of the soma with respect to the shaft, the stratum oriens
is arranged in a conical volume. Synapses, both inhibitory and excitatory, are
arranged randomly according to an uniform distribution on the different den-
dritic structures but respecting the proportion and the number as reported in
[16,17]. An example of the geometry of a pyramidal neuron is shown in Figure 1
as it is obtained by plotting in 3D the synaptic positions. Once synapses have
been positioned, their distances from the hillock have been computed and con-
verted in units of A\. The times of activation of each excitatory and inhibitory
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synapse have been computed according to a Poisson distribution, with a mean
frequency (chosen from data in the literature) which could vary across the com-
putational experiments. The amplitude of current peak at each synapse for each
activation time has been chosen depending on a positive skewness distribution
which considered both experimental data [6] and computational results obtained
in our previous work [29,30]. At any time step (0.01ms) the contribution of each
synapse to the current arriving at the hillock, computed by using equation 2, was
summed up and the voltage was computed by equation 5. Each time the voltage
was equal or exceeded the threshold value (which for simplicity has been consid-
ered constant), the neuron produced a spike. In a first approximation, spikes are
not modelled according to Na™ and KT channel activation and deactivation as
in the Hodgking and Huxley model, nevertheless each spike is not simply con-
sidered as a discontinuity point in the membrane voltage time series as usually
assumed in simplified models of leaky integrated-and-fire (LIF) neurons [5]. The
following procedure has been assumed for its simulation. When the membrane
potential crossed the threshold value, the voltage was raised to a fixed positive
(+30mV) value and, after, it went in an hyperpolarization state. During the
subsequent refractory period, with a duration of 15ms, the neuron remained
unable to react to the incoming synaptic current but the membrane potential
increased according to equation 5. The complete procedure mimicked an hyper-
polarizing after potential (see Fig. 3). At the end of the refractory period the
neuron became again able to react to the synaptic activity. For each computa-
tional experiment our simulator computed the ISI distribution, the mean ISI,
the standard deviation and the C.V. (i.e., the coefficient of variation of the dis-
tribution of ISIs), defined as the standard deviation o divided by the mean u:
CV = 7. This last parameter is considered as an evaluator of the neuronal firing
irregularity. At the end of the computational experiment, currents, voltages, ac-
tivation of single synapses (chosen as control) and the number of active synapses
at each time were produced. A report of the more important parameters used
for simulation and of the most salient results (mean, sd and C.V. of ISIs and of
spiking frequency) was also generated.

4 Results

In this paper we present results which were obtained in computational experi-
ments in which the number and the position of the synapses have been kept fixed
and so, the biological structure of the neuron remained constant. In a first series
of computer simulations, the numbers of excitatory and inhibitory synapses re-
ported in [16,17] have been considered as reference values to compute the firing
activity of the simulated pyramidal neurons. Several computations have been
carried on by modifying some meaningful parameters. In particular, the mean
and the standard deviation of the peak amplitudes for Excitatory and Inhibitory
Post Synaptic Currents (EPSC and IPSC) or the frequency of Poissonian inputs
to excitatory and inhibitory synapses changed in the different simulations. The
currents produced at the synaptic level, arrived delayed and reduced at the axon
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Fig. 2. 20s of simulated CA3 pyramidal neuron activity for 3 different combination of
synaptic input frequency: A) excitatory 0.526 H z and inhibitory 22.2H z; B) excitatory
0.526 H z and inhibitory 20H z; C) excitatory 0.5H z and inhibitory 22.2Hz

hillock, in conformity with the equation 2 which takes into account the distances
of each synapse from the hillock. The experiments have been compared only by
changing the frequency of activation of the synaptic input. The synaptic cur-
rents, both excitatory and inhibitory, had peak amplitude of 30 + 30pA (mean
+ standard deviation). The panels of Figure 2 show an example of three differ-
ent runs where the synaptic input frequency changed, while the structure and
position of synapses did not varied. The mean spike frequency of the simulated
neuron was 4.34H z and the CV of ISIs was 1.11 for the panel A. In the simulation
producing the output of the panel B only the activation frequency of inhibitory
synapses has been changed slightly with respect to the previous example. In this
case the mean spike frequency of the simulated neuron was 10.5H 2z and the CV
of ISIs was 0.98. For the panel C, the result was obtained by decreasing a little
the activation frequency of excitatory synaptic input and increasing that of the
inhibitory one. The obtained results give a mean spiking frequency of 1.26Hz
with a CV for ISIs of 0.98. The difference in the spiking activity was obtained by
small variations of excitatory and/or inhibitory synaptic activation frequency.
In all the above cases the CV of ISIs was very close to the unit and within the
range of values reported for in vivo recordings of cortical pyramidal neurons [24].
Figure 3 shows the membrane potential in the proximity of a spike generation
(2nd spike of panel C in Fig. 2). It has to be noted the large, irregular fluctua-
tions of the membrane potential which occasionally can produce the threshold
crossing and hence the firing of the neuron. This high irregularity is due to the



96 F. Ventriglia and V. Di Maio

20

-20

mV

-40

-60

-80

Fig. 3. Membrane potential at the hillock for a time period encompassing the genera-
tion of a spike

complete contribution of excitatory and inhibitory synapses and depends greatly
on the respective frequency of activation.

5 Discussion

In the present paper we exhibit a model of pyramidal neuron which accounts for
many biological parameters. The structure of a single pyramidal neuron of the
CA3 field of Hippocampus has been geometrically determined. Up to 30802 ex-
citatory and 4280 inhibitory synapses have been positioned onto dendritic tree,
shaft, soma and axon. By combining the distance of each synapse with the cable
properties of the dendrites and the contribution given by each filtered synaptic
current at any time, the membrane potential at the hillock has been computed.
The stochastic fluctuations due to a non-synchronous activation of synapses (pro-
duced by a stochastic Poissonian process) determine a large fluctuation in the
current arriving at the hillock. The direct consequence of this is a random fluctu-
ation of the potential at the hillock which range from hyper-polarizing values up
to the threshold value which is occasionally reached (see Fig. 3). The resulting
randomness in the time occurrence of spikes gives origin to spike patterns com-
parable with those observed in in vivo experiments [24]. Of great relevance is
that the C.V. we obtain in our simulation is very close to the unit which is that
computed from in in vivo recordings [24]. This shows that, in spite of the sim-
plifications, the model can be considered robust and biologically plausible. Also,
we want to stress that although the pyramidal neuron model used in the present
investigations reflects structural data from hippocampal pyramidal neurons, its
input and its basic activity are quite similar to pyramidal neurons of cortical
areas. Hence, the results describe adequately the behavior of the last neurons.
In this preliminary study we present data derived by computational experiments
in which the response of the neuron to small variations of the synaptic input fre-
quency is considered. Analysis of data seems to show that such a system is very
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sensitive to small changes of the synaptic input frequency both in inhibitory and
in excitatory synapses (compare panels A;B, and C of Fig. 2). A system with
such characteristics would suggest that codification of information in the brain
is arranged in such a way that small variations of input frequencies on single
neurons result in large (amplified) variations of their output spiking frequency.
Highly irregular spike trains seem to be a characteristic of pyramidal neurons of
superior cortical areas. The indications about the code underlying the transmis-
sion derived from our computational results reinforce the bias toward the rate
code hypothesis. However, we want to stress the fact that this indication can not
be extended to the activity of primary cortices, which seem to be organized in a
different way. In fact, results from primary visual and auditory cortices denote
much more tuned responses to specific features of the input [4,9].
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Abstract. Because it is a highly approachable part of the brain, the retina is by
far one of the best known regions of the Central Nervous System. The
systematic application of modern neuroanatomical and quantitative techniques
has provided the complete catalogue of retinal cells, while electrophysiological
experiments are gradually revealing their functions. Retinal complexity is
achieved through serial and parallel connections of about 50 different types of
neurons. Among retinal circuits, the best known is the rod pathway, a chain of
neurons by which rod-generated signals are grafted onto an evolutionary more
antique cone system. About ten types of cone bipolar cells provide parallel
channels conveying to the brain information related to colour, temporal domain,
motion etc. This elegant and complex circuitry becomes severely corrupted in
retinal degeneration causing the progressive death of photoreceptors for genetic
causes. Retinitis Pigmentosa and related disorders are more than just
photoreceptor diseases, as inner retinal cells are severely affected by the loss of
their major input neurons.

1 Retinal Rod and Cone Pathways

Vision starts in the retina, one of the best known regions of the Central Nervous
System. Thanks to the retinal highly regular structure and to the systematic
employment of sophisticated neuroanatomical and electrophysiological techniques,
we know now by name each of the some 50 types of neurons contributing to retinal
architecture.

In mammals, retinal organization is remarkably conserved; albeit differences in the
relative proportions of rods and cones, and regional specializations such as the
primate fovea, information processing is achieved basically through the same
neuronal networks.

Considerable computation of the visual signal is performed in the retina, a true
piece of the brain, and not simply a relay station of electric responses initiated in
photoreceptors. This is obtained by means of two basic types of photoreceptors (rods
and cones), two classes of second order neurons (bipolar cells and horizontal cells),
specialized interneurons (amacrine cells) and output neurons (ganglion cells). A
fundamental role is also played by Miiller glial cells, dedicated, among other
functions, to the retrieval of glutamate used for neuronal transmission. The basic
wiring diagram of the mammalian retina is schematized in Figure 1.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 99-107, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Schematic drawing of the major classes of retinal cells and their connections. is/os: inner
and outer segments of photoreceptors; onl and inl: outer and inner nuclear layers; opl and ipl:
outer and inner plexiform layers; gcl: ganglion cell layer; nfl: nerve fiber layer. 1-2: cones and
rods. 3: horizontal cell. 4: rod bipolar cell. 5 and 6: ON and OFF cone bipolar cells,
respectively. 7, 8 and 9: examples of amacrine cells. The neuron n.7 is an AIl amacrine cell. 10
and 12: ON and OFF ganglion cells. 11: Miiller glial cell.

Remarkably, each of the six classes of neuronal cells is fragmented in different
types, each of them constituting parallel circuits, anatomically equipotent, presumably
dedicated to different functions. Each cellular type is characterized by a collection of
properties, all together conferring unique signatures: morphology, stratification
pattern, tiling over the retinal surface, number, physiology. Hence, one can
distinguish 1-3 types horizontal cells, about a dozen bipolar cells, thirty types of
amacrine cells and 12-15 types of ganglion cells [1]. Albeit well defined on the basis
of morphological features, the physiological properties of each cell types are only
beginning to be unravelled.

One of the best known retinal neuronal networks is the so-called rod pathway,
meaning by that the dedicated chain of neurons responsible for the elaboration of
visual signals initiated in rod photoreceptors and carried up to ganglion cells toward
the exit of the retina.

It is long known from electrophysiological findings that a single set of ganglion
cells is used for both vision in scotopic as well as in photopic conditions (starlight and
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sunlight, respectively); this represents an obvious example of retinal efficiency in the
absence of duplication. However, because rod photoreceptors far outnumber cones in
most mammalian retinas, it was a surprise to learn, by means of quantitative
neuroanatomy, that cone bipolars outnumber rod bipolars even in the retina of mice,
nocturnal animals in which cones are only 3% of all the photoreceptors [2-3]. The
reason is that more rods converge onto a single rod bipolar than cones onto cone
bipolars; thanks to convergence, the rod system achieves high sensitivity.

The circuitry associated with rods is simpler than that of cones. There is only
one type of rod photoreceptor and rods are connected to only a single type of
bipolar cell. The latter synapses on a specialized amacrine cell, termed AIl, which
can be considered an hallmark of the mammalian retina. Thanks to the bi-
stratified morphology, the AII transmits the output of rod bipolar cells to ganglion
cells stratified at various depth in the inner plexiform layer. Output occurs by
either chemical synapses or via gap junctions established by AIl dendrites onto
axon terminals of various types of cone bipolar cells, which then excite the
ganglion cells [4-5].
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Fig. 2. Montage of key neurons of the mammalian rod pathway, individually labeled with
fluorescent dyes. The light signal generated in rods is conveyed to a single type of rod bipolar
cell (rb), that, in turn, is presynaptic onto the dendrites of AIl amacrine cells. The latter
establish connections with the axonal arborizations of cone bipolar cells (cb); these, finally,
deliver the signal to ganglion cells, and thus to the exit from the retina.
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Figure 2 schematizes the key players of the principal rod pathway. The illustrated
cells have been individually labelled with lipophilic fluorescent dyes with the aid of a
gene gun, and assembled in a montage. Only one type of cone bipolar cells is
represented, although up to a dozen types have been described in the retina of various
mammals. AIl amacrines establish connections with most of them; hence, the
principal rod pathway is composed of a chain of 5 neurons, comprising rods, rod
bipolars, AIl amacrines, cone bipolars and, finally, ganglion cells.

The reason of this particular arrangement can be explained in evolutionary terms:
because rods appeared in evolution after cones [6], the possibility exists that the rod
circuitry was grafted onto the pre-existing cone pathways, ultimately exploiting its
complexity. By connecting to the axon terminals of the cone bipolar cells, the rod
pathway gains access to the elaborate circuitry of the cone pathway, including its
associated amacrine network [7]. For example, the directionally selective type of
ganglion cell, sensing the particular direction of motion of a visual stimulus, can
function in scotopic conditions, even though it receives no direct synapses from the
rod bipolar cells. One can say that the rod system piggybacks on the cone circuitry
rather than accessing a dedicated, re-invented neural pathway solely dedicated to rods.
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Fig. 3. Schematic representation of bipolar cells types of the mouse retina. There is one single
type of rod bipolar cell (RB) and nine types of cone bipolar cells (CB).

Molecular cloning of the visual pigments (opsins) supports the conclusion that
cone pigments evolved long before rhodopsin, the rod pigment [6]. Cones are
associated with a complex variety of postsynaptic cells, as demonstrated by the fact
that most mammalian retinas have 8 to 12 cone-driven bipolar cells. Our laboratory
has recently provided a detailed classification of bipolar cells of the mouse retina,
individually labelled with fluorescent molecules delivered with a gene gun to living
retinal slices [8]. An example of the classification is given in Figure 3. Cone bipolars
can be divided into two large group, based on the level of ramifications in the outer or
inner laminae of the inner plexiform layers. In all vertebrates, these correspond to the
termination of neurons most responding to increasing (“ON”) or decreasing (“OFF”)
light levels. It is well known that the dichotomy between ON and OFF channels is
established by the presence of different types of glutamate receptors on the dendrites
of diverse types of cone bipolar cells. In the retina of the mouse, we found 4 types of
presumptive OFF-cone bipolar cells and 5 types of presumptive ON-cone bipolar
cells. This is quite similar to the results of Ghosh et al. [9] who provided a similar
classification by means of intracellular injections of fluorescent dyes. It also agrees
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with previous studies on monkeys, rabbits and rats, confirming the existence of a
largely conserved structural plan in the retina of mammals [10-13].

The different types of OFF and ON cone bipolar cells can provide separate
channels for high-frequency and low-frequency information. This is made possible by
the presence on the dendrites of the bipolar cells of different types of AMPA and
kainate receptors [14]. Experimental data demonstrate that different glutamate
receptors recover from desensitization quickly in the transient cells and more slowly
in the sustained cells [14].

Besides the ON and OFF subdivision, cone bipolars can be further discriminated
according to the morphology of their axonal arbors, size, and relative abundance.
Pharmacological and biochemical studies demonstrate that individual bipolar cell
types have characteristic sets of neurotransmitter receptors and calcium-binding
proteins [15]. These molecular signatures reflect different modes of intracellular
signaling and different types of excitatory and inhibitory inputs from other retinal
neurons, either at their inputs from cones or from amacrine cells that synapse on their
axon terminals. At the cone synapses, different glutamate receptors are present. At
their axon terminals, different bipolar cells can receive inhibitory glycinergic or
GABAergic input via one of two different kinds of GABA receptors. The different
receptors and their channels have different affinities and rates of activation and
inactivation, which give the cells different postsynaptic responsiveness.

Thus, the two broad classes of ON and OFF bipolars are each further subdivided,
providing, among others, separate channels for high-frequency (transient) and low-
frequency (sustained) information. Two obvious consequences of splitting the output
of the cones into separate temporal channels are to expand the overall bandwidth of
the system and to contribute creating temporally distinct types of ganglion cells. The
result is that the output of each cone is split into several bipolar cell types to provide
many parallel channels, each communicating a different version of the cone’s output
to the inner retina.

Although artificial vision does not have necessarily to mimic the retinal operating
mode, the articulated cone pathways and the existence of a piggy-backing rod
network provide an elegant example of parallel and serial processing, representing a
formidable and challenging template for devising artificial prostheses.

2 Alterations of Retinal Circuitry in Disease

Photoreceptor-specific genes undergo an exceptionally high number of mutations;
more than 100 of them have been identified for the sole gene of rhodopsin, the light
sensitive molecules of rods. The resulting phenotype is usually a retinal degeneration
starting in rods at various ages and then propagating to cones as well.

In humans, mutations in photoreceptor specific genes might cause Retinitis
Pigmentosa (RP), a family of genetic disorders leading to progressive blindness, with
an incidence of about 1:3,500. Although RP is presently without cure, experimental
work is in progress in the hope to prevent the progressive death of photoreceptors or
in the attempt to repair and replace these highly specialized cells.

In view of the growing body of therapeutic approaches being developed to cure
RP, it is important to focus the attention not only onto photoreceptors (the cells
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traditionally studied in this family of diseases) but on the fate of the whole retina;
particularly, it is important to understand whether secondary degeneration affects the
synaptic partners of photoreceptors, and namely the bipolar and horizontal cells.

Preservation of second order neurons, in fact, is a pre-requisite for retinal repair
based on transplantation of photoreceptor precursors, on gene-therapy or on retinal
exogenous stimulation achieved with electronic prostheses [16-18].

Up to few years ago, it was generally accepted that photoreceptor degeneration had
minor effects upon inner retinal cells. Staining of histological sections with general
methods did not reveal particular changes in retinal architecture; this was thus
considered to be preserved except at the very late stages of the disease, anyway
considered not suitable for attempting a cure.

The application of cell-type specific methods of staining to pathological retinal
tissue allowed the study of individual cell types at various stages of the disease
progression. Few groups of investigators (including ours) examined systematically the
retina of mammals (mostly rodents) with various forms of inherited retinal
degeneration and brought to light impressive changes occurring among inner retinal
cells as a consequence of the death of rods and cones [19].
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Fig. 4. Diagram illustrating some of the effects of photoreceptor degeneration upon rod (left)
and cone bipolar cells (right). As long as photoreceptors die off, the dendrites of bipolar cells
undergo progressive retraction, up to complete atrophy. Neurotransmitter receptors, such as the
metabotropic glutamate receptor mGluR6 (black dots) are down regulated and misplaced to the
cell bodies and axons of the bipolar cells. The axonal arborizations, normally growing to their
adult size during postnatal retinal development, show a structural failure and remain atrophic.
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Our laboratory demonstrated that, the wave of photoreceptor death is accompanied
by a stereotyped series of changes in second order neurons: this series is independent
of the genetic abnormality underlying the disease and it is common to different animal
species. Abnormalities include progressive and wide-spread dendritic retraction in rod
and cone bipolar cells, misplacement and loss of glutamatergic postsynaptic receptors,
aberrant neurite sprouting and, in the most aggressive mutations, secondary neuronal
loss [20-23]. A diagram illustrating major remodelling events in bipolar cells of
mouse models of RP is shown in Figure 4.

Other investigators have described extensive gliosis, ectopic cellular migration and
self-excitation of neuronal and glial cells in advances stages of the disease [19].

Studies on reactive changes of ganglion cells are in progress in our laboratory; they
are made possible by the recent development of mice expressing the fluorescent
protein GFP in a small number of ganglion cells. By crossing these animals with mice
carrying a mutation causing photoreceptor degeneration, one can correlate the
anatomy and physiology of individual types of ganglion cells to the stage of the
disease. This is very important in view of the recent development of intra-ocular
electronic devices which transform light energy into electric impulses that then should
excite ganglion cells directly, completely bypassing the retinal circuitry. An apparent
limitation of such a prosthetic approach to treat retinal degeneration is the
experimental finding that the threshold of electrical stimulation of ganglion cells in
human patients suffering from RP is surprisingly high [24]. Our results on secondary
remodelling of bipolar cells in mice rise the possibility that the effects of
photoreceptor death propagate as a cascade to the innermost retinal layers, ultimately
leading to the progressive atrophy and loss of excitability of ganglion cells.

More studies are necessary to understand the biology of Retinitis Pigmentosa;
however, this should be considered a disease affecting the retina as a whole, more
than just a dysfunction of photoreceptors.

The possibility of studying retinal neurons individually by means of cell-type
selective methods has considerably increased our knowledge of retinal architecture
and specialized circuitry. Now it is time to extend the same panel of methods to
retinal disorders, to study with equal detail how the refined retinal architecture
becomes corrupted in degenerating diseases. The challenge and the hope are to
prevent and cure them.
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Abstract. We posit a new paradigm for image information processing. For the
last 25 years, this task was usually approached in the frame of Triesman’s two-
stage paradigm [1]. The latter supposes an unsupervised, bottom-up directed
process of preliminary information pieces gathering at the lower processing
stages and a supervised, top-down directed process of information pieces
binding and grouping at the higher stages. It is acknowledged that these sub-
processes interact and intervene between them in a tricky and a complicated
manner. Notwithstanding the prevalence of this paradigm in biological and
computer vision, we nevertheless propose to replace it with a new one, which
we would like to designate as a two-part paradigm. In it, information contained
in an image is initially extracted in an independent top-down manner by one
part of the system, and then it is examined and interpreted by another, separate
system part. We argue that the new paradigm seems to be more plausible than
its forerunner. We provide evidence from human attention vision studies and
insights of Kolmogorov’s complexity theory to support these arguments. We
also provide some reasons in favor of separate image interpretation issues.

1 Introduction

It is generally acknowledged that our computer vision systems have been and
continue to be an everlasting attempt to imitate their biological counterparts. As such,
they have always faithfully followed the ideas and trends borrowed from the field of
biological vision studies. However, image information processing and image
understanding issues have remained a mystery and a lasting challenge for both of
them. Following biological vision canons, prevalent computer vision applications
apprehend image information processing as an interaction of two inversely directed
sub-processes. One is — an unsupervised, bottom-up evolving process of low-level
elementary image information pieces discovery and localization. The other - is a
supervised, top-down propagating process, which conveys the rules and the
knowledge that guide the linking and grouping of the preliminary disclosed features
into more large agglomerations and sets. It is generally believed that at some higher
level of the processing hierarchy this interplay culminates with the required scene
decomposition (segmentation) into its meaningful constituents (objects).
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As said, the roots of such an approach are easily traced to the Treisman’s Feature
Integrating Theory [1], Biederman’s Recognition-by-components theory [2], and
Marr’s theory of early visual information processing [3]. They all shared a common
belief that human’s mental image of the surrounding is clear and full, and point by
point defined and specified. On this basis, a range of bottom-up proceeding
techniques has been developed and continues to flourish. For example, super-fast
Digital Signal Processors (DSPs) with Gigaflop processing power, which were
designed to cope with input data inundation. Or Neural Nets that came to solve the
problems of data patterns discovery, learned and identified in massive parallel
processing arrangements. Or the latest wave of computational models for selective
attention vision studies [4].

With only a minor opposition [5], the bottom-up/top-down processing principle
has been established as an incontestable and dominating leader in both biological and
computer vision.

2 Denying the Two Stage Approach

The flow of evidence that comes from the latest selective attention vision studies
encourages us to reconsider the established dogmas of image processing. First of all,
the hypothesis that our mental image is entirely clear and crisp does not hold more, it
was just an inspiring illusion [6]. In the last years, various types of perceptual
blindness have been unveiled, investigated and described [7].

Considering selective attention vision studies, it will be interesting to note that the
latest investigations in this field also come in contradiction with the established
bottom-up/top-down approaches. After all, it was a long-standing conviction that the
main part of the incoming visual information is acquired via the extremely dense
populated (by photoreceptors) eye’s part called fovea. Because of its very small
dimensions, to cover the entire field of view, the eyes constantly move the fovea,
redirecting the gaze and placing the fovea over different scene locations, thus
enabling successful gathering of the required high-resolution information. A more
scrutinizing view on the matters reveals that the decision to make the next saccadic
move precedes the detailed information gathering performed at such a location. That
leads to an assumption that other sorts of information must be involved, supporting
attention focusing mechanisms.

Considering the empirical evidence (and the references that we provide are only a
negligible part of an ample list of recent publications), juxtaposing it with the insights
of Kolmogorov Complexity theory (which we adopt to explain these empirical
biological findings), we have come to a following conclusion: the bottom-up/top-
down principle can not be maintained any more. It must be replaced with a more
suitable approach.

Recently, we have published a couple of papers ([8], [9]) in which we explain our
view on the issue. For the clarity of this discussion, we will briefly repeat their main
points. First, we reconsider the very notion of image information content. Despite of
its widespread use, the notion of it is still ill defined, intuitive, and ambiguous. Most
often, it is used in the Shannon’s sense, which means information content assessment
averaged over the whole signal ensemble (an echo of the bottom-up approach).
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Humans, however, rarely resort to such estimates. They are very efficient in
decomposing images into their meaningful constituents and then focusing attention to
the most perceptually important and relevant image parts. That fits the concepts of
Kolmogorov’s complexity theory, which explores the notions of randomness and
information. Following the insights of this theory, we have proposed the next
definition of image contained information: image information content can be defined
as a set of descriptions of the visible image data structures. Three levels of such
description can be generally distinguished: 1) the global level, where the coarse
structure of the entire scene is initially outlined; 2) the intermediate level, where
structures of separate, non-overlapping image regions usually associated with
individual scene objects are delineated; and 3) the low level description, where local
image structures observed in a limited and restricted field of view are resolved.

The Kolmogorov Complexity theory prescribes that the descriptions must be created
in a hierarchical and recursive manner, that is, starting with a generalized and simplified
description of image structure, it proceeds in a top-down fashion to more and more fine
information details elaboration performed at the lower description levels.

A practical algorithm, which implements this idea, is presented, and its schema is
depicted in the Figure 1.

Bottom-up path Top-down path Object list
Last (top) level

X X \ Top level object descriptors
4 to 1 comprsd Scgmentation Object shapes
image Classification Labeled objects \

Y

4 to 1 compressed Level n-1 1 to 4 expanded
image object maps

Level n-1 objects

4 to 1 compressed
image

1 to 4 expanded
> object maps

f v

Level 0

Level 1 Levl 1 obj.

L0

1 to 4 expanded

Original i
riginal image object maps

Fig. 1. The Schema of the proposed approach

As it can be seen from the figure, the schema is comprised of three processing
paths: the bottom-up processing path, the top-down processing path and a stack where
the discovered information content (the generated descriptions of it) are actually
accumulated.

As it follows from the schema, the input image is initially squeezed to a small size
of approximately 100 pixels. The rules of this shrinking operation are very simple and
fast: four non-overlapping neighbour pixels in an image at level L are averaged and
the result is assigned to a pixel in a higher (L+1)-level image. This is known as “four
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children to one parent relationship”. Then, at the top of the shrinking pyramid, the
image is segmented, and each segmented region is labeled. Since the image size at the
top is significantly reduced and since in the course of the bottom-up image squeezing
a severe data averaging is attained, the image segmentation/classification procedure
does not demand special computational resources. Any well-known segmentation
methodology will suffice. We use our own proprietary technique that is based on a
low-level (local) information content evaluation, but this is not obligatory.

From this point on, the top-down processing path is commenced. At each level, the
two previously defined maps (average region intensity map and the associated label
map) are expanded to the size of an image at the nearest lower level. Since the regions
at different hierarchical levels do not exhibit significant changes in their characteristic
intensity, the majority of newly assigned pixels are determined in a sufficiently
correct manner. Only pixels at region borders and seeds of newly emerging regions
may significantly deviate from the assigned values. Taking the corresponding current-
level image as a reference (the left-side unsegmented image), these pixels can be
easily detected and subjected to a refinement cycle. In such a manner, the process is
subsequently repeated at all descending levels until the segmentation/classification of
the original input image is successfully accomplished.

At every processing level, every image object-region (just recovered or an
inherited one) is registered in the objects’ appearance list, which is the third
constituting part of the proposed scheme. The registered object parameters are the
available simplified object’s attributes, such as size, center-of-mass position, average
object intensity and hierarchical and topological relationship within and between the
objects (“sub-part of...”, “at the left of...”, etc.). They are sparse, general, and yet
specific enough to capture the object’s characteristic features in a variety of
descriptive forms.

Finally, it must be explicitly restated: all this image information content discovery,
extraction and representation proceeds without any involvement of any high-level
knowledge about semantic nature of an image or any cognitive guidance cues
mediating the process. However, that does not preclude a human observer to grasp the
gist of the segmented scene in a clear and unambiguous way. (Which confirms that all
information needed for gist comprehension is extracted and is represented correctly.)

3 Illustrative Example

To illustrate the qualities of the image information extraction part we have chosen a
scene from the Photo-Gallery of the Natural Resources Conservation Service, USA
Department of Agriculture, [10].

Figure 2 represents the original image, Figures 3 — 7 illustrate segmentation results
at various levels of the processing hierarchy. Level 5 (Fig. 3) is the topmost nearest
level (For the image of this size the algorithm has created a 6-level hierarchy). Level
1 (Fig. 7) is the lower-end closest level. For space saving, we do not provide all the
samples of the segmentation succession, but for readers’ convenience each presented
example is expanded to the size of the original image.
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Fig. 2. Original image, size 1052x750 pixels Fig. 3. Level 5 decompos., 8 region-objects

Fig. 4. Level 4 decompos., 14 region-objects Fig. 5. Level 3 decompos., 27 region-objects

Fig. 6. Level 2 decompos., 49 region-objects Fig. 7. Level 1 decompos., 79 region-objects

Extracted from the object list, numbers of distinguished (segmented) at each
corresponding level regions (objects) are given in each figure capture.

Because real object decomposition is not known in advance, only the generalized
intensity maps are presented here.
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4 Introducing Image Interpretation

Eliminating information content extraction from the frame of the bottom-up/top-down
approach and declaring its independent, self-consistent and unsupervised top-down
manner of information processing, immediately raises a question: and what is about
high-level cognitive image perception? Indeed, none at any time has ever denied the
importance of cognitive treatment of image content. But the autonomous nature of
image information content preprocessing (that we have just above defined and
approved) does not leave any choices for an anticipated answer: understanding of
image information content, that means, its appropriate interpretation, must come from
the outside, from another part of the processing system. Contrary to the bottom-
up/top-down approach, this part has no influence on its predecessor.

The consequences of acceptance of such a two-part processing concept are
tremendous. First of all, the common belief that the knowledge needed for high-level
information processing can be learned from the input data itself is totally invalidated.
Now, all of the so cherished training and learning theories, neural nets and adaptive
approximators — all that must be put in junk. And then... Regarding image
interpretation duties (the functionality of the second system’s part), several questions
must be urgently considered: 1) how the knowledge, packed into a knowledge base
that supports the interpretation process, is initially acquired? How and from where
does it come? 2) how it must be presented? What is the best representation form of it?
3) how the interaction with the information content (the image stuff subjected to
interpretation and contained in the preceding system’s module) is actually performed?

We hope that we have the right answers. At least, we will try to put them
unambiguously. For the first question, we think that the knowledge must come from
the system designer, from his image context understanding and his previous domain-
related experience. As in humans, the prime learning and knowledge accumulation
process must be explicit and declarative. That means, not independently acquired, but
deliberately introduced. As in humans, the best form for such introduction, its further
memorization for later recall, its representation and usage — is an ontology [11]. (And
that is the answer for the second question.) By saying this, we don’t mean the world’s
ontology that a human gradually creates in his life span. We mean a simplified,
domain-restricted and contextualized ontology, or as it is now called — domain
interpretation schema [12]. Which can be very specific about image information
content and context, and does not have to share knowledge with other applications.
This makes it very flexible, easily designed by the application supervisor, which thus
becomes a single source for both the required knowledge and its representation in a
suitable form (of an interpretation schema).

A known way to avoid complications in ontology maintenance and updating (in
accordance with the changing application environment) is to create additional partial
interpretation schemas, which take into account the encountered changes. To make
the whole system workable, a cross mapping between partial schemas must be
established. Such mapping is a part of a local representation, and, as we see that, must
be also provided by the system designer. However, he has not to do this in advance,
he can gradually expand and increase the system’s interpretation abilities adding new
ontologies as the previous arrangement becomes insufficient.
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Finally, and that is the first time when the idea is announced, we propose to see the
description list at the output of the first module (the early described information
processing module) as a special kind of a partial ontology, written in a special
description language. By the way, this language can be shared with attribute
description languages utilized in the partial ontologies. Once more, providing the
mapping between them paves the way for the whole system integration. And that is
the answer for the third question.

The proposed framework does not solve the whole image interpretation problem. It
must be seen only as a first step of it, where segmented in an unsupervised manner
image regions become meaningfully regrouped and bonded into human accustomed
objects with human familiar lexical names and labels. The latter can be used then in
further more advanced interpretations of image spatio-temporal content.

5 Conclusions

In this paper, we have presented a new paradigm for image information content
processing. Contrary to the traditional two-stage paradigm, which rely on a bottom-up
(resource exhaustive) processing and on a top-down mediating (which requires
external knowledge incorporation), our paradigm assumes a two-part approach. Here,
one part is responsible for image information extraction (in an unsupervised top-down
proceeding manner) and the other part is busy with interpretation of this information.
Such subdivision of functional duties more reliably represents biological vision
functionality, (albeit, it is still not recognized by biological vision research
community).

The two-part paradigm forces reconsideration of many other image information
related topics. For example, Shannon’s definition of information, as an average over
an ensemble, versus Kolmogorov’s definition of information, as a shortest program
that reliably describes/reproduces the structure of image objects. A new viewpoint
must be accepted regarding information interpretation issues, such as knowledge
acquisition and learning, knowledge representation (in form of multiple parallel
ontologies), and knowledge consolidation via mutual cross-mapping of the ontologies.

A hard research and investigation future work is anticipated. We hope it would
be successfully fulfilled.
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Abstract. The human capability of recognizing objects visually is here
held to be a function emerging as result of interactions between epige-
netic influences and basic neural plasticity mechanisms. The model here
proposed simulates the development of the main neural processes of the
visual system giving rise to the higher function of recognizing objects.
It is a hierarchy of artificial neural maps, mainly based on the LISSOM
architecture, achieving self-organization through simulated intercortical
lateral connections.

1 Introduction

Object recognition is the most astonishing capability of the human visual sys-
tem, and in the last decades many researches has been carried out to simulate
it by means of artificial computational models. However, the majority of these
attempts have just addressed the achievement of performances comparable with
human vision, regardless of how the performances would be achieved. The point
of how the human brain may gain recognition abilities has been much less inves-
tigated, since it may appear inessential to the understanding of how the adult
visual system works. In part this is still heritage of Marr’s epistemology, with
the underlaying principle of engineering design as discloser of the natural evolu-
tionary strategies in forging vision.

On the contrary, here is held that the understanding of how the brain areas
involved in recognition gradually succeed in developing their mature functions
would be a major key in revealing how humans and primates in general can
recognize objects. This is the motivation of studying artificial models of vision
where the main focus is in reproducing basic developmental mechanisms, avoid-
ing the explicit design of any of the processing steps involved in the classical
algorithmic approach to artificial vision.

The background assumption is that most of the processing functions involved
in recognition are not genetically determined and hardwired in the neural cir-
cuits, but are the result of interactions between epigenetic influences and some
very basic neural plasticity mechanisms. This view is clearly not a prerogative of
visual recognition only, but is extended as the most general explanation of the
representational power of the neural system [20], in line with the constructivism
in philosophy [28] and biology [29]. Visual recognition is indeed an exemplar case,
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where the idea of cortical functions as emerging organizations of neural maps
is supported by a particularly strong ground of neuroscientific [12, 2, 13, 11],
neurocognitive [8], and psychological [4, 23, 16] evidences.

2 Modeling Cortical Development with Self-organization

In the neurocomputational community several computational tools has been
suggested for modeling the development of functions in population of neurons,
especially in vision. One of the most attractive mathematical principle is the
so-called self-organization of cortical maps, first applied to the development of
visual areas in [27]. In this approach the final functions are achieved by the
combination of self-reinforcing local interaction of neurons, supporting Hebbian
principle, and some sort of competitive constraint in the growth of synaptic con-
nections keeping constant the average of cell activities. Using variants of this
principle von der Malsburg was able to simulate visual organizations like retino-
topy, ocular dominance and orientation sensitivity. His original formulation was
fairly realistic in mimicking cortical computations, limited to the two mentioned
effects, but the resulting system of differential equation was not too manageable
and therefore had little further developments.

On the contrary a later mechanism called SOM (Self-Organizing Maps) [14]
become quite popular because of its simplicity. The learning rule is on a winner-
take-all basis: if the input data are vectors v € RV, the SOM will be made of
some M neurons, each associated with a vector € RN and a two dimensional
(in vision applications) coordinate r € {< [0,1],[0,1] >} C R?. For an input v
there will be a winner neuron w satisfying:

w=arg _min (o). (1)

The adaptation of the network is ruled by the following equation:

Ax; = ne 202 (v —xy), (2)

where w is the winner, identified thanks to the (1),  is the learning rate, and o
the amplitude of the neighborhood affected by the updating. Both parameters n
and o are actually functions of the training epochs, with several possible schemes
of variations.

The SOM is a useful tool for modeling in an abstract sense brain processes
emerging from input interactions and represented as topological organization,
but it is clearly far from reproducing realistic cortical mechanisms.

A recent model called LISSOM ( Laterally Interconnected Synergetically Self-
Organizing Map) attempts to preserve the simplicity of the SOM with a more re-
alistic simulation of the basic plasticity mechanisms of cortical areas [22, 1]. The
main differences from the SOM are the inclusion of intercortical connections, and
the resort to plasticity as interaction between Hebbian growth and competitive
constraints. In this model each neuron is not just connected with the afferent input
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vector, but receives excitatory and inhibitory inputs from several neighbor neurons
on the same map. The activation agk) of a neuron 7 at discrete time k is given by:

az(k) =f (’YXﬁCi v 4 Ype; _yi(kfl) +uh; - zi(k—l)) 7 (3)

where the vectors y; and z; are the activations of all neurons in the map with a
lateral connections with neuron i of, respectively, excitatory or inhibitory type.
Vectors e; and h; are composed by all connections strengths of the excitatory
or inhibitory neurons projecting to i. The vectors v and x; are the input and
the neural code. The scalars vx, vg, and i, are constants modulating the con-
tribution of afferents. The map is characterized by the matrices X, E, H, which
columns are all vectors x, e, h for every neuron in the map. The function f is
any monotonic non-linear function limited between 0 and 1. The final activation
value of the neurons is assessed after a certain settling time K.

The adaptation of the network is done by Hebbian learning, reinforcing con-
nections with a coincidence of pre-synaptic and post-synaptic activities, but is
counterbalanced by keeping constant the overall amount of connections to the
same neuron. The following rule adapts the afferent connections to a neuron i:

x; + na;v

AZBi = —
i + na;v||

(4)

The weights e and h are modified by similar equations.

3 The Object Recognition Model

The model is made of several maps of artificial neurons, named in analogy with
the brain areas, locus of the corresponding function; the overall scheme is visible
in Fig. 1. The environment of the experiments is the set of natural images in
the COIL-100 benchmark library [19], a collection of 100 ordinary objects, each
seen under 72 different perspectives. In the model there are two distinct path-
ways, one monochromatic connected to the intensity retinal photoreceptors, and
another sensitive to the green and red photoreceptors. For simplicity the short
band photoreceptors has been discarded, it is known that short waves are less
important for the representation of colors in the cortex [30]. The lower maps
are called LGN with relation to the biological Lateral Geniculate Nucleus, the
function performed includes in fact also the contribution of ganglion cells [5].
There are three pairs of on-center and off-center sheets, the former activated
by a small central spot of light, and inhibited by its surround, conversely for
the latter. One pair is for intensity, the other two collect alternatively the acti-
vation or the inhibition portions from the red and the green planes, producing
the red-green opponents. It is known that also in LGN the functions performed
are the result of early neural development, however since this work is aimed at
investigating functions taking place in the cortex, for simplicity this component
was not left to develop naturally, but was simulated using predefined difference
of Gaussian functions.
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intensity

Fig. 1. Scheme of the model architecture

The cortical map named V1 collects its afferents from the monochromatic
sheets pair in the LGN, and is followed by the map V2, which has a lower reso-
lution and larger receptive fields. The relationship between brain areas and maps
of the model is clearly a strong simplification: the biological V1 is known to be
the place of an overlap of many different organizations: retinotopy [25], ocularity
[18], orientation sensitivity [26], color sensitivity [15], contrast and spatial fre-
quency [24]; the main phenomena reproduced by this model is the development
of orientation domains, small patches of neurons especially sensitive to a spe-
cific orientation of lines and contours. Several studies suggest that the natural

0 b s bl

it 3 T

Fig. 2. Development of orientation domains in V1. The gray-scale in the maps is
proportional to the orientation preference of the neuron, from black—horizontal to
withe—vertical.
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Fig. 3. Development of color-constancy domains in V1. The gray-scale in the maps is
proportional to the sensitivity of the neurons to a single specific hue.

development of orientation sensitivity is a long process starting as response to
spontaneous activity before eye opening, and continuing with the exposure to
external images [9, 3, 21]. Accordingly, the training has been done using artifi-
cial elliptical blobs in the first 10000 steps, followed by natural images for other
10000 steps. The gradual development of orientation sensitive domains is shown
in Fig. 2, where the three leftmost maps are the sequence of training using syn-
thetic blobs only, the rightmost final is the result of the training using all the
7200 real images.

The color path proceeds to V4, named as the biological area especially in-
volved in color processing [30]. The main feature of the cortical color process is
color constancy, the property of group of neurons to respond to specific hue, de-
spite the changes in physical composition of the reflected light. This property is
important in recognizing objects, giving continuity to surfaces, and has also been
proven to be an ability emerging gradually in infants [4]. During the training of
V4 at the beginning there is a normal neural response, therefore with very low
sensitivity to pure hue, and is peaked in the middle range between red and green,
at the end the color sensitivity of all patches is uniformly distributed along the
hue range. The development of color constancy domains is shown in Fig. 3.

The paths from V4 and V2 rejoin in the cortical map LOC, which has larger
receptive fields, and is the last area of LISSOM type. It is known that knowledge
of non-visuotopic areas in humans is currently poor [7], and scarcely comparable
with primates [6]. An area that recently has been suggested as strongly involved
in object recognition is the so-called LOC (Lateral Occipital Complex) [17, 10].
The response properties of cells in this area seems to fulfill the requirement for an
object-recognition area: sensitivity to moderately complex and complex visual
stimuli, and reasonable invariance with respect to the appearance of objects.
The most difficult and unconstrained variability in appearance is inherent to the
physics of vision: the 2D projection on the retina of 3D objects. The model LOC
achieves by unsupervised training, using all COIL-100 images in all possible view,
a remarkable invariance with respect to viewpoint, as visible in some examples
in Fig. 4. Table 1 summarizes the numerical results over all images, measured by
cross-correlation between base view and other views, both in the input images
and in the LOC maps:

D 0<r<N 2 (e = 1) (Yr,e — pi2)
.. I,) = <r< 0<e<M , s 5
,D( 1, 2) O'lO'QMN ) ( )
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Fig. 4. Invariance properties of the LOC map. In the right block is displayed the

activations of the LOC map in response to the corresponding input images in the left
block. Rotations are in steps of 30°.

Table 1. Correlations between images under viewpoint transformation (middle col-
umn), and the corresponding LOC map (right column), averaged over all 100 objects

type of transformation input image LOC map
rotation of 30° 0.781 0.903
rotation of 60° 0.648 0.756
size downscaling of 80% 0.637 0.794
size downscaling of 70% 0.547 0.655
translation of 10% 0.463 0.586
translation of 20% 0.207 0.397

where I; and I, are two images, as matrices N x M of pixels x and y, o is the
standard deviation and p the mean value. In Fig. 5 are shown all visuotopic maps
of the model, from the retina up to LOC, excluding OBJ, for two sample images.
It can be seen how, traveling from the bottom to the top of the model, the map
responses gradually loose a definite correspondence with the retinal input, and
assume more the nature of distributed coding.

The highest map in the model is called OBJ. It processes as vector input
the whole content of LOC, ignoring the spacial organization of the data. This
map is an abstraction of the semantic organization of the visual scene, it is not
related to any defined brain locus, but performs functions spread in many areas,
not only the occipital lobe. For this reason it is not modeled with the LISSOM
architecture, but takes advantage of the synthetic categorization capabilities of
the SOM map. In a minimal interpretation it can be just intended as a way of
visualizing the categorizations that are implicitly available in the neural coding
of responses elicited in the LOC map by the various objects.
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retina
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green intensity red green intensity red

Fig. 5. Two sample processes through all the visual areas of the model. For all cortical
areas there is a first activation map, and overlapped the final settled map.

The results of the organization in OBJ are shown using a labeling technique:
being 0 an object of the COIL set O, IZ-(O) one of its view, and = a neuron in the
OBJ map, the labeling function I(-) is given by:

I(x) :argmax{’{fi(o) :xzw([fo))}’}, (6)

0cO

where w(+) is the model function giving the winner in OBJ for an input image,
and being |-| the cardinality of a set. The image used for labeling an object o is
its base view. The organization of all objects in OBJ, revealed by the labeling
(6), is shown in Fig. 6. For most objects the prevailing neurons are clustered
close together, in some cases even in a single unit. The neighborhood of different
objects is based on the overlap of several coexisting ordering principles: color,
shape, symmetries. For the large majority of the objects this topological rela-
tionship represents a consistent spontaneous categorization. There are also cases
of objects in two positions far away in the map, like the electrical plug, in the
middle of the top row and in central part of the second and third columns, or
the house-shaped piece of wood. In all those cases there are two clusters corre-
sponding to very different appearance of the object under different perspectives,
in general at orthogonal angles. This is consistent with the image-based view of
invariant recognition.
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Fig. 6. Organization of objects in the OBJ map of the model. Each neuron of the map
is labeled using the base view of the object prevailing on that neuron.

4 Conclusions

A neural model of visual object recognition has been presented. As every model,
it includes several simplifications with respect to the biological vision. Some
are really drastic: the segregation of processes in areas, the lack of backprojec-
tions, and the simplification of the neural computations. Probably it is even
more simple than other models available in literature. But it pursues a precise
goal: not to simulate the functions involved in object recognition, to simulate
instead the mechanisms giving rise spontaneously to these functions. In this
objective, the model succeeds in reproducing some of the fundamental compu-
tational steps, known to be essential for visual recognition, without any explicit
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modeling of the processing functions necessary, only thanks to the basic neural
self-organization plasticity.
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Abstract. Bacteriorhodopsin is a protein in the purple membrane of
the archaean Halobacterium salinarum. Its natural function is to act as
a light-driven proton pump contributing to the energy balancing mech-
anism in the archaean. Bacteriorhodopsin retains its proton pumping
property even when isolated from the purple membrane and incorpo-
rated into an artificial membrane or polymeric film. Such bacteriorhod-
opsin films have been studied as a potential material for information
technology. We built optical elements based on bacteriorhodopsin and
measured their spectral properties. Here we describe a model of photo-
electric response of the elements and compare it to the experimentally
measured values.

1 Introduction

Very-large-scale integration (VLSI) technology dominates construction of con-
temporary artificial vision systems in every part, including photodetectors, am-
plifiers, and processors. In contrast, nature has evolved rather different comput-
ing architectures, such as highly parallel neural structures. Consequently, there
are suggestions to closely emulate biological systems. In molecular computers,
for example, silicon circuits are replaced by a molecular material [5]. In those
computers, molecules have a key functional role.

One protein that has received considerable attention as a potential material
for molecular optical devices is bacteriorhodopsin (BR), a light-transducing pro-
tein found in the purple membrane of the archaean Halobacterium salinarium
[18]. BR resembles both vertebrate and invertebrate photoreceptor rhodopsins
both structurally and functionally, yet all three molecules evolved indepen-
dently. As with all rhodopsins, BR is composed of seven transmembrane alpha-
helices of aminoacids and a functional retinal chromophore, derivative of vita-
min A. The protein part (opsin) is bound to the chromophore with a Schiff base
linkage.

M. De Gregorio et al. (Eds.): BV AI 2005, LNCS 3704, pp. 126-136, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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The purpose of BR in the archaean is to take part to the energy balancing
mechanism. Under anaerobic conditions, BR produces a proton gradient across
the cell membrane by the light-induced photocycle [2,10], which together with
electric potential difference between the cytoplasm and the outside makes it
possible for ATPases in the cell to convert ADP to ATP [1].

BR retains the photocycle even when isolated from the purple membrane
and incorporated into an artificial membrane [7,12,21] or thin polymer-based
film [3,22]. BR responds to light with a differential sensitivity common in mo-
tion detection and edge enhancement [4,11]. Such capabilities are also found in
natural sensors, for example, the receptive field structure of the ganglion cells in
the human eye [20].

To study the functionality of BR, or to use it in an application, purple mem-
brane fragments can be incorporated into an artificial membrane. Both thin and
thick films' of BR can be used for this purpose. BR films have properties that
make them well suited for optical and photoelectric applications. Films produced
by immobilizing wild-type BR in gelatin or polyvinylalcohol (PVA) are highly
stable. A film of BR molecules produces a photoelectric response (PER) when
illuminated, caused by the translocation of protons in the film. Therefore, it can
be used in making photodetectors.

Beside the naturally occurring form, BR can also be modified by methods of
bioengineering. Among the modifications of BR are variants with shifted absorp-
tion spectra, and consequently, combination of the variants in one photosensing
device can be used for color discrimination. The sensor in which three BR types,
wild-type BR, and 4-keto and 3,4-didehydro variants, were combined into one
matrix was described in [23] and its color detection capabilities were demon-
strated in [9].

In our previous work [8], we reported the wavelength dependencies of BR films
with different absorption properties, their PERs, and we compared the modeled
PERs with the measurements for the elements containing wild type BR and its
two retinal analogs. BR for the elements was used in a form of purple membrane
isolated from Halobacterium salinarum wild type (S9), the membrane was iso-
lated as described by Oesterhelt and Stoeckenius [19]. Two variants of wild type
BR were prepared by reconstituting bleached BR with synthetic retinal ana-
logues: 4-keto and 3,4-didehydro retinals. Opto-electric elements were produced
from the three proteins as follows: PVA films were prepared by mixing PVA with
BR solution and spread onto a conductive glass substrate. After drying 24 hours,
a gold layer of about 40 nm was sputtered on the PVA film to form a counter
electrode for the conductive glass. A thin wire was attached to the corner of
gold layer by silver paint to form an electric connection from the gold layer; a
system containing altogether six such elements was made [23]; the elements were
in pairs, each pair containing one of the three proteins. In this study, we used a
set of new BR PVA elements as described in [14], and used signal conditioning
electronics to achieve good signal-to-noise ratio in the PER.

L A coating of less than 5 pwm thick is a thin film, whereas coatings of 5 um or thicker
are thick films.
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2 Model of Photoelectric Response

Absorption of a photon by BR excites the retinal chromophore to a higher en-
ergy state which causes structural changes in the molecule. The excitation is
followed by a series of thermal relaxations during which the molecule returns to
the ground state. The absorption coefficient of BR depends on the photon energy.
The energy F, depends on the frequency v or wavelength X of the photon, that is,

E,=hy=—

where h is Planck’s constant, and c is the velocity of light. When the spectral

energy P of a single pulse from the light source is known, the number of photons
at a given wavelength A is o
AP (A

Ny (A) = —— (1)

The quantum yield of BR, that is, the average number of protons moved

per incident photon has been studied by optical measurements indirectly from

the number of molecules in the M intermediate. The minimum value of quan-

tum yield has been determined to be 0.644+0.04 [24]. Knowing the number of

photons from the light source at each wavelength and the spectral sensitivity or

absorptance a of BR, the total number of moved charges is as follows:
AP (X)

Ne = @B*)J/Oé ()\) * Td)\ (2)

where @5__, ; is the quantum yield of photo-induced transition from the ground
state to the first identified intermediate of the photocycle. Often, the absorbance
function is provided instead of absorptance. Absorptance «(\) can then be di-
rectly calculated from absorbance A(\) as [26]

a(A) =1—104™ (3)

Elementary charges generate an electric field to their environment. When
charges move, they induce charge and current to electrodes within their proxim-
ity. Since BR molecules move protons during their light-induced photocycle, a
BR film enclosed between two electrodes generates a photoelectric response [25].

To estimate the number of moved charges, it is necessary to know spectral
energy of the light pulse and spectral absorbance of the retinal. Obtaining both
functions is not straightforward. Although spectral absorbance of BR elements
can be measured with a spectrophotometer, the measured functions are not ab-
sorbance functions of retinals — the elements contain also other light absorbing
matter in addition to the retinals, such as protein, glass, gold, PVA, indium-tin-
oxide, and some impurities. The absorbances of some nonretinal matter cannot
be measured independently. Therefore, we need a way how to derive the spectral
absorbance of retinals. The absorbance function of BR containing the retinal
also differs from the absorbance function that could be derived by simple super-
position of absorbance funtions of bleached BR, that is, BR without retinal, and
the retinal alone.
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In the following section, we will describe a method to account for the non-
retinal absorption and to find an approximation of retinal absorbance functions.

2.1 Template Fitting

Building on structural and functional similarity between BR and photoreceptor
rhodopsins, we can derive the absorptance function of retinals indirectly from the
so called absorption template introduced by Dartnall [6]. The functional form of
the template has been proposed by Lamb [13]. The template is parameterized
by the wavelength of maximum absorption \,,q.. The template function is nor-
malized, so generally the fitting requires scaling of the template. Multiplicative
scaling will, however, make the curve either broader or narrower. To match the
correct width, we can offset the template by a constant. The justification to offset
the absorbance is found from the fact that the measured spectral absorbances
include absorbance of nonretinal matter.

First, let us examine whether it is possible to use the A4, found directly from
spectrophotometric measurements. The absorption spectra of the three types of
BR, wild-type BR, 4-keto BR, and 3,4-didehydro BR in aqueous solution are
shown in Fig. 1a, and the absorption spectra of elements are shown in Fig. 1b.
The spectral absorbances of PVA, conductive glass, and gold are plotted in
Fig. 2, respectively. Note, that the spectral absorbance of nonretinal matter is
nearly flat near the absorbance peaks of all three BR variants in aqueous solution,
and for elements with wild-type BR and 4-keto BR variants. Therefore, positions
of the peaks \;,q, Will not be strongly affected in those cases.

Next, we find the template scaling factor and a constant absorption offset.

Since the measured spectral absorption should fit the fixed invariant curve, both
values can be determined using the fact that the wavelength A\, of the peak

is related to the wavelength of half the maximum absorbance Ao 5 through a
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Fig. 1. Absorption spectra of the three types of bacteriorhodopsin (a) in aqueous so-
lution, and (b) in polyvinylalcohol films
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Fig. 2. Absorption spectra of (a) polyvinylalcohol film of 48 nm, (b) gold layers with
different thicknesses, and (c) conductive glass

constant [17]. For retinal-based pigments the constant is 1/1.0948 following from
Dartnall’s data (see also [16]). Since we use Lamb’s curve as a template, the ratio
of Xo.5/Amaz = 1.0899. The described method was used to fit the templates to
spectral absorbances of BR elements in [§].

Due to the close attachment of new BR elements to signal electronics and
shielding casing in [14], light has to pass through a gold layer before it interacts
with BR. The spectral absorbance of the BR film is affected by the gold absorp-
tion in such a way that the measurement of Ay 5 will not be reliable because
the spectral absorption curve of gold has a high slope at long wavelength tail
of BR absorption. Nevertheless, since the template has a fixed shape for given
Amax and measurements of spectral absorbance are made at sufficiently small
intervals, we can find the proper scaling (and width) from the relation of Apax
to the wavelength of another fraction of the peak absorbance than half. The
ratio of 0.9 yielded rather good fitting results. This is because g9 is close to
Amax S0 it remains in the region where the gold absorbance is nearly flat.

Clearly, a measure of goodness of the fit of each individual absorbance func-
tion to the “ideal” invariant form is needed. MacNichol [17] proposed to use the
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Fig. 3. Absorption spectra of the three variants of bacteriorhodopsin and the fitted
templates for the elements described in [§]

product of slope tangent s to the curve at \g 5 multiplied by Ag.5, @ = s * A\g5.
If the spectral absorbance function is invariant when plotted on a relative wave-
length scale, then the slope tangent s will be linearly dependent on Ags5. From
this follows that @ will be constant. If the experimental curve is broader than
the invariant template, the slope and ) will be smaller than in the ideal case.
Similarly, if the experimental curve is narrower, () will be larger. MacNichol
found a @ of about 8.5 for the retinal based visual pigments. @ calculated from
the invariant form of Lamb is about 8.78.

The value of Q was 7.44 for wild-type BR, 8.34 for 3,4-didehydro BR, and
8.81 for 4-keto BR for the fitted spectral absorbance templates shown in Fig. 3.

2.2 Measured and Modeled Photoelectric Responses

The measurement of photoelectric properties requires a light source and an in-
strument to register the electric response. In [8], we used a photographic flash
as the source of light pulses. A pulsed Oriel series Q xenon flash lamp was used
as the source of short light pulses (1.6 pus) for measuring the elements described
in [14]. The wavelength dependence of photoresponse was measured using a set
of Oriel narrow band interference filters placed between a light source and the
elements. The transmittance peaks of the filters were every 20 nm from 400 to
700 nm, the half width of the transmittances was about 10 nm. The wavelength
dependences for all the three types of elements was measured. The measured

responses were compensated for the irradiance of the photographic flash or flash-
lamp, respectively, and for the transmittances of the narrow-band filters. In [§],

to measure the wavelength dependence of element response, the elements were
connected to a standard digital oscilloscope. The maximum compensated re-
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Fig. 4. Compensated responses for wild type, 4-keto, and 3,4-didehydro bacteriorhod-
opsin compared to responses calculated from template. (a) The elements described in
[8], and (b) the elements described in [14].

sponse for the element with wild-type BR was at 580 nm, for the element with
4-keto BR was at 500 nm, and for the element with 3,4-didehydro BR was at
560 nm, respectively. The compensated photoelectrical responses are compared
to responses calculated from the templates in Fig. 4a. To measure elements de-
scribed in [14], signal conditioning electronics to achieve good signal-to-noise
ratio in the PER was used between the elements and the oscilloscope, and the
elements were installed into aluminum cases to reduce electromagnetic interfer-
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ence from the environment [15]. The maximum compensated response for the
element with wild-type BR was at 580 nm, for the element with 4-keto BR was at
500 nm, and for the element with 3,4-didehydro BR was at 560 nm, respectively.
The responses are compared to responses calculated from templates in Fig. 4b.

3 Conclusions

The templates fit to the measured spectral absorbances well as can be seen
both from the figure and from the values of coefficient ) measuring the good-
ness of fit. This suggests that the template functions can be used in place of
measured spectral absorbances in the model of PERs. The modeled spectral re-
sponse functions are in good agreement with experimentally measured values for
the elements containing wild-type and 4-keto BR. The measured and modelled
response functions for 3,4-didehydro BR, however, differed significantly. We can-
not give a full plausible explanation of this disparity at present state, two major
issues confound the modeling: the spectral absorption of gold and conductive
layers were considered constant and the measurement of the spectral irradiance
of the light source is not reliable enough for the pulsing frequencies used in the
measurements.

Determining the spectral irradiance of the pulsed xenon light source was prob-
lematic. The optical power meter used for the measurement was applicable to
pulsing frequencies above 20 Hz, but the PERs had to be measured at 1 Hz. The
narrow-band irradiance from the source was observed to contain abrupt changes
when the pulsing frequency and/or discharge energy was altered. Therefore, the
spectrum should be measured with identical settings of the light source as the
ones used for measuring the photoelectric responses. Primary concern in the
future research will be to obtain accurate information concerning the spectral
irradiance of the light source.
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Abstract. Several identified photoresponsive neurons (or extraocular photore-
ceptors) exist in the ganglion (CNS) of the sea slug Onchidium. The named A-
P-1/Es-1 of these neurons responded to light with a depolarization, caused by
closing of the cGMP-gated K* channels, as in vertebrate phototransduction. The
hyperpolarizing photoresponse of the others Ip-2/Ip-1 was produced by opening
of the same cGMP-gated K* channels as above following activation of a G-
protein, Go coupled with guanylate cyclase. The amount of light required to
stimulate these neurons covered in sifu could be easily provided by the trans-
mission of living daylight through the animal’s body wall. The first order pho-
tosensory cells, A-P-1/Es-1 and Ip-2/Ip-1 were not only the second order in-
terneurons relaying several kinds of sensory inputs, but also motoneurons in-
nervating the mantle and the pneumostome. Thus, it is suggested that the depo-
larizing photoresponse of A-P-1/Es-1 plays a role in facilitating the synaptic
transmission of sensory inputs and the following outputs, i.e. the mantle move-
ments and that the hyperpolarizing one of Ip-2/Ip-1 in depressing a transmission
similar to above and the following pneumostome ones. Similarly, it is possible
that the photoresponse of photoresponsive neurons, ipRGCs in mammalian ret-
ina operates also in the general regulation of synaptic transmission and behav-
ioral activities.

1 Introduction

Extraocular photoreception is mediated through photoresponsive neurons in the
caudal ganglion of the crayfish [17], [24] and in the abdominal or pleuro-parietal
ganglion of the sea slugs, Aplysia [1], [2] and Onchidium [8], [16], but not through
photoreceptor cells (photoreceptors) included in well-developed bilateral eyes (ocu-
lars) on their head. Such neurons will be referred to as extraocular photoreceptors,
because they are directly responsive to light without the aid of any above-
mentioned eye photoreceptors. We will also call those neurons simple photorecep-
tors, in view of their lack of microvilli or cilia characteristic of vertebrate and inver-
tebrate eye photoreceptors.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 136146, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Of four identified simple photoreceptors in the Onchidium ganglion, the named A-P-1
and Es-1 respond to a brief light stimulus with a long-lasting depolarization [9], [19],
while the others Ip-2 and Ip-1 respond to the same light with a long-lasting hyperpolariza-
tion [20]. In addition, these neurons (the primary photosensory cells) have also been sec-
ond order interneurons relaying some sensory stimuli. A considerable amount of informa-
tion has since been obtained about the phototransduction mechanisms of the above simple
photoreceptors [9], [12], [13], and [21]. However, little has yet been definitely established
about the functional significance of those extraocular photoreceptors in sitis.

Recently, extraocular photoreceptors, called the intrinsically photosensitive retinal
ganglion cells (ipRGCs) which differ radically from the rod and cone eye photorecep-
tors have been also discovered in the rat or mouse retina [3], [15] (for review, see [4]).
According to these authors, the simple ipRGCs without microvilli or cilia showed a
remarkably sustained depolarization following a suitably brief light and also these pri-
mary photosensory neurons functioned as secondary interneurons in the retinal pathway.
Considering a characteristic of such a sustained photoresponse and an arrangement as
interneurons of ipRGCs, one supposes that the simple ipRGCs may be homologous to
the same simple photoreceptors, Onchidium A-P-1/Es-1 and Ip-2/Ip-1. At present, the
phototransduction and precise role of ipRGCs has not yet been determined. Related
matters will be discussed later. Here, we survey the phototransduction and light-
dependent channels of the Onchidium simple photoreceptors studied to date. We further
examined and discussed with reference to non-visual function of those photoreceptors.

2 Materials and Methods

Experimental animals, the opisthobranch (or pulmonate) mollusc Onchidium verrucula-
tum weighting 10 - 15 g, were collected from the intertidal zone of Sakurajima, Kago-
shima, Japan. The molluscs were kept in a natural seawater aquarium (20-23°C), and
were fed with dried natural sea weeds occasionally. The circumesophageal ganglia were
exposed by dissecting through the mid-dorsal surface of the animal and were isolated
after overlying connective tissue had been removed (Fig. 1A, B). The procedure for
preparing and conditioning extraocular photoreceptors, the photoresponsive neurons in
the abdominal ganglion of this animal was similar to that described previously [9], [20].
In some experiments, a whole animal, the semi-intact preparation was used to examine
the possible electrophysiological correlates of the behavioral phenomena observed. This
preparation was similar to that described previously [6].

The normal solution, artificial seawater (ASW) used for continuous perfusion of each
preparation had the following composition (mM): NaCl, 450; KCl, 10; CaCl,, 10; MgCl,
50; Tris buffer, 10. The pH was 7.8. Various modified perfusing solutions used for op-
tional experiments intended have been described previously (e.g., see [9], [13], [20].

For electrophysiology, an individual, identified neuron was inserted with up to four
microelectrodes for the recording of membrane potential or current, passing current,
the ionophoresis and the pressure injection under visual control. The general tech-
niques of current-, voltage-, and patch-clamp recordings have been fully described
previously [9], [10], [13], [20].

The standard procedure for photostimulation has been described in detail else-
where [9], [20]. The light stimulus energy was measured with a radiometer (4090,
SJI) whose sensor was placed at the position of the preparation.
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Fig. 1. The depolarizing and hyperpolarizing photoresponses of extraocular photoreceptors in
the Onchidium CNS. A diagram (dorsal aspect) showing the location of central ganglia in the
intact animal. B: The diagram of the dorsal surface of the expanded central ganglia. Approxi-
mate location of photoresponsive neurons (A-P-1, Es-1, Ip-2, Ip-1) is indicated. C: Depolariz-
ing photoresponse of A-P-1. Cl: the depolarizing receptor potential. C2: an inward current,
voltage clamped at -40 mV. C3: single-channel currents closed by light illumination (upper
trace). An open channel level in a dotted line. D: Hyperpolarizing photoresponse of Ip-2. D1:
the hyperpolarizing receptor potential. D2: an outward current, voltage-clamped at -40 mV. D3:
single channel currents opened by light. The expanded unitary currents in the insets. The 15 s
light stimuli are indicated by horizontal bars (1, 2 in C and D).

3 Results

3.1 Neural Photoreception of the Extraocular Photoreceptors in the Onchidium
Central Ganglion (CNS)

Several extraocular photoreceptors, the photoresponsive neurons are identified on the
dorsal aspect of the abdominal ganglion of the sea slug Onchidium (fig. 1A, B). Of
these simple (extraocular) photoreceptors, the named A-P-1/Es-1 responded to light
with a depolarizing receptor potential, caused by a decrease in K" conductance (Fig.
1C-1; see also [9]), while a hyperpolarizing photoresponse of the others named Ip-
2/Tp-1 resulted from an increase in K conductance (Fig. 1D-1; see also [20]). When
those simple photoreceptors were voltage-clamped at resting revel, light induced in-
ward (Fig. 1C-2) and outward (Fig. 1D-2) photocurrents, corresponding to the above
depolarization and hyperpolarization.

As shown, it should be characterized that these both photoresponses can last for
many minutes following only tens of seconds of light stimuli.
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Fig. 2. Single-channel recordings showing changes from the cell-attached patch (A) to the
inside-out patch (B) excised from the intact simple photoreceptor Ip-2. The bottom in A shows
light-dependent single-channel currents, and the bottom in B, cGMP-activated single-channels,
but no light-dependent channels in the excided inside-out patch. The upward steps of the above
recordings in A and B show the light stimuli, and an application of 8-Br-cGMP. Parts of the
channel recordings at the point marks, the expanded time scale. For details, see also [12].

A further analysis for the single channel recordings showed that the depolarizing
and hyperpolarizing responses of A-P-1/Es-1 and Ip-2/Ip-1 are produced by the clos-
ing (Fig. 1C-3) and opening (Fig. 1D-3) of the same light-dependent K channels,
respectively (see also [11], [13]).

3.2 A Phototransduction Mechanism of the Simple A-P-1/Es-1 and Ip-2/Ip-1

To determine whether cGMP can directly activate the above light-dependent K* chan-
nels in the cell-attached patches of the simple photoreceptors their patch membranes
were excised, forming inside-out patches and allowing access to the intracellular face
(Fig. 2A). An application of cGMP to the excised inside-out patches newly activated
a channel that disappeared on removal of cGMP (Fig. 2B). However, an application
of cAMP, IP,, or Ca™ failed to activate any channels (not shown). This cGMP-
activated channel was indistinguishable from the light-dependent K™ channels re-
corded earlier in the same intact patches on the basis of K'-selectivity, conductance
and kinetics of the channels [11], [13]. The above results show direct evidence that
c¢GMP acts as a second messenger involved in the final stages of transduction process

Table 1. Threshold of wavelength (A) in a spectral peak sensitivity of the extraocular photore-
ceptors (A-P-1, Es-1, Ip-1, Ip-2)

A (nm) Threshold (photons/cm2 *s)
A-P-1 490 3% 10"
Es-1 580 7 X 108

Ip-2/Ip-1 510 2 X 10*?
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activating or gating the light-dependent K* channels, the cGMP-activated channels of
the simple photoreceptors.

Finally, we have concluded that the depolarizing photoresponse of A-P-1/Es-1 is
produced by closing of the cGMP-activated channels, as in vertebrate rod or cone
c¢GMP cascade theory [28] and that the photoresponse of Ip-2/Ip-1 is hyperpolarized
by opening the same cGMP-activated channels following an activation of a G-protein,
Go (but not Gq nor Gt) coupled with guanylate cyclase to allow an increase in cGMP
levels [10], [11], [13], [18], [20], [22].

3.3 Is the Photosensitivity of Those Simple Photoreceptors High Enough to
Overcome the Deficiencies of Their Internal Location?

A-P-1, Es-1, Ip-1, and Ip-2 in situ which are well buried in the CNS and covered by
the body wall are unsuitable for a functional photosensory system; but it may be that
those simple photoreceptor type has been adapted to serve as a sensory photoreceptor
unit in other forms.

To test whether the absolute sensitivity of the above internal photoreceptors is thus
sufficient to activate those photoresponses or not, we measured the amount (energy)
of light transmitted through the body wall (mantles and feet, mesopodia) and com-
pared with the absolute sensitivity, the threshold energy. In table 1, the threshold is
defined as an energy of light wavelength for a minimally detectable photoresponse of
each simple cell. The light wavelength showed a maximally effective light for each
photoresponse [9], [19], [20].

TA (transmittance) in Table 2 shows the rate (%) of spectral incident light transmit-
ted vertically at the dorsal mantle or ventral foot surface of animals from the outside
to the inside. Each TA in the mantle and foot was obtained from spectral scanning
through the almost middle circle area having a radius of 4 mm in the surface of

Table 2. Transmittance (TA) of the spectral illumination through the animal's body wall (man-
tle and foot sides)

TA Mantle Foot
T490 23-10 % 60 - 20 %
T580 70-25 % 154 - 35 %
T510 33-133% 8.0 - 233 %

Table 3. The incident energy in the spectrum of sunlight in Kagoshima, Japan with a fine
weather at noon on August 13, 2002, measured by using a spectroradiometer (MS-700; EKO,
Inc.)

Wavelength (A, nm) Energy (photons/cm? es)
490 2.4 % 10"
580 2.6 X 10"

510 24 X 10”
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mantles or mesopodia of 3 to 5 individuals. As a whole, TA of each spectral light was
about 2 times higher through the translucent white mesopodia than the dark-brown
mantles. Further, we measured the spectral energy of incident sunlight in the center of
Kagoshima by using a spectroradiometer (Table 3). Each energy value of the con-
cerned wavelength in sunlight was almost comparable to that at Sakurajima beach, the
home of Onchidium.

Taken together, the results suggest that light transmittance of the animal’s body
wall covered by both mantle and foot is high enough to activate (stimulate) the inter-
nal Onchidium extraocular photoreceptors in situ.

3.4 Morphology and Electrophysiological Properties

3.4.1 The Depolarizing A-P-1 and Es-1

The axonal branchings and spatial arrangement of both A-P-1 and Es-1 in the same
ganglion was visualized by an intracellular cobalt or Lucifer yellow injection tech-
nique and confirmed by the simultaneous recording of the evoked somatic spike and
the subsequent axonal spike in the nerves leaving the ganglion (not shown, [7], [9],
[19]). The simultaneous recordings of A-P-1 and Es-1 in the membrane potential
showed that both cells are connected by inhibitory chemical synapses from A-P-1 to
Es-1 [19]. Further, previous study [6] showed that the primary simple photoreceptor,
Es-1 is not only a second order interneuron receiving (relaying) tactile or other sen-
sory synaptic input from the mantle, but also a motoneuron innervating the mantle
and foot, leading to the mantle-elevating movements.

On the other hand, we investigated effects of light on the synaptic transmission of
the tactile sensory inputs.

Under dark conditions, the single electrical stimuli to a given afferent nerve, in-
stead of the tactile mechanical stimulation, were adjusted so as to be subthreshold for
the spike generation of Es-1. The light intensity was also adjusted to a subthreshold
value. Here, if the subthreshold electrical stimuli were applied under the condition of
the subthreshold light intensity, all or nothing spikes (impulses), following the graded
EPSPs were generated in Es-1 (not shown).

This suggest that the depolarizing photoresponses of A-P-1/Es-1 play a role in facili-
tating the transmission of the tactile or other sensory information (see also Fig. 5B).

3.4.2 The Hyperpolarizing Ip-1 and Ip-2

Two whitish colored somata of Ip-1 and Ip-2 lie close together in the lower edge of
the abdominal ganglion, so that they can be easily distinguished from those of the
orange colored A-P-1 and Es-1, as shown in Fig. 1B. The axonal processes of Ip-2/Ip-
1 in the CNS have been partly known by the intracellular staining of Lucifer Yellow
[20]. Both Ip-1 and Ip-2 in the ganglion branch into 2 or 3 main axons and at least two
of their branches go into abd. n. 1 and abd. n. 2, respectively (scheme of Fig. 3B).
Further, an anatomical analysis showed that abd. n. 1 and abd. n. 2 innervate the
pneumostome and pulmonary sac ( [14], see also Fig. 5A).
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Fig. 3. Simultaneous recordings showing electrical synapses between Ip-1 and Ip-2. Al: Depo-
larizing and hyperpolarizing current injections (the lowest step marks) for Ip-1. A2: Current
injections for Ip-2. B: A scheme showing electrical synapses and axonal branchings of Ip-1 and
Ip-2. abd. n.1: abdominal nerve 1. For details, see text.
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Fig. 4. Effects of a presynaptic electrical (B) and light (C) stimulation on the simultaneous
membrane potential activities of Ip-1 and Ip-2. A: A sketch map showing experiments, B, C. It.
post pl-pr. n.: left posterior pleuro-parietal nerve.
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Fig. 5. Proposed scheme for the functions of the simple, non-specialized photoreceptors, A-P-
1/Es-1 and Ip-2/Ip-1. A: A-P-1/Es-1 and Ip-2/Ip-1 innervating mantle and pneumostome, re-
spectively. B-upper: Dark and light levels of synaptic transmission. B-lower: Dark and light
effects of nerve impulse on synaptic transmission. For details, see text.

To examine the functional properties of these simple hyperpolarizing photorecep-
tors, we tried simultaneous intracellular recordings of the membrane potential of Ip-2
and Ip-1 (Fig. 3). Fig. 3B shows that the two Ip-2 and Ip-1 are interconnected by elec-
trical synapses which do not rectify. A slow de- or hyper-polarization in one cell was
transformed in a smaller polarizing change of the same polarity in the other. However,
spikes in one cell were never transmitted, instead reflected only by small spike-like
deflections of less than 1 mV in the other, suggesting the low-pass filtering synapses
(fig. 3A). Those electrical coupling ratios ranged from 0.05 to 0.1 in 3 to 5 experi-
ments. Similar results were obtained from Ca’*-deficient ASW (not shown). Thus,
these low-pass filter properties of the electrical synapse suggested that each spike in a
sustained beating or bursting discharges of Ip-2/Ip-1, is never transmitted, but that only the
periodical slow changes of membrane potential underlying the beating or bursting are
well transformed, thereby leading to the synchronous beating or bursting discharges
along both axonal branches (outputs) of Ip-2 and Ip-1 (see also Fig. 4B, C).

Fig. 4 shows effects of a presynaptic electrical stimulation on the membrane poten-
tial activity of Ip-2/Ip-1. When the left posterior pl- pr. nerve containing afferent fi-
bers was stimulated, the post synaptic Ip-2/Ip-1 produced a synchronous long-lasting
IPSP with blockade of the beating or bursting discharges (Fig. 4B). This suggested
that the primary extraocular photoreceptors, Ip-2/Ip-1 are also second order
interneurons relaying some synaptic inputs from various nerves leaving the ganglion
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(CNS). On the other hand, synchronous bursting discharges in Ip-1 and Ip-2 were
inhibited and hyperpolarized by illumination (Fig. 4C).

These results suggest that the hyperpolarizing photoresponses of Ip-2/Ip-1 play a role in
depressing the transmission of inhibitory or excitatory sensory inputs (see also Fig. 5B).

4 Discussion

We should like to claim that extraocular photoreceptors in the Onchidium CNS are
referred as ‘simple’ or ‘non-specialized’ photoreceptors, for lack of any morphologi-
cally specialized structures such as microvilli and/or cilia, characteristic of most eye
photoreceptors. In other words, it should be understood that the above specialization
or its vestigial structure in the eye photoreceptors is not always required for a photo-
sensory cell to become photoresponsive. This is well supported by the most recent
discovery [4] of the non-specialized ipRGCs in the mammalia retinas, similar to the
Onchidium extraocular photoreceptors. It has been also proved that melanopsin is a
functional sensory photopigment of these ipRGCs, instead of rhodopsin in the eye
photoreceptors [25, 26]. Unfortunately, such a photopigment has not yet been found
in the Onchidium simple cells, although it is suggested to be a rhodopsin-like pho-
topigment for the Aplysia simple photoreceptor, R2 [27].

On the other hand, the present study show that the simple Ip-2/Ip-1 use a photo-
transduction included activation of a Go, G-protein coupled with guanylate cyclase,
which differs from that of a cGMP cascade theory [28] in another simple A-P-1/Es-1.
It is likely that the mammalian simple ipRGCs use also a phototransduction similar to
that of Ip-2/Ip-1, from a similarity between their photoresponse and their morphologi-
cal arrangements as described in the Introduction. Of course, it has been reported that
the phototransduction of ipRGCs may differ from that of Ip-2/Ip-1 [23, 26].

Function of Extraocular Photoreceptors, the Photoresponsive Neurons or the
Simple, Non-specialized Photoreceptors, A-P-1, Es-1, Ip-1 and Ip-2

Onchidium are intertidal and amphibian molluscs, so that they use gill at high tide and
interchange with lung (pneumostome) for ventilation at low tide. Thus, these molluscs
could very easily be affected by the incident sunlight (light/dark cycles). However,
the functional importance of the simple photoreception remains unclear, because of
the deep-lying positions of the central ganglia.

The present study showed that the incident sunlight transmittance of the animal’s
body wall is high enough to elicit a photoresponse of the internal simple photorecep-
tors. Further, the same units performing these primary simple photoreceptors were not
only interneurons relaying various sensory inputs, but they were also motoneurons
innervating the mantle and pneumostome with pulmonary sac.

Thus, Fig. 5 shows a tentative scheme to explain functions of the Onchidium simple
photoreceptors, A-P-1/Es-1 and Ip-2/Ip-1. The depolarizing photoresponses of A-P-
1/Es-1 may play a role in facilitating the synaptic transmission of the tactile sensory
inputs and in enhancing more the following mantle movement activities. The hyperpo-
larizing photoresponses of Ip-2/Ip-1 may play a role in depressing the transmission of
inhibitory or excitatory inputs and in diminishing more the following pneumostome
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movement activities. Similarly, it is possible that the mammalian ipRGCs operate also
in the general regulation of synaptic transmission and behavioral activity (see also [5]).

We wish to thank Professors H. Akasaka and K. Soga, Dept. of Architecture, Fac-

ulty of Engineering, Kagoshima Univ., for supplying us with the data of sunlight
spectrum energy. This study is supported by Senshu University research grant for
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Abstract. Vision is a crucial sensor. It provides a very rich collection of informa-
tion about our environment. However, not everything in a visual scene is relevant
for the task at hand. Feature-based attention has been suggested for guiding vi-
sion towards the objects of interest in a visual search situation. Computational
models of visual attention have implemented different concepts of feature-based
attention. We will discuss these approaches and present a solution which is based
on population-based inference. We illustrate the proposed mechanism with sim-
ulations using real world-scenes.

1 Introduction

Visual Search and other experimental approaches have demonstrated that attention
plays a crucial role in human perception. Understanding attention and human vision
in general could be beneficial to computer vision, especially in vision tasks that are
not limited to specific and constrained environments. Previous models of attention have
suggested different underlying computational mechanisms of how feature cues (e.g.,
color) affect visual processing. In most models attention is solely defined by determin-
ing the locus of a unique spatial focus [24,13,28,1,19,10]. Feature-based attention is
left to only guide the selection process by weighting the input into the saliency map
[16,18]. For example, the search for the blue lighter is typically implemented by en-
hancing the input into the saliency map for cells encoding the target color (Fig. 1A).
The selective tuning model implements feature-based attention by enhancing the value
of the interpretive nodes which in turn biases the winner-take-all (WTA) competition
for projection into the next layer [26]. A cascade of top-down directed WTA processes
prune away all irrelevant connections within successively smaller receptive fields. As a
result, features such as the color blue allow to segment a target object in the scene (Fig.
1B). Technically the top-down biasing nodes form an independent top-down path, but
present implementations of the selective tuning model do not distinguish between fea-
ture and spatial attention in the sense that feature-based attention induces competition
only through the spatially selective WTA.

Treue and Martinez Trujillo [25] have proposed a Feature-Similarity Theory of at-
tention. Their single cell recordings in area MT revealed that directing attention to one
stimulus enhances the response of a second stimulus presented elsewhere in the visual
field, but only if the features of both stimuli match (e.g. upward motion). They proposed

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 147-156, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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that attending towards a feature could provide a global, spatially non-selective feedback
signal. The same effect has been found in a similar experiment using fMRI [22]. In an
earlier experiment that presumably revealed feature-based attention as well, the knowl-
edge of a target feature increased the activity of V4 cells [17].

Inspired by these findings, computational approaches have been used to investi-
gate the mechanisms of feature-based attention [14,12,27,4,21,3]. We have developed
a model to investigate the putative feedforward and feedback interactions between area
V4, TE and the frontal eye field [6,8]. In this model attention emerges by interactions
in the vision process. To find an object in a crowded scene our model predicts a feature-
specific component that highlights all cells encoding target features in parallel and a
spatially directed, serial component that is linked to the planning of an eye movement.
This prediction of our model has been recently confirmed in neural cell recordings [2].
However, only little has been done to demonstrate that the proposed mechanisms even
hold for large networks, e.g. for natural scene processing.

Thus, we have further developed our aprochach and extended it to a large scale
network for natural scene processing [7,9] (Fig. 1C). We now explain the population-
based inference framework and its relation to feature-based attention. Then, the model
is introduced and specifically its feature-based attention effects are illustrated.

2 Population-Based Inference

Population coding has been frequently used as a theoretical basis for describing com-
putation in the brain. Much emphasis has been given to investigate how a population
encodes a stimulus. Our population-based inference approach provides a framework to
continuously update the conspicuity of an internal variable using prior knowledge in
form of generated expectations. The population is represented by a set of cells. The
selectivity of each cell is defined by its location ¢ € {1..20} in the population and its
activity r; reflects the conspicuity of its preferred stimulus. Each cell is simulated by
an ordinary differential equation, that governs its average firing rate over time. Thus,
the model allows to describe the temporal change of activity induced by top-down in-
ference. In abstract terms, the top-down signal represents the expectation 7 to which
the input (observation) 7! is compared. If the observation is similar to the expectation
the conspicuity is increased. This increase is implemented as a gain control mechanism
on the feedforward signal. The population-based inference approach has been proven
to be a suitable computational framework for simulating spatial [5] and feature-based
attention effects [6]. As far as feature-based attention is concerned a cell’s response
over time 74,; x(t) at location x, selective dimension d and preferred feature 7 can be
computed by a differential equation (with a time constant 7):

d vy 1
Tdtrd,i,x = Id,i,x

13l Ll — 1% (1)
The activity of a V4 cell is primarily driven by its bottom-up input /. Inhibition /7%
introduces competition among cells and normalizes the cell’s response by a shunting

term. IV,  describes the lateral influence of other cells in the population. Feature-

based attention is a result of the bottom-up signal I; ,x modulated by the feedback
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Fig. 1. Three models of attention for real world scenes and their implementation of feature-based
attention. The goal directed search for the blue lighter requires some knowledge of the target
object, called a template, to be represented. Most models assume that just simple, “preattentive”
features (e.g. color, orientation) are part of such a template. A) In the classical approach of visual
attention, feature-based attention only modifies the input of the saliency map. For example, all
weights into the saliency map of cells encoding blue are globally increased, such that the lighter
has a higher chance being selected. A neural correlate of feature-based attention would therefore
only be visible in a pronounced activation in the saliency map. A winner-takes-all process then
determines the location of the highest activity, which in turn can be used to compute a focus of at-
tention such that the area around the blue lighter is processed preferably . B) The selective tuning
model uses top-down directed feature cues to guide competition in the what pathway. Present im-
plementations of this model, however, do not distinguish feature-based and spatial attention, since
a cascade of winner-take-all processes immediately generates an attentional beam that segments
the lighter from its background and generates an inhibitory surround. C) A model of distributed
processing with spatial and feature feedback. Here, attention emerges by the interactions in the
network. A template, which can contain any object information, is send downwards, enhances the
sensitivity of specific populations encoding the features of interest and lateral interactions nor-
malize the activity. As a result, the model shows feature-based attention. For example, the search
template of the lighter selectively enhances cells encoding blue in parallel prior to any spatial
selection, as indicated by the brighter parts of the image. Other parts are relatively suppressed
as illustrated by the darkened areas in the scene. This modulated activity in V4 guides areas re-
sponsible for eye movements, which in turn send a spatially selective signal back to enhance
populations encoding stimuli at a specific location - spatial attention emerges.
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signal from TE rE i x With wiTJV)f L as the strength of the feedback connection:
T V4 TE,V4  TE
Id,i,x Id 7, x0 (a Td 7, x) r;lax(w ] Td,j x’) (2)

ola— y}f‘k,x) implements a saturation of the gain for salient stimuli [7]. Consistent with
the Feature-Similarity Theory, the enhancement of the gain depends on the similarity
between the input and the feedback signal.

3 Large Scale Approach for Modeling Attention

In this model, neural populations are defined in a space spanned by the feature selec-
tivity ¢ and spatial selectivity x of the cells. The variable d refers to different channels
computed from the image such as orientation (O), intensity (/) or red-green (RG),
blue-yellow (BY), or spatial resolution (o). The conspicuity of each encoded feature
is altered by the target template. A target encoded in prefrontal cortex defines the ex-

pected features rPF C (Fig. 2). We infer the conspicuity of each feature in TE denoted as

rgEZ , by comparing the expected features rgFC with the observation, i.e. the bottom-up

input rinTx. If the observation is similar to the expectation we increase the conspicuity.

Such a mechanism enhances in parallel the conspicuity of all features in TE which are
similar to the target template. The same procedure is performed in V4 to compute the
conspicuity r}ﬁ « Where the expected features are the ones encoded in TE.

In order to detect an object in space the conspicuities Y d i.x and 7’ 4 are combined
across all channels d and encoded in the frontal eye field Vlsuomovement cells. The
projection from the visuomovement cells to the movement cells generates an expecta-
tion in space #LEF™. Thus, a location with high conspicuity in different channels d tends
to have a high expectation in space *L-I™. Analogous to the inference in feature space
the expected location 7EEF™ is iteratively compared with the observation T(Tz ix in x and
the conspicuity of a feature with a similarity between expectation and observation is
enhanced. The conspicuity is normalized across each map by competitive interactions.
Such interative mechanisms finally lead to a preferred encoding of the features and
space of interest.

We now briefly explain the simulated areas in the model. A detailed description can
be found in [9].

Early visual processing: Feature maps for Red-Green opponency (RG), Blue-Yellow
opponency (BY), Intensity (I), Orientation (O), and Spatial Resolution (o) are com-
puted. The initital conspicuity is determined by center-surround operations [10]. Center-
surround operations calculate the difference of feature values in maps with a fine scale
and a coarse scale and thus, the obtained conspicuity value is a measure of stimulus-
driven saliency. The feature information and the conspicuity are used to determine a
population code, so that at each location the features and their related conspicuities are
encoded.

V4: V4 has d channels which receive input from the feature conspicuity maps: 76 ; x
for orientation, 7y ; x for intensity, 7ra,i,x for red-green opponency, rgy,; x for blue-
yellow opponency and 7 ; x for spatial frequency (Fig. 2). The expectation of features
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Fig. 2. Model for object detection in natural scenes. From the image, the features of 5 channels
(RG, BY, I, O, o) are obtained. For each feature we also compute its conspicuity as determined
by the spatial arrangement of the stimuli in the scene and represent both aspects within a popu-
lation code, so that at each location a feature and its related conspicuity is encoded. This initial,
stimulus-driven conspicuity is now dynamically updated within a hierarchy of levels. From V4 to
TE a pooling across space is performed to obtain a representation of features with a coarse coding
of location. The target template encodes features of the target object by a population of sustained
activated cells. It represents the expected features TPFC which are used to compute the (posterior)
conspicuity in TE. Similarly, TE represents the expectation for V4. As a result, the conspicuity
of all features of interest is enhanced regardless of their location in the scene. In order to iden-
tify candidate objects by their saliency the activity across all 5 channels is integrated in the FEF
perceptual map. The saliency is then used to compute the target location of an eye movement in
the FEF decision map. The activity in this map #5*™ is fed back, which in turn enhances the
conspicuity of all features in V4 and TE at the activated areas in the FEF decision map. Thus,
objects at expected locations are preferably represented. By comparing the conspicious features
in TE with the target template in the match detection units it is possible to continuously track
if the object of interest is encoded in TE. Visited locations are being tagged by an inhibition of
return. This allows the model to make repeated fixations while searching for an object.
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in V4 originates in TE rﬁpx, =) d i x and the expected location in the FEF decision
map 7, *% = rFPFm_Please note that even TE has a coarse dependency on location.

TE: The features with their respective conspicuity and location in V4 project to TE,
but only within the same dimension d, so that the conspicuity of features at several
locations in V4 converges onto one location in TE. A map containing 9 populations
with overlapping receptive fields is simulated. The complexity of features from V4
to TE is not increased. The expected features in TE originate in the target template

EEin =w- TSFC and the expected location in the FEF decision map #1Ft = q - pFEFm,

FEF perceptual map: The FEF perceptual map indicates salient locations by inte-
grating the conspicuity of V4 and TE across all channels. Its cells show a response
which fits into the category of FEF visuomovement cells (FEFv). In addition to the
conspicuity in V4 and TE the match of the target template with the features encoded

in V4 is considered by computing the product ] max R - 4 5 This implements

d
a bias to locations with a high joint probability of encodmg all searched features in a
certain area.

FEF decision map: The projection of the perceptual map to the decision map trans-
forms the salient locations into a few candidate locations, which dynamically compete
for determining the target location of an eye movement. This is achieved by subtracting

3 : : FEFv ,.FEFv FEFv FEFv
the average saliency from the saliency at each location w™™™Vr ™™ — w; v >~ ri#.

X
Thus, the cells in the decision map show none or only little response to the onset of
a stimulus, such that their response fits into the category of the FEF movement cells
(FEFm). Their activity provides the expected location for V4 and TE units.

4 Results

An object is presented to the model for 100 ms and the model memorizes some of its
features as a target template. We do not give the model any hints which feature to mem-
orize. The model’s task is to make an eye movement towards the target (Fig. 3A,B).
When presenting the search scene, TE cells that match the target template quickly in-
crease their activity to guide perception on the level of V4 cells. Thus, the features of
the object of interest are enhanced prior to any spatial focus of attention. This feature-
based attention effect allows for a goal-directed planning of a saccade in the FEF. The
planning of an eye movement provides a spatially organized reentry signal, which en-
hances the gain of all cells around the target location of the intended eye movement. As
a result of these inference operations, the high-level goal description in PFC is bound
to an object in the visual world. Further simulation results are discussed in [9].

We now take a close view on the feature-based attention effects of the model. In this
respect we compare two conditions: attend towards the visual properties of the lighter
(Fig. 3A) and attend towards the cigarettes (Fig. 3B). Fig. 3C shows the difference activ-
ity of both conditions in V4 prior to any spatial selection as determined by a low FEFm
activity (max rEFF™(¢) < 0.05). Our analysis clearly shows that feature-based atten-
tion selectively modulates the activity according to the task at hand. Thus, the model
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A Target 1 and its detection B Target 2 and its detection

V4 difference activity
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Fig. 3. Illustration of feature-based attention. A) Target object 1 and its detection in the visual
scene. B) Target object 2 and its detection in the visual scene. C) Difference activity in V4 in
three channels over time. For a comparison with cell recordings a latency of about 60 ms has to
be added to the time axis. Only the difference of the maximal activity at each location is shown
irrespective of the feature selectivity. Gray areas indicate equal (maximal) activity, light areas
more activity in the first condition and dark areas more activity in the second condition. We can
observe that parts of the scene are relatively enhanced or reduced according to the target template.

predicts feature-based attention effects independent of focused attention. Although the
effect is global in space it can guide gaze towards the object of interest since it depends
on the content encoded at each location.
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Fig. 4. Illustration of feature-based attention effects on the single cell level. The activity is shown
in two conditions with time relative to search array onset (0 ms): attend towards the lighter (blue)
and attend towards the cigarettes (red). The red shaded area between the curves appears when the
activity in the second condition is higher. A) Selected cells in the orientation (O), intensity (I) and
blue-yellow (BY) channel with the receptive field center located on the lighter. A) Selected cells
in the orientation (O), intensity (I) and blue-yellow (BY) channel with the receptive field center
located on the cigarette box.

To illustrate the effects of feature-based attention on the cell level we show their time
course of activity. Fig. 4A shows the activity of cells with their receptive field centered
on the lighter. A difference in activity between the attend lighter and attend cigarettes
condition reflects the relative effect of feature-based attention. In the orientation channel
(O) cell 01 shows an enhancement in the attend cigarettes condition whereas cell 08 an
enhancement in the attend lighter condition. Thus, even cells with their receptive field
on the lighter can be enhanced in the attend cigarettes condition. The target template
for orientation in the attend lighter condition was close to horizontal and thus increased
the activity of cell 08, whereas target template for orientation in the attend cigarettes
condition was vertical and thus enhanced the sensitivity of cell 01 and adjacent cells.
The blue color of the lighter primarily increased the activity of cells around cell 14 of
the BY channel in the attend lighter condition. The white color of the cigarette box
increased cell 18 of the intensity channel in the attend cigarettes condition. We observe
also differences in the timing of the feature-based attention effect, which are based on
recurrent interactions between V4 and TE as well as TE and PFC.

5 Discussion

We have introduced different models of attention and their implementation of feature-
based attention. The classical approach, which defines attention solely by a selection of
a location in the saliency map, predicts that target templates only guide the competition
for spatial attention. Such guidance of spatial attention does also occur in the Selective
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Tuning model as well as in our approach. These models use feature cues to enhance
the activity of feature-sensitive cells. However, our approach seems to be closer to a
neural correlate of feature-based attention, since we consider the temporal dynamics
prior to any spatial selection. We predict that goal directed visual search first selectively
modulates feature-sensitive cells prior to any spatial selection.

This prediction is consistent with cell recordings in visual search [2] and recent
findings in which the learning of degraded natural scenes resulted in a selective en-
hancement of V4 cells [20]. According to this study V4 plays a crucial role in resolv-
ing an indeterminate level of visual processing by a coordinated interaction between
bottom-up and top-down streams.

Our model further predicts that saliency is encoded as part of the variable itself
through the dual coding property of a population code. Saliency is not encoded in a
single map. Thus, attentional effects can be found throughout the visual system. The
observation of an attentional modulation does therefore not allow to conclude that a
stimulus has been selected by a spatially directed focus. For example, V4 also provides
a spatially organized map encoding saliency (Fig. 3C), which is consistent with recent
findings [15]. However, V4 cells are selective for location and specific features. Con-
sistent with recordings in the FEF [23], the FEF visuomovement cells in our model are
more related to the classical idea of a saliency map [11], since they solely encode lo-
cation by integrating the activity across all channels and features. We assume that this
information needs an additional, decisional stage of processing before it is feed back
such that the saliency information is transformed into a dynamic, competitive represen-
tation of a few candidate regions.
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Abstract. In this paper, we describe a biological motivated image representa-
tion in terms of local multi-modal primitives. These primitives are functional
abstractions of hypercolumns in V1 [13]. The efficient and generic coding of vi-
sual information in terms of local symbolic descriptiones allows for a wide range
of applications. For example, they have been used to investigate the multi-modal
character of Gestalt laws in natural scenes [14], to code a multi-modal stereo
matching and to investigate the role of different visual modalities for stereo [11],
and to use a combination of stereo and grouping as well as Rigid Body Motion to
acquire reliable 3D information as demonstrated in this publication.

1 Introduction

The aim of this work is to compute reliable feature maps from natural scenes. To es-
tablish artificial systems that perform reliable actions we need reliable features. These
can only be computed through integration across the spatial and temporal context and
across visual modalities since local feature extraction is necessarily ambigious [1,15].
In this paper, we describe a new kind of image representation in terms of local multi—
modal Primitives (see fig. 1) which can be understood as functional abstractions of
hypercolumns in V1. These Primitives can be characterized by three properties:

Multi-modality: Different visual domains describing different structural properties of
visual data are well established in human vision and computer vision. For example, a
local edge can be analyzed by local feature attributes such as orientation or energy in
certain frequency bands. In addition, we can distinguish between line and step—edge
like structures (contrast transition). Furthermore, color can be associated to the edge.
This image patch also changes in time due to ego-motion or object motion. Therefore
time specific features such as a 2D velocity vector (optic flow) can be associated to this
image patch. In addition the image patch has a certain source in 3D space and therefore
also depth information can be associated. In this work we define local multi-modal
Primitives that realize these multi-modal relations. These modalities are also processsed
in so called hyper-columns in the first area of visual processing (V1) [7].

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 157-166, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Multi-modal Primitives a) One primitive covers different aspects of visual information in
a condensed way. b) Stereo Image Pair. ¢) Frame taken from c). d) Representation of an image by
multi-modal primitives (local motion and stereo information not shown for sake of understand-
ability). e) 3D view of extracted stereo representation.

Adaptability: Since the interpretation of local image patches in terms of the above
mentioned attributes as well as classifications such as ‘edgeness’ or ‘junctionness’ are
necessarilly ambigious when based on local processing stable interpretations can only
be achieved through integration by making use of contextual information [1]. Therefore,
all attributes of our Primitives are equipped with confidences that are essentially adapz-
able according to contextual information expressing the reliability of this attribute.
Adaptation occurs by means of recurrent processes (see, e.g., [21]) in which predictions
based on statistical and deterministic regularities disambiguate the locally extracted and
therefore neceassarily ambigious data.

Condensation: Integration of information requires communication between Primitives
expressing spatial [14,11] and temporal dependencies [9]. This communication has nec-
essarily to be paid for with a certain cost. This cost can be reduced by limiting the amount
of information transferred from one place to the other, i.e., by reducing the bandwidth.
Therefore we are after a compression of data. Essentially we only need less than 5% of
the amount of the pixel data of a local image patch to code a Primitive that represents
such a patch. However, condensation not only means a compression of data since com-
munication and memorization not only require a reduction of information. Moreover,
we want to reduce the amount of information within an image patch while preserving
perceptually relevant information. This leads to meaningful descriptors such as our at-
tributes position, orientation, contrast transition, color and optic flow. In [14], we have
also shown that these descriptors (in particular when jointly applied) allow for strong
mutual prediction that can be related to classical Gestalt laws.
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In section 2, we describe the Primitive attributes and their extraction and in section
3 we describe the biological background. In section 4, we refer to applications of our
Primitives for the modelling of disambiguation processes in mid-level vision.

2 Multi-modal Primitives

We compute the following semantic attributes and associate them to our Primitives (see
also fig. 1).

Intrinsic Dimension: Local patches in natural images can be associated to specific
local sub-structures, such as homogeneous patches, edges, corners, or textures. Over
the last decades, sub-domains of Computer Vision have extracted and analysed such
sub-structures.

The intrinsic dimension (see, e.g., [23]) has proven to be a suitable descriptor that
distinguishes such sub-structures. Homogeneous image patches have an intrinsic di-
mension of zero (i0D); edge-like structures are intrinsically 1-dimensional (i1D) while
junctions and most textures have an intrinsic dimension of two (i2D). In [10,4] it has
been shown that the topological structure of intrinsic dimension essentially has the form
of a triangle with the corners of the triangle representing ’ideal cases’ of homogeneous
structures, edges or corners (see figure 2b). This triangular structure can be used to asso-
ciate 3 confidences (c;op, ¢i1p, Ci2p ) to homogenous-ness, edge—ness, or junction—ness
according to the positioning of an image patch in the iD—triangle.

This association of confidences to visual attributes is a general design principle
in our system. These confidences as well as the attributes themselves are subject to
contextual integration via recurrent processes. Aspects with associated low confidences
have a minor influence in the recurrent processes or can be disregarded.

Orientation: The local orientation associated to the image patch is described by 6.
The computation of the orientation 6 is based on a rotation invariant quadrature filter,
which is derived from the concept of the monogenic signal [5]. Considered in polar
coordinates, the monogenic signal performs a split of identity [5]: it decomposes an
intrinsically one-dimensional signal into intensity information (amplitude), orientation
information, and phase information (contrast transition). These features are pointwise
mutually orthogonal. The intensity information can be interpreted as an indicator for the
likelihood of the presence of a certain structure with a certain orientation and a certain
contrast transition (see below).

Contrast Transition: The contrast transition is coded in the phase ¢ of the applied
filter [5]. The phase codes the local symmetry, for example a bright line on a dark back-
ground has phase 0 while a bright/dark edge has phase —7 /2 (see fig. 2a). There exists a
whole continuum of 11D structures that can be coded in the phase by one parameter (see
also [6,8]).

Color: Color (c!, c™, c") is processed by integrating over image patches in coincidence
with their edge structure (i.e., integrating separately over the left and right side of the
edge as well as a middle strip in case of a line structure). In case of a boundary edge of
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Fig. 2. a) The continuum of phases (indicated by ¢) taking values between — and 7 correspond
to a continuum of oriented grey-level structures as expressed in the changing circular manifold
(sub—figure a) is based on a figure in [3]). b) The likelihood of a local image patch to be a
homogenous image patch, an edge or a junction can be visualised as a triangle with corners
representing ideal patterns. Points inside the triangle represent structures that are only with a
certain likelihood categorizable as ideal homogenuous image patches, edges, or junctions. For
example, there is a slight texture on the patch close to the lower left corner which produces a
filter response with low contrast (origin variance) and low orientation variance or the structure
close to the upper corner has some resemblance to a junction. In this triangular representation
distances from the corners represent the likelihood of the structures being of the ideal type. This
is used for the formulation of confidences indicating such likelihoods in [10]. Note that figure 2b
is thought to be a schematic description. The exact positioning of patches in the triangle depends
on two parameters (for details see [10]).

Orientation Variance

T\

a moving object at least the color at one side of the edge is expected to be stable since
(in contrast to the phase) it represents a description of the object.

Optic Flow: There exist a large variety of algorithms that compute the local displace-
ment in image sequences. [2] have them devided into 4 classes: differential techniques,
region-based matching, energy based methods and phase-based techniques. After some
comparison we decided to use the well-known optic flow technique [16]. This allgo-
rithm is a differential technique in which however (in addition to the standard gradient
constraint equation) an anisotropic smoothing term leads to better flow estimation at
edges (for details see [16]). The optic flow is coded in a vector o.

Stereo: By performing a matching between primitives in the left and right image and
finding correspondences we can compute a 3D-primitive (see figure le). We code the
correspondence by a link [ to a primitive in the right image.

To determine the position x of the primitives we look for locations in the image
where the magnitude of the response of a set of edge-detection filters [5] has local
maxima. To avoid the occurrence of very close line—segments produced by the same
image structure we also model a competition process between the primitives. Basically,
for each primitive position it is checked whether another primitive exists with a posi-
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tion closer than a given threshold distance. If that is the case, the position with lower
magnitude is dropped (for details see [12,13]). Finding of suitable positions is a sophis-
ticated task and is also part of a cruicial transformation process from a signal-based to
a symbol-based representation. Once the positions of the primitives are determined, the
other attributes computed from the filter response at the found position is associated to
the primitive.

Usually an image patch that is represented by our Primitives has a dimension of
3x12x12 = 432 values (3 color values for each pixel in a 12 x 12 patch). However, the
output of our Primitives has less than 20 parameters. Therefore, the Primitives condense
the image information by more than 95%. This condensation is a crucial property of our
Primitives that allows to represent meaningful information in a directly accessible and
compressed way.

We end up with a parametric description of a Primitive as

7= (x,0,0,(c',c™ c"),0,(ciop,cip;cian),1).

In addition, there exist confidences ¢;,i € {®, ch,cm ¢, o} that code the reliabilty of
the specific sub—aspects that is also subject to contextual adaptation.

3 Multi-modal Primitives as Functional Abstractions of
Hyper-columns

The above-mentioned visual modalities are processed at early stages of visual process-
ing. Hubel and Wiesel [7] investigated the structure of the first stage of cortical pro-
cessing that is located in an area called ‘striate cortex’ or V1 (see figure 3a). The striate
cortex is organized like a continuous, but distorted map of the visual field (retinotopic
map). This map contains a specific repetitively occurring pattern of substructures called
hyper-columns. Thus, a hyper-column represents a small location of visual space and
the neurons in such a hyper-column represent all important aspects of this spatial loca-
tion; ideally all orientations, all colors, the complete distance-information (disparity),
etc. To be able to achieve this in an orderly manner, hyper-columns themselves are
subdivided into “columns” and “blobs”. The blobs contain color sensitive cells, while
the columns represent the continuum of orientations (see figure 3b). Here one observes
that the orientation columns are organized in an ordered way such that neurons repre-
senting similar orientations tend to be adjacent to each other. However, it is not only
orientation that is processed in an orientation column but the cells are sensitive to ad-
ditional attributes such as disparity, contrast transition and the direction of local motion
(see [22]). Even specific responses to junction-like structures have been measured [19].
Therefore, it is believed that in the striate cortex basic local feature descriptions are
processed similar to the feature attributes coded in our primitives.

However, it is not only local image processing that is going on in early visual pro-
cessing. As mentioned above, there occurs an extensive communication within visual
brain areas as well as across these areas. The communication process leads to the bind-
ing of groups of local entities (see, e.g., [20]). In [14] we described a self-emergence
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Fig. 3. a) Primary visual pathway and schematic location of a hyper-column (black box), which
corresponds in reality to about 1 mm? of cortical surface. b) Schematic diagram of a hyper-
column (thick lines) embedded in the visual cortex. Each hyper-column represents a small loca-
tion in visual space. Vertically to the surface neurons share similar response properties, whereas
their responses differ when moving horizontally on the surface. Information from both eyes is
represented in adjacent slabs of the cortex. Each slab contains neurons that encode different ori-
entations (depicted by tiny lines on the surface) but also all other important visual features such
as local motion and stereo. In the cylinder-shaped part mainly color is processed. Note, the actual
cortical structure is less crystalline than suggested by this diagram.

process in which groups organize themselves based on statistical regularities. Here we
use grouping inthe context of improving stereo information.

4 Disambiguation in Recurrent Process Making Use of the
Spatial-temporal Context

The processing of primitives is still based on local processes. Therefore, ambiguity can
not be resolved at this level. However, using the richness of the image descriptors we
can already decrease the amount of ambiguity by interaction of modalities on a local
level (section 4.1). Global interdependencies realized in cross—modal recurrent pro-
cesses based on perceptual organisation and rigid body motion can then further reduce
the ambiguity and are described in section 4.2 and 4.3.

4.1 Multi-modal Stereo

To be able to reconstruct 3D primitives we require correspondences between image
primitives 7!, 7 in the left and right image of a stereo system. For this we make use of
a multi-modal similarity
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sim(r!,7") = Z adi(mt, 7" (D
i€{o,p,c,f}

in which distance measures in the different modalities d; () are combined by a weighted
average (see [11,17] for details). In table 1, we show the performance of the system on
a sequence of images with known ground truth (see figure 4). The results for a stereo
with only one modality (orientation), two modalities (orientation and phase) and three
modalities (orientation, phase and colour) respectively are displayed in the first column
of the left , middle and right block in table 1.

4.2 Stereo and Grouping

We formalized the spatial constraint indicated in figure 4.2a. Basically the constraint
states that stereo correspondences must be consistent under collinear line structures.
In [18], we have defined a multi-modal grouping process in which the likelihood of
two primitives to be originated from a collinear image structure is coded in two link
confidences g(m}, ) for the left and g(77,75) for the right image. In combination
with (1) we have defined an external similarity that is not based on a direct comparison
of image patches but on the consistenny of the stereo with the grouping process only
based on the two link confidences g(m}, 75), g(77, 75) and the stereo matching similar-
ity c(mh, w5). We can use this external similarity to enhance stereo processing. Table 1

Fig. 4. Left and right image of one frame of the stereo image sequence (left) with 3D-ground truth
(right)

Table 1. The number of false positives depending on four fixed numbers of trues is shown for
stereo, grouping and accumulation. The results for uni-modal, two-modal and multi-modal rep-
resentations are kept separately in the three blocks. n.a. stands for 'not applicable’ which means
that the number of trues as indicated in the left most column was not achieved.

Uni-modal (ori) Two-modal (ori, pha) Tri-modal (ori, pha, col)
Trues Stereo Group. Accum Stereo Group. Accum Stereo Group. Accum
100 1479 1064 8 77 60 6 4 5 2
500 2126 1600 32 346 262 11 19 24 16
1000 2878 n.a. 102 832 586 25 85 78 19
2000 na na. 1372 na.  na. 153 328 278 42
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Fig. 5. Top: Stereo—Grouping Constraint

(second columns for each block) shows quantitative results. Performance usually incre-
saes by approximately 20-30 percent.

4.3 Accumulation Using a Spatial-temporal Context Based on Rigid Body
Motion

A spatial-temporal constrained is based on rigid motion. Assuming the egomotion or
the motion of objects between frames is known we can predict the occurence of spatial
primitives 7(¢t + 1) in the next frame. This is possible since knowing the 3D structure
underling the primitive (as coded in the link [) the spatial-temporal transformation of
this primitive can be computed explicitely. The validation of such a correspondences
is an indicator for a higher likelihood for the spatial primitive to be a correct one and
the associated confidence becomes increased (see also [9]). Table 1 (third column in
each block) gives quantitative results. As can be seen from the results even for quite
unreliable stereo based on one modality only after only few iterations the number of
false positives can be decreased significantly. Note that the scheme also allows for the
integration of new hypothese generated in in new frames. In figure 6 the effect for an
example sequence is shown.

5 Summary and Conclusion

We have introduced a functional model of hyper-columns in terms of multi-modal prim-
itives representing local image information in a condensed way. This condensation
leads to symbol-like descriptors of image information which allows the formalization
of cross—modal processes and spatial-temporal integration.

Acknowledgement. We thank Nicolas Pugeault and Sinan Kalkan for their help. Fur-
thermore, we gratefully acknowledge the support of Riegl Ltd. which provided the im-
age data with 3D ground truth shown in figure 4 on which our quantitative evaluation is
based.
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Fig. 6. Top row: Left: Confidences of different hypothese are displayed by grey level values (white
for high confidences and dark for low confidences) projected on the image. Right: Top view of
the stereo of the first frame. Bottom row: Left: Image view of all hypothese with high confidence
after 5 iterations of the accumulation. Right: Top view of all hypothese with high confidence after
five iterations.
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Abstract. We discuss problems of signal—- and symbol based representa-
tions in terms of three dilemmas which are faced in the design of each vi-
sion system. Signal- and symbol-based representations are opposite ends
of a spectrum of conceivable design decisions caught at opposite sides of
the dilemmas. We make inherent problems explicit and describe potential
design decisions for artificial visual systems to deal with the dilemmas.

1 Introduction

Scientists in different fields such as speech processing or computer vision have
been debating about signal- and symbol- based representations. This debate has
been accompanied by research efforts in Artificial Intelligence (see, e.g., [5]) and
Neural Networks (see, e.g., [24]). The argument underlying this debate has not
been resolved until now, however many work does not fall sharply in one of the
two categories and an increasing number of work emerges which attempts to
bridge between the two sides (see, e.g., [11]).

In this paper the problems of signal- and symbol-based approaches are made
explicit in terms of three dilemmas which are faced in the design of each vision
system. The first dilemma (called the interpretation/decision dilemma) deals
with the need of interpretation of the input signal which however requires de-
cisions. These decisions constitute prejudices (in terms of assumptions about
the input) that are difficult to justify. In the completeness/feasibility dilemma
the need to condense information to make processing feasible interferes with
the wish not to throw away information. The non-learnable/non-formalisable
dilemma deals with the problem that on the one hand complex problems such
as vision are not completely learnable but on the other hand neither completely
formalisable.

Signal- and symbol-based representations are opposite ends of a spectrum of
conceivable design decisions which are caught at opposite sides of the dilemmas.
In this paper, we do not intend to take sides in the debate but to make inherent
problems explicit and to describe design decisions interms of an existing artificial
visual systems (also described in a contribution in this book, see [21]) to deal
with the dilemmas.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 167-176, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Symbol and Signal-Based Representations

Before formalising the three dilemmas we give in the first subsection a brief
general categorisation of signal- and symbol based representations. For a more
detailed discussion we refer to (e.g., [11]).

The standard notion of symbols in a certain representational framework is
that symbols are (1) semantic representatives for certain pieces of knowledge on
which (2) operations can be performed that correspond to relevant functional
relations in this framework (see also [12]).

In general, a symbol serves as a surrogate for a body of knowledge that may be
needed to be accessed and used in processing the symbol. And ultimately, this
knowledge includes semantics or meanings of the symbol ... Symbolic processes
are essentially transformations that operate on symbol structures to produce
other symbol structures. [11]

Symbol-based representations have been successfully established in formal-
izable contexts such as chess computers or other expert systems. However, they
have failed to solve ’easy tasks’ such that to grasp a cup from a table, fill it with
coffee and hand it over to Ann or Paul. It turned out that these ‘easy’ problems
are apparently much harder to model than the ‘hard’ chess task.

There are two main problems symbol based representations ran into:

— The ’'right symbols’ and ’right rules’ are either not exhaustively formalisable
within a framework of reasonable complexity or, even more severely, might
not exist at all (see, e.g., [2]).

— The meaning of symbols in perceptive systems comes from the environment
and the body and purposes of the system itself (the so called symbol ground-
ing problem, [10]).

Signal based representations (such as applied in neural networks or other sta-
tistical learning mechanisms) refrained from trying to formalise the functional
relations but instead aim at learning starting with the (often preprocessed) sig-
nal as input. In this approach there is neither a problem of finding the right
descriptors in terms of symbols nor their functional relations since these stages
are supposed to be learned. There is also no grounding problem since meaning is
not explicitely defined. However, it became clear that although statistical learn-
ing medthods have been successfully applied to a number of problems they were
unable to solve more complex problems since they lack of inherent structure in
form of bias (see the Bias/Variance dilemma [6]).

Signal-based (sometimes also referred to as sub-symbolic representations [25])
and symbol based representations in cmputer vision can be characterized by four
key aspects:

Feature Maps: Signal-based representations are typically organized as dense
feature maps, i.e., at every spatial coordinate a certain feature value is stored,
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whereas symbolic representations typically store a list or tree of feature vectors
which include the spatial vectors.

Completeness: Signal-based representations are mostly complete in the sense
that one can reconstruct the original image from the coefficients of the dense
feature maps (e.g., a Laplace pyramid). In symbol-based representations infor-
mation is essentially reduced and therefore incomplete in the sense that infor-
mation judged as irrelevant for a certain purpose is dropped for the sake of a
condensed representation.

Stability: Stability of the estimation can easily be guaranteed by using operators
with finite operator norm. For instance, the response of a Laplace filter is stable,
but the extraction of the zeros, i.e., the transition to a symbolic interpretation
as an edge, leads to unstable estimates in terms of thresholding operations.

Transition to Higher Abstraction Levels: When it comes to the transition
to higher levels in the system, the typical way a signal-based representation
is used is to feed it into a neural network [26] or to use further deterministic
processing steps which lead to higher-level signal-based representations [9]. In
general, there is no mechanism taking discrete decisions, leading to a (spatial)
selection of information. These mechanisms are however essential when it comes
to symbol-based representations and allow for the incorporation of high level
semantical knowledge.

3 Dilemma 1: Interpretation and Early Decisions

Dilemma 1 deals with the problem that the semantic information represented in
single pixel values is limited. Feature extraction processes make such semantic
more explicit but might lead to loss of information.

Scientists working with statistical approaches within the framework of signal-
based representations usually do not apply their methods directly to the the sig-
nal level but introduce some kind of pre-processing (in terms of, e.g., filtering
processes) beforehand. By this, the original problem is transferred to a more
suitable feature space in which important aspects of the input are made more
explicit. In vision, the feature maps carry in general 'meaning’ in terms of at-
tributes such as magnitude, orientation or phase that have higher semantic value
than the original pixel value.

Independently which framework is used to estimate such attributes, the ap-
plied filters always impose some model assumption upon the signal. The filter
response is not more than a matching of the data to the model. Thus, considering
a single filter response in a particular point, information from the original signal
is lost. However, in general the complete image information can be recovered
from the filter responses (see, e.g., [8]). This is fundamentally good news, since
the severeness of the prejudice applied in the interpretation by the filter opera-
tion is reduced since one can always go back to the original signal. However, it
also leads to a larger feature space than the original image itself which leads to
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even more dramatic consequences when looking at the relational space (this will
be discussed in detail in section 4).

However, the meaningfulness of interpretations in terms of filter operations
leads to another problem that addresses the sampling of these features. The
meaning of a ’feature’ is based on information that covers a larger spatial area.
For example, to estimate an orientation we need at least three samples which do
not lie on a line. In general, depending on their bandwidth, filters cover much
larger spatial areas. However, the extracted information is represented for each
sample, leading to quantization errors if the features are (erroneously) consid-
ered at isolated samples. To apply e.g., phase as a feature, we need to take the
exact position into account, i.e., we have to interpolate the phase information
at the locus of maximum magnitude. Otherwise statements about the edge-ness
or line-ness of the local structure become wrong for high frequencies. Another
inherent problem is that the estimation of local local descriptors (such as orien-
tation) from linear filters suffers from superposition of the true orientation and
of values from structures in the vicinity of the measurement. Therefore, apply-
ing the straightforward and naive transition to a semantic interpretation in a
point-wise way often leads to inaccurate of even false results, i.e., an ill-defined
interpretation.

Seeing signal based representations caught in the problem of a too large
features space in which semantic interpretations are partially ill-defined we now
take a closer look at a representation that can be associated to the symbol-
based approach. A straightforward solution that makes (1) use of and preserves
the meaningfulness of the filter responses, (2) avoids the problem of ill-defined
meaning, and (3) reduces the cost in terms of a large feature and unmanageable
relational feature space is a sparsification of the signal in terms of position which
is done in many artificial vision systems (see, e.g., [22]).

In this context, in [19] we have developed an new kind of image representa-
tion in terms of multi modal primitives (see figure 1 in [21]). In the primitives
different aspects of visual information are coded in terms of visual sub-modalities
known in human and computer vision. Primitives carry information about at-
tributes such as local energy, orientation and phase in certain frequency bands.
Colour is associated to the local patch in coincidence with the local orientation.
Furthermore, time specific features such as a 2D velocity vector (optic flow) and
also 3D information is associated to our Primitives.

The attributes such as orientation and phase are associated to the position of
the structure such that the meaning (at least for edge-like structures) is clearly
defined. Further processing is facilitated since information is coded in a con-
densed way. After a sparisfication process, a primitive represents a local image
patch while the amount of information is reduced by 95% and relevant informa-
tion is made explicit.

However, the sparsification does not come along without problems. The re-
constructability of the complete signal (although we have a recognisable repre-
sentation) is lost. Also, we are forced to do decisions about the positions as well
as the features. These in general binary decisions are based on thresholds and
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transfer the continuous space of filter responses to a discrete space of symbol-
like structures. However, such decisions can not be made at this level with full
certainty since local visual information is necessarily ambiguous (see, e.g., [1,20]).

Interpretation/Decision Dilemma: Interpretation in terms of extraction
of meaningful information is necessary to make relevant aspects available for
higher levels of processing. However, this goes along with decisions about what
aspects are relevant which constitutes a prejudice about the data.

Signal- and symbol-based representations differ in their willingness to apply
assumption (in terms of decisions) to the signal. In signal based representa-
tions the consequences of interpretations are softened by avoiding to make use
of explicit semantics and sparsification. In symbol-based representations sparsi-
fications are performed that make explicit use of the semantic content of early
filter operations.

Ways Out of the Interpretation/Decision Dilemma: To justify early filter
operations successful biological systems can be taken as a model. In the ground
breaking work [13] the functional organisation of the first stage of cortical pro-
cessing could be explained. They could demonstrate that meaningful features
such as orientation, colour, local motion, and stereo are processed in so called
hyper-columns. Our primitives are functional abstractions pf these hypercolumns
(see [21]).

In our examples, we have also seen that symbol based representations essen-
tially need a good signal processing. Usually, the extraction of symbols is a step
performed on top of filtering processes and therefore signal and symbol based
representation can be seen as two levels of the processing hierarchy. Semantic
meaning in the filter operations can be made explicit and representations sparsi-
fied by early hard decisions. There are two ways to soften the effect of the hard
decision in the the sparsification: (1) Utilising of Confidences and (2) memorising
of multiple hypotheses.

Both strategies are used in the visual primitives: to each parameter a confi-
dence is associated that reflects the reliability of the feature attributes. In this
sense the primitives are designed as first guesses with associated confidences that
are not expected to deliver completely reliable information but become stabilised
by the spatial and spatial-temporal context (see section 5 and [15,20]).

The meaningfulness of the orientation, phase and colour interpretation of the
primitive depends essentially on the local structure. For example, orientation
is ill defined for a homogeneous image patch or a corner. However, it makes
perfect sense for an edge- or line-like structure. To associate a confidence to, e.g.,
the orientation we measure the ’edges-ness’ of the local signal by a continuous
concept for homogeneousness, edge-ness and corner-ness in terms of intrinsic
dimensionality (see [16,4]).

Also the concept of position depends on the intrinsic structure. For example,
for a corner like structure we want to have the position of the primitive to be
placed on the intersection lines while for edges we want to have an aquidistal
sampling along the line structure. Actually, for each local image patch (i.e., a
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local region represented by one primitive) three possible interpretation in terms
of three positions corresponding to an interpretation as an homogeneous image
patch, an edge or a corner is coded. In this way, multiple hypotheses preserve
possible interpretations to be verified at later stages of processing.

4 Dilemma 2: Completeness and Feasibility

Dilemma 2 deals with the problem of the size of the space of relations. While
signal-based representations face the problem of a complete but unmanageable
relational space, symbol-based representations work in a manageable relational
space which are however incomplete and difficult to justify. We will exemplify
this on the problem of stereo processing. However, similar arguments hold for
other relational problems such as grouping or motion estimation.

Important visual information is coded in the relation of visual events. A
second order relation problem occurs for example in stereo processing. A straight
forward signal based approach is to compute all possible correspondences by
some kind of template matching resulting in a full disparity map. Even when
using an epipolar constraint (see, e.g., [3]) this approach becomes quite costly
and the full space of second order relations in the signal based approach becomes
virtually unmanageable.

Sparsification reduces the size of the relational space. The primitives transfer
the semantically weak defined pixel values to sparse symbol-like structures with
strong semantics and by that condense the visual information. Because of the
strong sparsification it is possible to deal with large disparities. Even multiple
hypotheses can be kept now more easily and allow for better decisions at later
stages of processing. Moreover, the result of the primitive representation is ac-
tually a dense disparity map. It is a representation in which the ’symbols’ carry
beside the depth information also information about other semantic aspects (see
figure le and figure 6 in [21]).

However, the advantage of low computational complexity by concentration on
semantically relevant information is accompanied by the drawback of a sparse
disparity map. Moreover, errors in the feature extraction stage may lead to
unrecoverable errors in the stereo matching. However, we will see in see section
5 that the inclusion of structural knowledge (based on the explicitness of symbol
based representations) can overcome some of these problems. Similar arguments
hold for other problems involving relations such as grouping or motion estimation
(for details, see [20]). Summarising the discussions:

Completeness/Feasibility Dilemma: An efficient coding of this relational
space is not feasible without a reduction of the visual events that become
related. This reduction however requires a condensation of the local signal
information and interferes with the wish to preserve the complete information.

The completeness/feasibility dilemma is related to the interpretation/
decision dilemma since a reduction in general also involves an interpretation and
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therefore a decision. The completeness/feasibility dilemma however, stresses the
need of condensation and not the semantic aspect involved in the interpretation.

Ways Out of the Completeness/Feasibility Dilemma: There exist strate-
gies within signal based representations to approach the relational space in a
feasible way by, e.g., coarse to fine tracking mechanisms. If multiple hypotheses
are tracked in these mechanisms, the computational effort scales not only with
the image size, but also with the maximum disparity. Furthermore, there are
certain restrictions which make these approaches unsuitable for (relative) wide
baseline stereo.

The condensation process is problematic since throwing away relevant as-
pects of the data may weaken the overall performance. Therefore, the condensed
local descriptors in [21] cover multiple aspects in terms of the relevant visual
modalities. In [17], we showed that with the representation condensed by 95%
we could achieve comparable performance to correlation based methods in which
the full local image patch was used for matching.

There is also a strong potential to combine symbol- and signal-based repre-
sentations. For example, if signal based and symbol based matching delivers the
same result this can be used to increase local confidences in both approaches.
However, if there is a disagreement then this indicates either an error in the fea-
ture (symbol) extraction or an error caused by the limitation of the signal-based
approach. In any case, such incidences point to the need of a more detailed anal-
ysis of the specific local situation (for example by a shift of attention) and most
likely also to an increase of importance of other non-local sources of information.
In this sense we need to think about the signal-symbol relation not only as a
feed-forward process but as a signal-symbol loop.

5 Dilemma 3: Neither Learnable nor Formalisable

Dilemma 3 deals with the problem that a vision system with similar complexity
than the human system can not be fully pre-designed but that learning needs
to be an essential part of such a system. However, successful learning already
requires a quite significant amount of structural knowledge integrated into the
system.

It is widely excepted that the formalisation of higher stages of visual process-
ing requires a transition of the original signal to a more abstract level. This does
not necessarily mean to switch directly to symbols. There are ways to follow a
hybrid approach, which allows to directly feed signal-based representations into
associative networks (see, ee.g., [7]).

The advantage of defining higher levels by statistical methods is a grounding
of the mapping in the problem and the data. However, the reached level is only
weakly defined in terms of semantic. This reduces the possibility to incorporate
structural knowledge about the problem. In human vision structural knowledge
can be embedded by genetical coding. Indeed, there is evidence that such prior
structural knowledge is available at all stages of visual processing [14,20]. This
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Symbol-Signal Loop

Fig. 1. Schematic description of a Signal-symbol loop

structural prior is necessary also in terms of the learning problem as such (see
[6] and dilemma 1).

The symbol related representation of multi-modal primitives provides a clear
structure for higher levels of visual processing which allow for the incorpora-
tion of structural knowledge. For example, using our visual primitives it is
possible to define a non-local stereo constraint that makes use of a grouping
process. This constraint is schematically displayed in figure 5 in [21]. It basi-
cally states that correspondences of entities in a group in the left image have
to have correspondences in the only one group in the right image (for details,
see [23]).

There occur even cases where correspondences can not be found by a local
similarity derived from the local signal since the image patches in the left and
right frame can become too dissimilar (e.g., in case of a large baseline and a
small object distance). Signal based approaches are not able to deal with these
situation. However, through integration of context information such cases can be
handled. For example in [23], good reconstructions can be achieved by using a
matching that did not take any local but only context information into account.
Another example is the use of structural knowledge about rigid body motion for
feature disambiguation (see figure 6 in [21]).

However, the incorporation of structure comes along with the problem of jus-
tifying this structure. In the signal based representation this was done through
learning. In the symbol based representation we buy the incorporation of the
structural constraints by heuristically defined rules working in a heuristically
defined feature space (see dilemma 1). For example, in [23] the grouping is based
on a set of standard criteria for good continuation of local line segments. Sum-
marising the discussions above:

Non-learnable/non-formalizable Dilemma: A lack of inherent structure
makes it difficult to formalise structural constraints that are however necessary
to control the system and facilitate learning. Explicit structure allows for an
incorporation of structural knowledge but is difficult to justify since it is in
general not possible to formalise all aspects of the problem.

The non-learnable/non-formalizable dilemma is related to the other two
dilemmas. First, the incooperation of structural knowledge constitute decisions
that require justification as already postulated in dilemma 1. Since structural
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knowledge addresses essentially relations of visual events and can work only on
condensed representations (as addressed in dilemma 2).

Ways Out of the Non-Learnable/Non-Formalizable Dilemma: There
is justified doubt about the possibility to acquire representations by learning
only as well about the possibility to fully formalize a vision system with similar
complexity than the human visual system. It is more likely that a sufficient
amount of structure has to be incorporated externally into the system probably
at all stages of processing. This structure requires justification. In biological
beings such structures are acquired by an learning mechanism, i.e., evolution,
acting on a different time scale. This opens one possibility to justify such prior
structure by looking at the hardwired components in human perception.

6 Summary and Conclusion

We have formulated three dilemmas that vision system face. Signal- and symbol-
based representations are caught in opposite end of the dilemmas. We have also
given examples to deal with these and by this we have experienced that the clear
borders between signal- and symbol-based become diluted.

As the main result of the discussions above we conclude that the extremes of
the signal- and symbol based approach is not feasable to design complex vision
systems but that they represent different levels in a hierarchy that should be
deeply intertwined. This is in analogy to the fact that an important factor for
the success of human vision is the feedback from higher levels to lower levels. In
this sense we argue that symbol-signal loops in which higher level structure feeds
back to the signal to correct early decisions might be an important part also for
a successful artificial system (see figure 1). In these loops, early interpretations
that are not verified by the context can be disambiguated (see dilemma 1). The
utilisation of contextual information is facilitated since the relational space is
reduced by the condensation process (see dilemma 2). Such loops can be based
on structural knowledge about properties of visual data that might be learned
or hardwired (see dilemma 3).
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Abstract. The mammalian visual system has developed complex strate-
gies to optimize the allocation of its limited attentional resources for the
relay of behaviorally relevant visual information. Here, we describe a frame-
work for the relay of visual information that is based on the tonic and burst
properties of the LGN. The framework consists of a multi-sensor transmit-
ter and receiver that are connected by a channel with limited total band-
width. Each sensor in the transmitter has two states, tonic and burst, and
the current state depends on the salience of the recent visual input. In burst
mode, a sensor transmits only one bit of information corresponding to the
absence or presence of a salient stimulus, while in tonic mode, a sensor at-
tempts to faithfully relay the input with as many bits as are available. By
comparing video reconstructed from the signals of detect/transmit sen-
sors with that reconstructed from the signals of transmit only sensors, we
demonstrate that the detect /transmit framework can significantly improve
relay by dynamically allocating bandwidth to the most salient areas of the
visual field.

1 Introduction

The mammalian early visual pathway serves to relay information about the ex-
ternal world to higher brain areas where it can be analyzed to make decisions and
govern behavior. However, this relay is constrained by the availability of limited
attentional resources. Because mammals can only attend to a small fraction of
the visual field at any given time, the early visual pathway must carry out two
distinct tasks: the detection of salient input to direct the deployment of atten-
tional resources and transmission of detailed features of those stimuli to higher
brain areas. Neurons in the lateral geniculate nucleus (LGN) of the thalamus
have two response modes known as tonic and burst, and there is evidence that
these response modes serve to facilitate the tasks of detection and transmission
(for review, see [1,2]).

The LGN relays the output of the visual system’s peripheral sensors in the
retina, making both feedforward and feedback connections with the visual system’s
computational center in the cortex. The response mode of an LGN neuron is deter-
mined by the state of a special set of low-threshold voltage-dependent channels
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known as T channels [3]. When the membrane is depolarized and the neuron is fir-
ing frequently, the T channels are inactivated, and the neuron is in tonic mode. In
tonic mode, the spontaneous firing rate is high, and modulations in the response are
linearly related to modulations in the visual input, allowing the neuron to faithfully
relay both excitatory and inhibitory features to the cortex. When the membrane is
hyperpolarized for a prolonged period of time and the neuron is silent, the T chan-
nels are de-inactivated and the neuron enters burst mode. When the neuron is in
burst mode, depolarization of the membrane opens the T channels, resulting in a
wave of current which further depolarizes the membrane and causes a stereotyped
burst of closely spaced action potentials. This allows the neuron to signal the ap-
pearance of a input with an amplified response.

During visual stimulation, the membrane potential (and thus, response mode)
of an LGN neuron is controlled in part by feedback connections from the cortex [4].
Thus, the thalamocortical circuit is thought to perform both detection and trans-
mission as follows: In the absence of a salient input, the membrane is hyperpolar-
ized, the T channels are de-inactivated, and the neuron is in burst mode. Upon the
appearance of a salient stimulus, the membrane is briefly depolarized and a burst
is triggered. Cortical feedback then maintains the depolarization of the neuron,
switching it to tonic mode and increasing the spontaneous firing rate. While the
stimulus persists, tonic firing transmits detailed information about the stimulus.
When the stimulus disappears, the neuron falls silent, cortical feedback hyperpo-
larizes the membrane, and the cycle repeats. This silence/burst/tonic/repeat re-
sponse pattern has been observed in both anesthetized and awake animals, in the
LGN responses to sinusoidal gratings [5,6] and natural scene movies, as objects
moved in and out of the receptive field [7].

Here, we develop a detect/transmit framework for the relay of visual infor-
mation based on the tonic and burst properties of the LGN. The framework
consists of a multi-sensor transmitter (LGN) and receiver (cortex) that are con-
nected by a channel with limited total bandwidth (attention). Each sensor in the
transmitter has two states: tonic and burst. In burst mode, a sensor transmits
only one bit of information corresponding to the absence or presence of a salient
stimulus. In tonic mode, a sensor attempts to faithfully relay the visual input
with as many bits as are available. The mode of each sensor is determined by the
salience of the recent visual input. To evaluate the detect/transmit framework,
we compare video reconstructed from the outputs of detect/transmit sensors
with that reconstructed from the outputs of transmit only sensors. The results
demonstrate that the detect/transmit framework can significantly increase the
fidelity of relay by dynamically allocating bandwidth to the most salient areas
of the visual field.

2 A Detect/Transmit Framework for the Relay of Visual
Information

Based on the tonic and burst properties of the LGN that facilitate the detection
and transmission of visual inputs, we have developed a framework for the high
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Fig. 1. An LGN inspired scheme for the relay of visual information

fidelity relay of visual information over a channel with limited bandwidth. The
framework consists of a multi-sensor transmitter with tonic and burst modes,
and a receiver that decodes the transmitted signal and controls the mode of each
sensor in the transmitter, designed to mimic cortical feedback control of LGN
response mode. A schematic diagram of the framework is shown in figure 1.

The intensity of the visual stimulus (s) is specified by P pixels per frame.
The transmitter contains P sensors, each of which corresponds directly to one
pixel of the visual input. The transmitter sends the output of each sensor to the
receiver once per frame via a noise-free, lossless channel. The bandwidth limit
on the channel (for all sensors combined) is specified as Gpq. bits/sec, which,
for a frame rate of F' frames/sec, corresponds to Bmaz/F = Bframe bits/frame.
Each sensor in the transmitter can operate in either tonic or burst mode. In
tonic mode, the sensor will attempt to transmit detailed features of the visual
stimulus with as many bits as are available. In burst mode, the sensor will signal
either the absence or presence of a salient stimulus with only one bit. Following
the relay of each frame, the receiver determines the mode (m) of each sensor
for the next frame based on the salience of the recent visual input and sends
the modes back to the transmitter (Note that the P bits/frame required to send
the mode signal back to the transmitter is additional and is not included in
constraint Bpaz)-

We designed the detect/transmit framework to mimic the ability of the mam-
malian visual system to efficiently transmit visual information based on ‘bottom-
up’ control of attention in response to changes in the external environment. How-
ever, ‘bottom-up’ control of attention is only one of many strategies that the vi-
sual system has developed to improve the transmission of visual information. Other
strategies, such as spatial and temporal decorrelation, separate ON and OFF chan-
nels, and mechanisms for task dependent ‘top-down’ control of attention are not
included in the model. Correspondingly, in evaluating the framework, we assumed
that the goal of the transmitter is to send a representation of the visual stimulus
with minimal mean-squared error (MSE). Thus, our model neglects any other fea-
tures of the neural response that may be important, such as sparseness or redun-
dancy [8]. Further discussion can be found in section 4.

2.1 Transmitter

The operation of the transmitter can be divided into three steps that must
be repeated for each frame of the input. First, the total bandwidth B qme is
distributed among the P sensors in the transmitter based on the mode signal m
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sent back from the receiver. Next, the recent history of the input is evaluated
for comparison with the current input. Finally, the output of each sensor is
calculated and sent to the receiver. Each of these steps is described in detail
below.

Distribute bandwidth: Let the number of sensors in burst and tonic mode at a
given time as determined by the mode signal m be denoted by npyrst and nionic.
The total bandwidth B,.qme must be distributed among the P sensors based on
their modes. Each burst sensor is allotted one bit (Bpyurst = 1), and the remaining
bits are distributed among the tonic sensors as follows:

ﬁframe — Nburst }

Ntonic

Btonic = flOO’I“ {

Thus, at time step ¢, the number of bits available to a given sensor, 3(p,t), is
determined based on its mode m(p,t) as follows:

s ={ G

0
1

Evaluate input history: For each sensor, the recent input history must be eval-
uated to determine the salience of the current input. Typically, the salience of
the input in a particular region of the visual field is evaluated across multiple
dimensions (orientation, color, contrast, etc.) [9]. Here, salience is measured in-
dependently for each pixel by simply comparing the current intensity to previous
intensities.

For a given sensor, the recent history of the input, Hy,,s¢, is specified by the
average of the previous « intensities of the corresponding pixel:

«
Hburst(p7 t) = Z S(pat - k)
k=1
where « specifies the number of frames to be considered in the history of the
input. If a sensor is in burst mode, it will signal a change in the input if the
current input is significantly different from Hy,,.s¢, alerting the receiver to switch
the sensor to tonic mode. For all sensors that have just switched from tonic
to burst mode at time ¢t (m(p,t — 1) = 1 and m(p,t) = 0), the history term
Hy,rst must be updated. For all sensors that remain in burst mode from the
previous time step (m(p,t — 1) = 0 and m(p,t) = 0), Hpyrst remains the same
(Hpurst(D,t) = Hpyrst(p,t — 1)). For all sensors in tonic mode, the input history
is evaluated at the receiver as described below.

Send signal: Once the mode, available bandwidth, and recent input history for
each sensor have been set, the transmitter can relay its output to the receiver.
The output of a sensor in burst mode depends on the salience of the current
input relative to the recent history Hy,,s:, with sensitivity determined by the
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parameter opy.s- If the current input is significantly different from the recent
history, then the sensor will indicate a change:

_ 1 ’ |S(p7 t) - Hburst(p> t)‘ 2 Oburst
r(p.t) = {0 , otherwise

Sensors in tonic mode simply relay the visual input, quantized to available num-
ber of bits Bionic:

’l"(p, t) = Q(S(pv t)a /Btonic)

where @ is the quantizer function.

2.2 Receiver

Receive signal: For sensors in burst mode, the receiver assumes that the input
is unchanged, regardless of the transmitter output. Of course, if the sensor is
in burst mode and the output r(p,t) = 1, the receiver will switch the sensor to
tonic mode for the next frame (see below), but has received no new information
about the input for the current frame. For sensors in tonic mode, the current
value of the input has been relayed. Thus, the input s is reconstructed at the
receiver as follows:

g(p, t) — {g(pﬂf - 1) ) m(p, t)

0
r(p,t) , m(pt)=1

Evaluate input history: Just as the transmitter uses the recent input history
to determine when the input changes significantly and signals the switch from
burst to tonic mode, the receiver must determine when the input is no longer
changing to control the switch back to burst mode. The switch from tonic to
burst mode is controlled by comparing the current reconstruction to the recent
history. At each time step, the history term for each tonic sensor is updated as
follows:
[e3%
Hionic(p,t) = > 3(p,t — k)
k=1

where « specifies the number of frames to be considered in the history of the
reconstructed input.

Set mode: For each sensor, the mode for the next frame is determined by the
current reconstruction and its recent history. Burst sensors that did not signal
a change in the input at time ¢ (r(p,t) = 0) remain in burst mode, while those
that did (r(p,t) = 1) switch to tonic mode. The mode of each tonic sensor is
determined by comparing the current reconstruction with Hyopie as follows:

_ 1 ) |§(p7 t) - Htonic‘ Z Otonic
m{p:t) = {O , otherwise

The modes are sent back to the transmitter and the process is repeated for the
next frame.



182 N.A. Lesica and G.B. Stanley

3 Examples of Video Relay with the Detect/Transmit
Framework

To demonstrate the performance of the detect/transmit framework, we used it to
relay and reconstruct a video movie. The video that we used contains footage of a
vehicle traffic intersection in Karlsruhe, Germany, taken by a stationary camera.
The video was provided by the Institut fiir Algorithmen und Kognitive Systeme,
Universitat Karlsruhe (http://i2lwww.ira.uka.de/image_ sequences). We used a
section of the video consisting of 1000 frames, each of which contains 100 x
100 8-bit (0 - 255) grayscale pixels. In addition to reconstructing video from

B  Transmit only C Detect and Transmit

A 2
(s-8)
30%
-- A m
MSE =0.78%
MSE = 1.8%
MSE = 2.1%

Fig. 2. Actual frames from the traffic video and the error in the reconstructions. Each
frame consisted of 100 x 100 8-bit grayscale pixels. (A) Actual frames 35, 50, and 65.
(B) Squared error in the reconstructed frames (% variance of intensity of actual frame)
from TO sensors with Bfrqme/P = 3. The MSE of each reconstructed frame is shown.
(C) Squared error in the reconstructed frames from D/T sensors with B¢rame/P = 3
and Gionic = Oburst = 2.
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the signals of detect/transmit (D/T) sensors, we also reconstructed video from
transmit only (TO) sensors as a baseline for comparison. To initialize the relay,
all sensors were set to burst mode and the first o frames of the reconstructed
input were set to the same value as the actual input. Because the frame rate of
the video was 30 frames/sec, a value of & = 3 was used so that the timescale of
the history term was similar to the time constant of T channel de-inactivation
in the LGN [3].

Example frames of the actual video and the error in the reconstructions are
shown in figure 2. Figure 2A shows actual frames 35, 50, and 65 of the video.
Figure 2B shows the squared error in the reconstructed frames (as a percent of
the variance of the intensity of the actual frame) from relay with TO sensors

A 7
Transmit only
200, ; :
MSE = 34.0 %
E 1
E 150 ;
E
S =
— é l?'lrarmu IP=3
100 : : ' :
B :
Detect and Transmit
200 : ;
MSE =13.7 %
é‘ |
E 150
E /. Burst Mode tonic = O burst = 2
H Tonic Mode B[ﬁm IP=3

Frames

Fig. 3. Actual and reconstructed intensities of one pixel of the traffic video over 100
frames. (A) The actual (gray) and reconstructed (black) intensities from a TO sensor
with Brame/P = 3. The MSE of the reconstruction is shown (% variance of intensity
of actual pixel). (B) The actual (gray) and reconstructed (black) intensities from a
D/T sensor with Bframe/P = 3 and Gionic = Tpurst = 2.
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with bandwidth limited to 3 bits/frame per sensor (Bfrqme/P = 3). The MSE
of each reconstructed frame is also shown. Figure 2C shows the squared error in
the reconstructed frames from relay with D/T sensors with Bfrqme/P = 3 and
Otonic = Oburst = 2. The reconstructions from the signals of the D/T sensors are
superior to those from the TO sensors, as indicated by the decreased MSE.
Figure 3 shows actual and reconstructed intensities of one pixel of the video
over 100 frames. Figure 3A shows the actual (gray) and reconstructed (black)
intensities from a TO sensor with §f,qme/P = 3, along with the corresponding
MSE. Figure 3B shows the actual (gray) and reconstructed (black) intensities
from a D/T sensor with B¢rame/P = 3 and 0tonic = Opurst = 2. The mode of the
sensor during the relay of each frame is indicated. During those times when the
input is not changing, the sensor is in burst mode. Thus, it requires only 1 bit
to transmit its signal, allowing the limited available bandwidth to be allocated
to other sensors with more salient input. During those times when the input is
varying, the sensor switches to tonic mode and transmits the value of the input

Tﬂ| - - - - -
l — G o B
60 — 4 1
—_ 2
| — 1
__ 50¢ s 0
é Transmit
2 40 only
>
E;?‘
= 30
0
=
20
10
0
2 3 4 5 6 7 8

ﬁl’ram-n"l P

Fig. 4. Reconstruction error depends on (3,4, and o. The MSE in the reconstruction
from D/T sensors is shown for various values of Bframe/P and o (see legend). For
reference, the MSE in the reconstruction from TO sensors is shown in gray.
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with all available bits. The dynamic allocation of bandwidth provided by the
detect/transmit framework improves the reconstruction, as illustrated by the
decreased MSE.

To investigate the effects of the salience sensitivity and the total available
bandwidth on the fidelity of relay, we reconstructed the video from the signals
of D/T and TO sensors with a range of values of B4: and Gronic = Tpurst = 0.
The MSE of the reconstructions over all pixels and frames of the video are shown
in figure 4. When a relatively small amount of total bandwidth is available, the
lowest MSE is given by the reconstruction from the relay with the least sensi-
tive sensors (thick black lines). This result indicates that, when bandwidth is
severely limited, a better reconstruction is achieved by having fewer sensors in
tonic mode with more available bits per sensor than by dividing the available
bandwidth among many sensors. As more total bandwidth becomes available, the
lowest MSE is given by the reconstruction from the relay with the most sensitive
sensors (thin black lines). This result indicates that, when there is enough total
bandwidth to encode all of the variations in the input, the best reconstruction
is achieved when small fluctuations are detected.

4 Discussion

We have developed a detect/transmit framework based on the tonic and burst
properties of LGN neurons to facilitate the high fidelity relay of visual informa-
tion with limited bandwidth. The framework enables the dynamic allocation of
bandwidth to those sensors which correspond to the most salient areas of the
visual field. Each sensor in the transmitter operates in either tonic mode (sig-
nals input intensity with all available bits) or burst mode (signals the absence
or presence of a salient input with only 1 bit), depending on the control signal
sent by the receiver. We have demonstrated that video reconstructions from the
signals of detect/transmit (D/T) sensors are superior to reconstructions from
transmit only (TO) sensors and our results illustrate that the minimum MSE
reconstructions are obtained when the sensitivity of the sensors (o) is set to an
appropriate value for the total available bandwidth (Gax)-

We designed the detect/transmit framework to mimic the ability of the mam-
malian visual system to dynamically allocate attentional resources to behav-
iorally relevant areas of the visual field. However, our framework only includes
mechanisms for ‘bottom-up’ control of attention based on changes in the exter-
nal environment, and, correspondingly, control of transmitter mode was based
solely on the salience of the input [10]. However, the mammalian visual system
also contains mechanisms for ‘top-down’ control of attention that is dependent
on the current behavioral task [11]. For example, if an animal is expecting some-
thing to appear in a certain area of the visual field, it may direct its attention to
that area before anything actually appears. Modifications to the detect/transmit
framework to incorporate ‘top-down’ attention would be made at the receiver,
specifically to the method used to control the mode of the transmitter sensors.

In addition to attentional mechanisms, the mammalian visual system incorpo-
rates anumber of other strategies to optimize the relay of visual information. While
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the sensors in our transmitter have a one-to-one correspondence with a pixel of
the visual input, retinal ganglion cells, which transmit visual information from the
retina to the LGN, are known to integrate the inputs of many photoreceptors over
space and time to enhance contrast sensitivity and reduce the redundancy in their
responses [12,13,14]. To incorporate these principles into our framework, each sen-
sor would need to integrate multiple pixels of the visual input into its output and
the reconstruction scheme in the receiver would have to be changed accordingly.
The development of such modifications and the implementation of ‘top-down’ at-
tention as described above are directions for future research.
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Abstract. The paper addresses experimental results on peri-space geometry and
topology perception with a touch sense. A dedicated “perception-action” plat-
form, involving artificial vision and a hand tactile stimulation device as well as
convenient touch-space perception experiments have been designed. The pro-
posed gravitation representation of the space is based upon nearest object edge
displays on tactile device, which dynamically modifies with subject navigating
in the plate form. This representation has been evaluated on voluntary blind-
folded healthy male and female subjects. The collected data show that it is pos-
sible to navigate in space using the touch stimulating device.

1 Introduction

The ability to move in 3D space, in safe and independent manner, is a basic and vital
human activity, for which the space perception seems to be a fundamental element.
Therefore, an adequate form of space internal (brain) representation is necessary. This
latter is built only with our senses (vision, touch, hear, smell, kinesthesia, and so on);
however, if the navigation task is considered, the space perception can be assisted via
a map, a topographic representation of the space.

A (cognitive) map could be of assistance for space perception. Indeed, one of the
map’s functions is to provide data impossible to perceive with vision (because they
are hidden or remote), data for objects’ localization, data for distance to objects’ esti-
mation, data for displacement direction estimation, data for displacement (or journey)
path elaboration, and so on.

The tactile map concept is used since 6000 years [8], but only very late the re-
searchers have realized its importance for spatial information processing.

“Tactual map” can be used for evaluation of the influence of map’s orientation and
subject’s orientation in the environment [15].

Some experimental environments, similar to tactile map [16], [9], [14], have been
used for memory and inference tests performance evaluation during the haptic explo-
ration of the spatial relationship between objects located in limited space.

A familiar environment reconstruction task via tabletop (map, gravitation) model
construction allows to evaluate someone’s ability for space integration [6-7].

A route construction model, in both small- and large- scale environment, can be
supported by a map as well [13].

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 187 —194, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Very simple static aligned maps encoding static beacons can be successfully used
since the age of 4 for moving and for self localization in a peri-personal space [4],
[11], [8], [15], [16]; the distance between 2 objects (affordance) can also be evaluated
with an error less than 20% [18]. Visually impaired people can use these maps for
navigation in unfamiliar indoor and outdoor environments [10].

Since its beginning a tactile map encompasses a cognitive (symbolic) 2D projec-
tion of a 3D real space, (quasi) global (such as a city map) or local (a peri-personal
space, a few meters ahead of you).

The use of cognitive maps implies synergetic processes: space perception and
space cognition. Perceptual processes require adaptation of a map provided knowl-
edge representation to biosensors perceptual capabilities; line, geometric figures and
global space configuration perception are the main challenges of this process. Cogni-
tive processes are complex; they require 3D = 2D projection and its scale, map orien-
tation (aligned, misaligned, etc.), map spatial localization, shift between spatial
frames of referentials (allocentered <-> egocentered shift), inertial data processing,
observed scene dynamics analysis, etc.

Concept of dynamic cognitive maps has been evaluated mainly in laboratories in
the context of static tasks such as object recognition [12] on non-portable systems.
However, recent physiology and technology progresses allow to implement portable
dynamic cognitive maps, which content adapts to environment changes in real time.
Moreover, such maps can display egocentered and allocentered scene representation
(contrary to Bach-y-Rita’s TVSS display unit which is egocentered only, [1]).

This paper presents an ego-allo- centered dynamic tactile map for 3D space binary
representation structured by the navigation task, and its experimental evaluation.

Section 2 introduces the space binary representation, and sketches the main physio-
logical basis justifying it. Section 3 briefly presents experimental plate-form Section 4
outlines experiments performed to validate the proposed space representation Section
5 summarizes the collected results and provides some future research directions.

2 Space Partition: Navigational Space Binary Representation

Figure 1 summarizes the main steps of cognitive map building process in 3D world
perception task. Almost all senses, such as vision, touch, hearing, vestibule, proprio-
ception (kinesthesia), etc., participate in space perception and its coherent representa-
tion coding (via data internal combination). Despite of some redundant information
provided to the brain by different sensory channels, it seems that our senses ontogene-
sis requires/expects this redundancy [15].

Visual navigation action “naturally” partitions space into two subspaces: obstacles
and obstacles-free zones, thus defines the cognitive space binary representation
(Figure 2).

This representation varies in time (with scene dynamic) and in space (changing of
the observation point). Therefore navigation action can be efficiently executed if it is
supported by space dynamic cognitive map supporting allo- and ego- centered space
binary representations.

In the case of a sensory deficiency, it is necessary to provide the most appropriate
representation of the space binary representation and to find the most appropriate
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sensory channel to make it participate in brain space cognitive map building. In the
case of sightless, the touch sense has proven to be an efficient input data channel for
static data (Braille code); moreover, the recent results on touch sense confirm [3] that
the touch, as many other senses, reacts on the gradient of information.

Consequently, touch sense channel is a good candidate to (partly) replace visual

channel and to receive data from the dynamic cognitive map of the space binary rep-
resentation useful for navigation.
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Fig. 1. Main steps of space cognitive map building
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3 Experimental Plate-Form

In order to validate our hypothesis on space for navigation binary representation an
experimental plate-form has been designed. It encompasses two components: a tactile
interface, which stimulates touch sense, and tracking plate-form, which allows to
track subject’s using the tactile device when moving in the space.

3.1 Tactile Interface

The tactile surface, a Braille surface, is realised as a two dimensional micro-actuators
(taxels) matrix (Figure 3). The Shape Memory Alloy (SMA) technology (Figure 3a)
has been chosen [19], because it is a good compromise between physical characteris-
tics and tactile perception physiology. Indeed, physiological data allow to determine
the most appropriate for touch sense stimulation taxel’s dimensions (length, frequency
contact force, inter taxel distance, etc.).

Micro Colls

Fig. 3. Touch stimulating devices: a) SMA based, LRP/CEA designed; b) ViTAL, vibrating
taxels, CEA designed

Moreover, the SMA technology makes possible the design of a system with a con-
venient energy consumption (wearable battery), good temporal performance and reli-
ability. However, SMA tactile device being in prototype stage only, the vibrating
VITAL device realised by the CEA, France has been used for experiments (Figure .3b)

3.2 Tracking Plat-Form

Figure 4 shows the built “perception-action” plat-form allowing subject tracking in
limited space (7x7m?), while Figure 5 shows its usage during the experiments.

This first version of “perception-action” plate-form encompasses three elements: a
personal computer (PC), a wide angle color camera (webcam) located 6 m above the
filmed (peri-personal) space and dedicated (original) tracking software.

The camera acquires images (every 10s), in allocentered referential, which are
processed by the tracking software running on a PC. Acquired images encompass two
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information fundamental for the tracking system: direction of subject’s head (gaze)
navigating in the environment, and subject’s seen part of the navigation space (its
peri-personal space). The quite precise gaze direction is obtained via a bicolor pointer
attached to the hat carried by subject during his navigation in the plate-form; indeed,
the bicolor pointer direction corresponds to subject’s gaze direction.

We display on the computer’s screen three images for control: space “seen” by the
camera (Figure 4, central part of the image), part of the space “seen” by the subject
(Figure 4, to the left with respect to the central part of the image) and space represen-
tation on the touch stimulating device subject’s carried during the navigation
(Figure 4, to the right with respect to the central part of the image).
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Fig. 4. Tracking plate-form

Fig. 5. Experimental data collection during the space exploration with VITAL interface
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4 Experiments

Three experiments have been led with blindfolded voluntary subjects. In experiments
1 and 2 subjects have been seated in front of the VITAL device (stationary egocen-
tered position), while they have carried the VITAL in place closed to their gravity
center in the experiment 3 (almost stationary ego-centered position).

4.1 Experiment 1: Static Form Tactile Perception

The test of static forms displayed on the tactile surface perception has been the goal of
this experiment. We wanted to identify if there are preferred geometric shapes in
tactile perceptive modality (line, square, circle, arrow), and preferred tactile represen-
tation (wired-frame, as shown in Figure 6, or full); what is the best scale (out of three:
large, medium and small) for the forms’ perception.

rectangle line cercle triangle

Fig. 6. Static framed shapes for tactile recognition

4.2 Experiment 2: Form and Moving Direction Tactile Perception

This experiment collected data in order to know whether or not the displayed shape
can induce the moving stimuli direction.

In vision language, an arrow symbolizes the direction of the movement. This ex-
periment aimed to determine if a “tactile” arrow could have the same effect: speed-up
the direction recognition (Figure 7).

Moving direction W-> E

Fig. 7. Shapes for direction recognition

4.3 Experiment 3: Navigation in 3D Space with Tactile Interface

This experiment shown in Figure 5 has been defined in order to understand if and how
it is possible to perceive the space by blindfolded people. After a very short period of
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learning how to the tactile device (2 minutes in the average) with the assistance of a
supervisor, blindfolded subjects have been invited to navigate to navigate in the space
using the tactile device. The whole experiments took 10 minutes.

5 Discussion

From data collected during the experiment 1 is it possible to conclude that there is a
bad perception of filled forms. Moreover, many subjects have complained about tac-
tile surface (8x8 taxels) too weak resolution.

Data collected during the experiment 2 shows that it is possible to recognize a di-
rection, but the recognition process is shape insensitive (i,e., the arrow does not speed
up the moving direction recognition).

From data collected during the experiment 3 it is possible to conclude that (1) it is
possible to perceive the space organization via its tactile representation; (2) nearest
obstacle edge representation can be appropriate for a space binary representation
(obstacles — obstacle free space); (3) it is possible to integrate a space representation
to a navigation tool.

Future experiments have to be performed on blind voluntary subjects.

All experiments have to be done on touch stimulating SMA based (not vibrating)
tactile interface ; indeed, SMA device will involve in perception Meisner’ biosensors,
while vibrating interface will involve mainly Paccini’s biosensors, so tactile informa-
tion can be easier understood by subjects (blind people).

Furthermore, new experiments should provide additional data about space repre-
sentation and representation precision.
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Abstract. Frontal eye field neurons discharge in response to behaviourally
relevant stimuli that are potential targets for saccades. Distinct perceptual and
oculomotor processes have been dissociated in the monkey FEFs, but little is
known about the perceptual capacity of human FEFs. To explore this, transcra-
nial magnetic stimulation (TMS) was applied over the FEFs while subjects car-
ried out visual search. TMS impaired search performance (d') when applied be-
tween 40 and 80ms after search array onset. Unit recordings show that FEF
signal during this time period predicts monkeys’ behavioural reports on hit,
miss, false alarm and correct rejection trials. Our data demonstrate that the hu-
man FEFs make a critical early contribution to search performance. We argue
that this reflects the operation of a visuospatial selection process within the
FEFs that is not reducible to saccade programs.

1 Introduction

The frontal eye fields (FEFs), in the arcuate sulcus of the monkey brain (BA8/6) [1],
have an important role in converting the outcome of visual processing into eye
movement commands. In classical anatomical models of the visual system [2], the
FEFs are situated in the upper reaches of the visual hierarchy, several levels above
sensory visual areas. However, recent findings have challenged the characterization of
FEF function solely in terms of oculomotor control.

FEF neurons exhibit response latencies in the same 40-80ms range as early sensory
visual areas V1, V2, MT and MST [3], whilst the discovery of feed-forward connec-
tivity between FEF and V4 has re-defined the position of the FEFs within the visual
hierarchy [4]. FEF damage can induce visual field defects which remain evident in
raised detection thresholds after oculomotor deficits have recovered [5]. Using feature
[6] and conjunction [7] search tasks, distinct processes have been dissociated in the
FEFs: target selection by FEF visual neurons and saccade programming by FEF
movement neurons. FEF visual neurons are not selective for particular physical visual
attributes [8]. Instead, they respond to behaviourally relevant stimuli, and have been
described as computing a saliency map which encodes targets for potential saccades
[9]. The initial visual response (50ms post-stimulus) is non-selective, but by about
100-120ms the activity of FEF visual neurons distinguishes with 95% reliability tar-
gets from distractors in the receptive field [10]. Distractor-related activity is sup-
pressed, while target-related activity evolves to signal the spatial location of the
stimulus. FEF movement neurons do not respond to visual stimulation, but fire before
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and during saccades, signalling whether and when to make a saccade [11]. Target se-
lection occurs independently of saccade programming: the timing of selection does
not predict saccadic reaction times and selection occurs whether or not monkeys pro-
ceed to saccade to the target [12].

In neuroimaging studies, the FEFs are commonly activated in orienting paradigms,
whether or not an eye movement is required. In the latter case, FEF activation is at-
tributed to the generation of saccade programs that are not overtly executed, rather
than to visual analytic processes in the FEFs. To date, only four published studies
have directly assessed the perceptual role of the human FEFs. These have reported
roles for the FEFs in contralateral visual stimulus analysis [13], preparatory vision
[14, 15], and target discrimination in conjunction visual search [16].

The present experiments used TMS to test the hypothesis that, as in the monkey
brain, human FEFs make a critical early (perceptual) contribution to visual search per-
formance. To de-couple perceptual from oculomotor processes, a conjunction search
task was used in which eye movements were not required. Search arrays were pre-
sented briefly and fixation was monitored. Array duration was titrated so that each
subject performed at 75% accuracy. TMS effects were quantified using a measure of
perceptual sensitivity (d').

2 Methods

2.1 Subjects

Eight subjects (7 male, 1 female) participated in Experiment 1 (mean age = 27.6 +
4.3). Nine subjects (8 male, 1 female) participated in Experiment 2 (mean age = 27.7
+ 3.6). Of these, four had participated in Experiment 1. A further four subjects were
discarded for reasons given below (see Task Design). All subjects were right-handed
and had normal or corrected-to-normal vision. All gave informed written consent and
reported an absence of any neurological condition in their known family history. All
procedures were approved by the Oxford Research Ethics Committee (OXxREC) and
the Institute of Neurology, University College London.

2.2 Visual Stimuli

Visual search arrays were displayed on a 16” VDU with 100 Hz vertical refresh rate
running E-Prime software (Psychology Software Tools, Pittsburgh). Subjects sat in a
dark room 57cm from of the screen and were restricted by a forehead and chin rest.
Each search array subtended 2 x 2 degrees of visual angle around a central fixation
cross. Each array contained 12 stimuli on a grey background (35.8cd/m?). In Experi-
ment 1, these were luminance-matched (22 cd/m?) purple vertical (CIE: x = 0.217, y =
0.130) and green horizontal (CIE: x =0.282, y =0.589) lines, each subtending ca. 0.23
degrees of visual angle (DVA). The target was a purple horizontal and was present on
50% of trials. In Experiment 2, stimuli were luminance-matched (23.3 cd/m?) pink
(CIE: x = 0.288, y = 0.149) and purple (CIE: x = 0.233, y = 0.203) diagonal lines in
opposite orientations. Each line subtended ca. 0.18 DVA. The target was a purple di-
agonal sharing the same orientation as the pink diagonals and was present on 50% of
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trials. The background luminance of both arrays was uniform grey (35.8cd/m?). In
both experiments, the stimulus mask subtended 2 x 2 DVA and was composed of
patches of the two stimulus colours used in that experiment.

2.3 Task Design

Task procedure replicated Muggleton, et al. (2003)(see Figure 1(a)). A trial began
with a central fixation cross for 500ms, followed by a briefly presented search array,
which was masked. Subjects had to make a target present/absent response using a key
press. Accuracy was emphasized over speed. The inter-trial interval was 2 sec. Array
duration was determined by a staircase procedure which varied presentation by one
screen refresh (10ms) until subjects performed at 75% accuracy. Correct performance
on 6/8 trials on two consecutive blocks (8 trials) determined a subject’s viewing
threshold. Subjects then ran one block of 60 trials (Experiment 1) or two blocks of 40
trials (Experiment 2) to confirm the validity of the threshold value. When subjects
scored d’ > 1.0, they began formal trials. If a subject failed to achieve this criterion,
array duration was increased until the criterion was reached. Block order was coun-
terbalanced. Procedures were identical in both experiments.

@
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(500tms) (variable duration) (until response)
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Fig. 1. (a) A trial began with central fixation (i), followed by the search array, for a duration de-
termined individually for each subject (ii), and then a mask until the subject responded (iii). (b)
TMS (10Hz, 500ms) was applied over the right FEFs at three times: (1) at search array onset
(Oms), (2) 100ms after array onset (100ms), (3) 200ms after array onset.

In Experiment 1, subjects performed five blocks of 60 trials, one for each TMS
condition: Vertex, V5, FEF ), FEF 9 and FEF 5y In the first three conditions (Ver-
tex, V5 and FEFp)), 10Hz TMS was applied for 500ms at search array onset (see Fig-
ure 1(b)). In the latter two conditions, TMS was applied 100ms (FEF () or 200ms
(FEF o)) after array onset. By comparing FEF ), FEF (o, and FEF 5o, against Vertex,
the aim was to test the effect of TMS over FEF during the first 100ms of visual proc-
essing (FEFy); during visual processing, but after the first 100ms (FEFq)); and
when subjects were no longer viewing the search array (FEF y0)).
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In Experiment 2, subjects ran two blocks (40 trials) in each of five timing condi-
tions (0/40ms; 40/80ms; 80/120ms; “pre-threshold” and “post-threshold”) for each
TMS site (Vertex and right FEF). In the first three conditions, dual TMS pulses were
applied at: 0/40ms; 40/80ms and 80/120ms after array onset; in the last two condi-
tions, pulses were applied during the last 40ms below each subject’s visual threshold
(“pre-threshold”) and during the first 40ms above threshold (“post- threshold”), (eg:
for a threshold of 150ms, TMS was applied at 100/140 and 160/200ms, respectively)
(Figure 2). Interspersed among these experimental blocks, subjects performed four
blocks in which TMS was not applied. If d* was below 1.0 on any of these baseline
blocks, the subject was excluded from the experiment. Four subjects were discounted
on these grounds.

1 2 3 4 5
o040y 40,80y (80,120 ("Pre™) ; ("Post?)
i i
| VN
: | | [ l |
I I
| |
Oms 40ms B0ms 120ms TH—40ms i TH + 40ms
i Time (ms) i
Search Array Onset Visual Threshold (TH)

Fig. 2. Double-Pulse TMS was applied in five conditions. The timing of the first three condi-
tions was determined relative to search array onset. The last two conditions were determined
relative to each individual’s visual threshold and differed across subjects.

2.4 Eye Movement Recording and Cortical Site Localization

To confirm that saccades or eye blinks could not account for the results, fixation was
monitored using infrared light transducers in the Skalar IRIS 6500 system attached to
the forehead rest. Signals were sampled at a rate of 1000 Hz by an A-D converter card
and were recorded using DASYlab 5 software. Eye position traces were recorded for
search array duration on every trial and the equipment was re-calibrated between
blocks. Based on the results of a previous experiment [16], right FEF was chosen as
the site of an expected TMS effect. FEF was localized using frameless stereotaxy
(Brainsight, Rogue Research, Montreal, Canada) and anatomical landmarks. Stimula-
tion was applied over the posterior middle frontal gyrus, at the junction of the precen-
tral and superior frontal sulci [17] at coordinates that correspond well with other FEF
TMS [18] and imaging studies [19]. Vertex was chosen as the principal control for
somatosensory and acoustic TMS artefacts. V5 served as an additional control to
demonstrate that FEF TMS effects were specific, and not a general consequence of in-
terference with the visual system. V5 was functionally localized using the established
method of moving phosphene elicitation [20].
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2.5 Transcranial Magnetic Stimulation

A Magstim Super Rapid machine (Magstim Company, Dyfed, U.K.) was used to de-
liver repetitive- and double-pulse TMS through a series of small diameter (50mm)
figure-of-eight TMS coils. Coils were cooled on ice before use to prevent over-
heating during a block. Over FEF and Vertex, the coil was oriented parallel to the
floor with the handle running in an anterior-posterior direction. Over V5, the coil was
oriented at a right angle to the floor. 10Hz TMS was applied at 65% of stimulator
output over Vertex and FEF and at 110% of phosphene threshold over V5.

3 Results

3.1 Experiment 1: Repetitive-Pulse TMS

The d' data for all eight subjects in three of the five conditions (Vertex, V5, FEF )
were submitted to a one-way repeated measures ANOVA to test whether TMS over
the FEF degraded search performance. There was a main effect of TMS Site (F(2,14)
= 5.844, p = 0.014). Planned comparisons revealed a significant difference between
Vertex and FEF ) (F(1,7) = 7.930, p = 0.026) but no difference between the two con-
trol sites, Vertex and V5 (F(1,7) = 1.525, p = 0.257) (Figure 3). TMS reduced d' in the
FEF;, but not the Vertex block (mean FEF = 1.124, SE = 0.263; mean vertex =
1.754, SE = 0.184). To test for a selective effect on hits or false alarms, the data were
analysed by response type: ANOVA (TMS Site * Response Type (hits, false alarms)).
The interaction was not significant (F(6,42) = 1.984, p = 0.09). Bias scores (C)
showed that subjects had a tendency towards “target absent” responses, but this was
not affected by TMS (F(2,14) = 0.512, p = 0.610; mean C values: vertex = 0.16 (SE =
0.2), FEF )= 0.356 (SE = 0.183), V5 =0.417 (SE = 0.132)).

To test the hypothesis that earlier TMS application would produce greater interfer-
ence, d' data from the FEF ), FEF o, and FEF ) conditions were compared against
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Fig. 3. Effect of rTMS over right FEF on Search Performance (Experiment 1). Search perform-
ance was impaired when TMS was applied over right FEF, but not over V5 or Vertex. TMS
significantly reduced d' (* refers to planned comparison with Vertex, p < 0.05)(n = 8).
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Vertex. It was expected that all subjects would have thresholds < 200ms, so that in the
FEF 500 (control) condition TMS would be applied during the mask. Two subjects had
longer thresholds (230/250ms, mean: 150ms), so their data were excluded. A re-
peated-measures ANOVA showed no main effect of TMS Condition (Vertex, FEF ),
FEF 100) and FEF 500))(F(3,15) = 2.249, p = 0.125). However, planned contrasts against
Vertex revealed a significant reduction in d' in the FEF, condition only: (F(1,5) =
25.019, p = 0.004) (mean FEF, = 1.152, SE = 0.238; mean Vertex =1.585, SE =
0.198). There was a trend in the FEF ¢, condition (F(1,5) = 4.904, p = 0.078), but the
FEF 500y condition did not approach significance (F(1,5) = 1.513, p = 0.273). The re-
sults suggest that the earlier TMS was applied, the greater the reduction in d' (see Fig-
ure 4). Subjects tended towards “target absent” responses in all conditions. TMS did
not affect this response bias (F(3,15) = 2.017, p = 0.215; mean C values: vertex =
0.376 (SE = 0.125), FEF, = 0.278 (SE = 0.199), FEF o0y = 0.296 (SE = .138),
FEF(Q()O) = 0176 (SE = 214))
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Fig. 4. Search performance (d') was impaired when TMS was applied over FEF at search array
onset (* refers to planned comparison with Vertex, p < 0.05) (n = 6)
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Fig. 5. Double-pulse TMS over right FEF at 40/80ms significantly reduced d' (* refers to
MANOVA with “TMS Time” and “TMS Site” (Vertex, FEF) as factors, p < 0.05)(n =9)
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3.2 Experiment 2: Double-Pulse TMS

Experiment 2 was designed to sample discrete sub-sets of the first 200ms of array
processing. A MANOVA tested whether TMS over the FEF differed significantly
from Vertex (control) in any of the five time periods (0/40, 40/80, 80/120, ‘Pre-
Threshold’, ‘Post-Threshold’). TMS applied over FEF in the 40/80ms condition only
significantly reduced perceptual sensitivity (F(1,16) = 4.762, p = 0.044) (FEF 40/80
mean d' = 1.132, SE = 0.133; Vertex 40/80 mean d' = 1.543, SE = 0.133) (Figure 5).
There was no selective effect on hits or false alarms, nor did TMS affect subjects’
baseline “target absent” response bias.

4 Discussion

These experiments aimed to test whether the human FEFs make a critical perceptual
contribution to visual search. In Experiment 1, rTMS over right FEF reduced percep-
tual sensitivity (d'), compared to control TMS over Vertex or V5. Perceptual process-
ing was de-coupled from saccade programming by using brief displays and by moni-
toring fixation. Saccades and blinks occurred on fewer than 3% of trials, which did
not differ across conditions. The reduction in discriminability indicates that the hu-
man FEFs are critical for normal conjunction search performance when saccades are
not required. This replicates the findings of Muggleton, et al (2003). Experiment 1
further suggested that the earlier TMS was applied, the greater the disruptive effect.
Experiment 2 isolated disruption to within 40-80ms after search array onset. This
temporal profile of interference coincides with neurophysiological data. Thompson &
Schall (1999) showed that the amplitude of signal in FEF neurons 60-90ms after vis-
ual stimulus onset predicted monkeys’ perceptual reports on hit, miss, false alarm and
correct rejection trials. The early and discrete effect of TMS suggests disruption of
visual selection processes in the FEFs rather than saccade programming.

Under normal circumstances, visual scenes are inspected by cycles of stimulus
fixation and analysis, followed by saccades that direct gaze to subsequent targets in
the visual scene. Minimum estimates of the time required to perform these operations
suggest that perceptual processing requires approximately 100ms [21], while saccade
programming requires 100-150ms [22]. The contention that early TMS interference
reflects disruption of target selection, rather than saccade programming, seems to im-
ply that there are temporally discrete stages processing. However, there is evidence
that both processes occur in parallel [23]. Moreover, it has been shown that FEF
movement neurons are modulated by distractor properties, suggesting a model of con-
tinuous information transfer between FEF visual and motor neurons [7]. Accordingly,
disruption of visual analytic processes in FEF should produce a concomitant build-up
of error in the signal that shapes the oculomotor response. Hence, despite no differ-
ence in saccade rates across conditions, one could argue that the TMS effects stem
from disruption of latent saccade programming.

In Experiment 1, TMS reduced d’in the FEF ) condition. This was attributed to dis-
ruption of target selection processes in FEF occurring during the first 100ms. How-
ever, TMS was applied for 500ms duration so may have disrupted both perceptual and
oculomotor processes. It is beyond the scope of the rTMS design to evaluate this pos-
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sibility. By contrast, the double-pulse design (Experiment 2) showed a discrete TMS
effect that corresponds with the timing of target selection processes in monkey FEF.
Interference occurred early (40-80ms), about 100ms earlier than the mean visual
threshold (178ms). Since the effect of a TMS pulse on neural firing is immediate, if
the effects were due to disruption of latent saccade programs then one would expect
interference to occur later, closer to the time of saccade evolution (eg: in the 80/120
or 120/160 time bin). Significantly, there was no effect in any of the later time bins.
Moreover, although it is clear that disrupting target selection should affect saccade
programming, it is difficult to explain how disrupting saccade programs should affect
visual discrimination (d'). In light of this, an account based on target selection is more
parsimonious than one based on latent saccade programs.

The temporal correspondence between the TMS effect and FEF unit activity is not
exact. Typically, target selection in FEF neurons evolves over 50-70ms after the onset
of a search array and peaks at 100-120ms, by which time the neuronal response dis-
tinguishes targets from distractors with 95% reliability [10]. This peak has been
shown to occur later as task difficulty is increased. The combination of conjunction
search and an early TMS effect thus seems to pose an interpretative problem. The fol-
lowing observations are offered in an attempt to address this. First, FEF neurons can
exhibit target selection during conjunction search that is as early as that recorded dur-
ing feature search [10]. Second, our search arrays were foveal, whereas the monkey
displays were peripheral, a factor which might contribute to the early timing of our ef-
fect. Third, repeated target/distractor combinations likely induced feature priming
across the ten blocks of eighty trials in Experiment 2 [24]. Such priming has been
shown to induce earlier target selection in the monkey FEFs [25]. Finally, species dif-
ferences should not be dismissed in considering the lack of precise concordance be-
tween single unit and TMS interference times.

Based on the temporal correspondence between our TMS results and single-unit
data, I have argued that our data reflect disruption of target selection processes within
the FEFs. However, the target selection process manifested in FEF is likely to be
closely related to selection processes observed in extrastriate areas, such as V4 [26].
FEF sends extensive feedback projections to extrastriate cortex [27], and has been
proposed to exert “top-down control” on these areas, such as modulating the gain of
visually driven signals [28]. A number of studies have shown that feedback connec-
tions are matched in conduction speed to feedforward connections [29], consistent
with the notion that feedback modulation by FEF may occur simultaneous with feed-
forward driving input. Hence, the early timing of the TMS effect does not arbitrate
between a feedforward or feedback interpretation.

The computational role of human FEF in vision remains to be established. Current
functional sketches ascribe roles for FEF in covert orienting, search, saliency map
formation and oculomotor responses [30]. Similar functions have been ascribed to
posterior parietal cortex (PPC) [31]. FEF and PPC share strong reciprocal intercon-
nections [32] and are both consistently activated nodes in imaging studies of these
functions. Despite these similar profiles, imaging data are most commonly interpreted
in terms of relative specialization of FEF for motor-exploratory and PPC for percep-
tual-representational aspects of attentional tasks [33]. A previous study applied TMS
over the PPC and showed that interference times were yoked to subjects’ responses:
RT costs were induced 100ms after array onset on target present trials and at 160ms
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on target absent trials [34]. Although the search tasks used were not identical, taken
together, the results suggest that the FEFs may contribute to search performance ear-
lier than the PPC. These findings emphasize the need for future work to distinguish
the relative contributions of the FEF and PPC to visual target selection.
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Abstract. End-stopped cells in cortical area V1, which combine out-
puts of complex cells tuned to different orientations, serve to detect line
and edge crossings (junctions) and points with a large curvature. In this
paper we study the importance of the multi-scale keypoint representa-
tion, i.e. retinotopic keypoint maps which are tuned to different spatial
frequencies (scale or Level-of-Detail). We show that this representation
provides important information for Focus-of-Attention (FoA) and object
detection. In particular, we show that hierarchically-structured saliency
maps for FoA can be obtained, and that combinations over scales in
conjunction with spatial symmetries can lead to face detection through
grouping operators that deal with keypoints at the eyes, nose and mouth,
especially when non-classical receptive field inhibition is employed. Al-
though a face detector can be based on feedforward and feedback loops
within area V1, such an operator must be embedded into dorsal and
ventral data streams to and from higher areas for obtaining translation-,
rotation- and scale-invariant face (object) detection.

1 Introduction

Our visual system is still a huge puzzle with a lot of missing pieces. Even in
the first processing layers in area V1 of the visual cortex there remain many
open gaps, despite the amount of knowledge already compiled, e.g. [3,5,25]. Re-
cently, models of cortical cells, i.e. simple, complex and end-stopped, have been
developed, e.g. [7]. In addition, several inhibition models [2,17], keypoint detec-
tion [7,12,22] and line/edge detection schemes [2,12,14,15], including disparity
models [6,11], have become available. On the basis of these models and possi-
ble processing schemes, it is now possible to create a cortical architecture for
figure-background segregation [16] and visual attention or Focus-of-Attention
(FoA), bottom-up and/or top-down [4,8,13], and even for object categorisation
and recognition.

In this paper we will focus exclusively on keypoints, for which Heitger et
al. [7] developed a single-scale basis model of single and double end-stopped cells.
Wiirtz and Lourens [22] and Rodrigues and du Buf [12] presented a “multi-scale”
approach: detection stabilisation is obtained by averaging keypoint positions over
a few neighbouring micro-scales. In [13] we introduced a truly multi-scale anal-
ysis: if there are simple and complex cells tuned to different spatial frequencies,
spanning an interval of multiple octaves, it can be expected that there are also
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end-stopped cells at all frequencies. We analysed the multi-scale keypoint repre-
sentation, from very fine to very coarse scales, in order to study its importance
and possibilities for developing a cortical architecture, with an emphasis on FoA.
In addition, we included a new aspect, i.e. the application of non-classical recep-
tive field (NCRF) inhibition to keypoint detection, in order to distinguish object
structure from surface textures.

A difficult and still challenging application, even in machine vision, is face
detection. Despite the impressive number of methods devised for faces and fa-
cial landmarks, which can be based on Gabor filters [18] or Gaussian derivative
filters [26], colour [27], attention [19], morphology [9], behaviouristic AI [10],
edges and keypoints [20], spiking neurons [1] and saliency maps [23], complicat-
ing factors that still remain are pose (frontal vs. profile), beards, moustaches
and glasses, facial expression and image conditions (lighting, resolution). De-
spite these complications, in this paper we will study the multi-scale keypoint
representation in the context of a possible cortical architecture. We add that (a)
we will not employ the multi-scale line/edge representation that also exists in
area V1, in order to emphasise the importance of the information provided by
keypoints, and (b) we will not solve complications referred to above, because
we will argue, in the Discussion, that low-level processing in area V1 needs to
embedded in to a much wider context, including short-time memory, and this
context is expected to solve many problems.

In Section 2 we present the models for end-stopped cells and non-classical
receptive field inhibition, followed by keypoint detection with NCRF inhibition
in Section 3, and the multi-scale keypoint representation with saliency maps in
Section 4. In Section 5 we present facial landmark detection, and conclude with
a discussion (Section 6).

2 End-Stopped Cells and NCRF Inhibition

Gabor quadrature filters provide a model of cortical simple cells [24]. In the
spatial domain (x,y) they consist of a real cosine and an imaginary sine, both
with a Gaussian envelope. A receptive field (RF) is denoted by (see e.g. [2]):

52 ~2
a +7y ) .Cos(Qﬂ-i +90)3

97,0,0,0(T,Yy) = exp ( 902

T=wxcosf+ysinf ; y=ycosf — xsinb,

where the aspect ratio v = 0.5 and o determines the size of the RF. The spa-
tial frequency is 1/\, A being the wavelength. For the bandwidth o/A we use
0.56, which yields a half-response width of one octave. The angle 6 determines
the orientation (we use 8 orientations), and ¢ the symmetry (0 or 7/2). We
apply a linear scaling between fi,i, and fiax with, at the moment, hundreds of
contiguous scales.

Responses of even and odd simple cells, which correspond to real and imagi-
nary parts of a Gabor filter, are obtained by convolving the input image with the
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RF, and are denoted by Rfi(x, y) and Rgi(x, ), s being the scale, i the orienta-
tion (0; = im/(Ng — 1)) and Ny the number of orientations. In order to simplify
the notation, and because the same processing is done at all scales, we drop the
subscript s. The responses of complex cells are modelled by the modulus

Ciz,y) = {RF (,y)}* + (R (z,y)}*]/2.

There are two types of end-stopped cells [7,22], i.e. single (S) and double (D). If
[]" denotes the suppression of negative values, and C; = cos6; and S; = sin 6,
then
Si(w.y) = [Cilw +dS;y — dC;) — Cix — dSi,y +dC:)] ™ ;
1 1 *
Di(z,y) = [C’i(x, y) — QCi(x +2dS;,y — 2dC;) — QCi(x —2dS;,y + 2dC;)

The distance d is scaled linearly with the filter scale s, i.e. d = 0.6s. All end-
stopped responses along straight lines and edges need to be suppressed, for which
we use tangential (T) and radial (R) inhibition:

2Ng—1
IT(x7 y) - Z [_Cz mod Ny (J}, y) + Ci mod Ny (J} + dci7 Y + dsz)]—‘r 5
=0
2Ng—1 d d —+
I (z,y) = Z |:Ci mod No (Z,Y) — 4 - Cli4N,/2) mod N, (T + QCiay + 2&') ,

i=0
where (i + Np/2) mod Ny L i mod Np.

The model of non-classical receptive field (NCRF) inhibition is explained in
more detail in [2]. We will use two types: (a) anisotropic, in which only responses
obtained for the same preferred RF orientation contribute to the suppression,
and (b) isotropic, in which all responses over all orientations equally contribute
to the suppression.

The anisotropic NCRF (A-NCRF) model is computed by an inhibition term
tﬁa’i for each orientation i, as a convolution of the complex cell responses C;
with the weighting function w,, with w,(x,y) = [DoG,(z,y)]t/||[DoGs]T |1,
I - |l being the L; norm, and

1 % + 92 1 z2 + 9
DoG(z,y) = - - - .
0Go(z,9) 21(do)? exp/ 2(40)? )= 9re2 @ 92 )

A

5,0,

corresponds to the inhibition of Cj;, i.e. b4

S,0,1

The operator b

at?’m]*, with « controlling the strength of the inhibition.

The isotropic NCRF (I-NCRF) model is obtained by computing the inhi-
bition term ¢!  which does not dependent on orientation i. For this we con-

s,0 ~
struct the maximum response map of the complex cells Cs = max{C;;}, with
i =0,...Nyg — 1. The isotropic inhibition term ¢! _ is computed by the convolu-

s,0

tion of the maximum response map C with the weighting function w,, and the

isotropic operator is bl , = [Cs — at! ,]7.

= [Cs,i -
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Fig. 1. Centre and right: keypoints without and with NCRF inhibition (facel96)

3 Keypoint Detection with NCRF Inhibition

NCRF inhibition permits to suppress keypoints which are due to texture, i.e.
textured parts of an object surface. We experimented with the two types of
NCRF inhibition introduced above, but here we only present the best results
which were obtained by I-NCRF at the finest scale.

All responses of the end-stopped cells S(z,y) = Zf/vz"ofl Si(x,y) and D(z,y)
= Z?ﬁ’o_l D;(x,y) are inhibited by bl ., i.e. we use o = 1, and obtain the re-
sponses S and D of S and D that are above a small threshold of bl ,. Then we
apply I = I” +I" for obtaining the keypoint maps K°(z,y) = S(z,y) —gI(z,y)
and KP(x,y) = D(z,y) — gI(z,y), with g ~ 1.0, and the final keypoint map
K(.’L‘, y) = maX{KS(x, y)7 KD(x’ y)}

Figure 1 shows, from left to right, an input image and keypoints detected (single,
finest scale), before and after INCRF inhibition. After inhibition, only contour-
related keypoints remain. Almost all texture keypoints have been suppressed, al-
though some may still remain because of strong local contrast (see [13]).

4 Multiscale Keypoint Representation

Although NCRF inhibition can be applied at all scales, this will not be done
for two reasons: (a) we want to illustrate keypoint behaviour in scale space for
the application of FoA, and (b) at coarser scales, i.e. increased RF sizes, most
detail (texture) keypoints will be eliminated automatically. In the multi-scale
case, keypoints are detected the same way as done above, but now by using
KZ(x,y) = Ss(a,y) — gls(z,y) and K2 (2,y) = Ds(z,y) — gls(z,y).

An important aspect of a face detection scheme is Focus-of-Attention by
means of a saliency map, i.e. the possibility to draw attention to and to inspect,
serially or in parallel, the most important parts of faces, objects or scenes. In
terms of visual search, this includes overt attention and pop-out. If we assume
that retinotopic projection is maintained throughout the visual cortex, the ac-
tivities of all keypoint cells at the same position (z,y) can be easily summed over
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Fig. 2. Keypoints at fine (a), medium (b) and coarse (c) scales, with saliency map (d)

scale s, which leads to a very compact, single-layer map. At the positions where
keypoints are stable over many scales, this summation map, which could replace
or contribute to a saliency map [4], will show distinct peaks at centres of objects,
important sub-structures and contour landmarks. The height of the peaks (sum-
mation cell activity) can provide information about the relative importance. In
addition, this summation map, with some simple processing of the projected
trajectories of unstable keypoints, like a dynamic lowpass filtering related to
the scale and non-maximum suppression, might solve the segmentation prob-
lem: the object centre is linked to important sub-structures, and these are linked
to contour landmarks. This is shown in Fig. 2(d) by means of a 3D perspective
projection. Such a mapping or data stream is data-driven and bottom-up, and
could be combined with top-down processing from inferior temporal cortex (IT)
in order to actively probe the presence of certain objects in the visual field [8]. In
addition, the summation map with links between the peaks might be available
at higher brain areas where serial processing occurs for e.g. visual search.

In order to illustrate keypoint behaviour in the case of human faces we cre-
ated an almost continuous, linear, scale space. Figure 2 (“face196”), shows three
different scales from scale space: (a) fine scale with A = 4, (b) medium scale
with A = 20, and (c) coarse scale with A = 40. At even coarser scales there will
remain only a single keypoint more or less in the centre of the face (not shown).
Most if not all faces show a distinct keypoint the middle of the line that connects
the two eyes, like in Fig. 2(b). Figure 2(d) shows the saliency map of the entire
scale space (A = [4,40]) with 288 different scales. Important peaks are found at
the eyes, nose and mouth, but also at the hairline and even the chin and neck.
For a detailed analysis of keypoint behaviour and stability we refer to [13].

5 Detection of Facial Landmarks

In Fig. 2(d) we can see the regions where important features are located, but it
is quite difficult to see which peaks correspond to important facial landmarks.
On the other hand, looking at Fig. 2(b) it is easy to see that some keypoints cor-
respond to landmarks that we pretend to find (in this study limited to eyes, nose
and mouth), but (a) there are many more keypoints and (b) at other scales (e.g.
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(b)

Fig. 3. Left to right: (a) facial landmarks, (b) eye landmarks, (c¢) impression of keypoint
scale space, and (d) saliency map with single-scale keypoints and NCRF inhibition

Fig. 2(c)) they are located at other structures. Presumably, the visual system
uses a “global” saliency map in combination with “partial” ones obtained by
summing keypoints over smaller scale intervals, or even keypoints at individual
scales, in order to optimise detection. This process can be “steered” by higher
brain areas, which may contain prototype object maps with expected patterns
(with approximate distances of eyes and nose and mouth), which is part of the
fast “where path.” The actual “steering” may consist of excitation and inhibition
of pre-wired connections in keypoint scale space, i.e. grouping cells that combine
end-stopped cells in approximate areas and at certain scales, which is part of
the slower “what path.”

In our simulations we explored one possible scenario. We assume the existence
of very few layers of grouping cells, with dendritic fields in partial saliency maps
that map keypoints in specific scale intervals. The top layer with “face” cells
groups axons of “eyes” (plurall), “nose” and “mouth” grouping cells. The “eyes”
cells group axons of pairs of “eye” cells. Only the “eye,” “nose” and “mouth”

Fig. 4. Left: the saliency map of face196 (A = [13,18]); Right: result of face196
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Fig. 5. Results obtained with different faces and expressions
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cells connect to the saliency maps, the “face” and “eyes” cells do not. The
scenario consists of detecting possible positions of eyes, linking two eyes, then
two eyes plus nose, and two eyes plus nose plus mouth. This is done dynamically
by activating synaptic connections in the partial saliency maps.

In our simulations, in which we experimented with faces of different sizes
(Fig. 5), we used 7 partial saliency maps, each covering 40 scales distributed
over A\ = 5, but the scale intervals were overlapping 20 scales. The finest scale
was at A = 4. The search process starts at the coarsest scale interval, because
there are much less candidate eye positions than there are at the finest scale
interval. A feedback loop will activate connections to finer scale intervals, until
at least one eye candidate is detected.

First, “eye” cells respond to significant peaks (non-maximum suppression and
thresholding) in the selected saliency map (in the case of “face196” A = [13, 18],
see Fig. 4 (left)), as indicated by Fig. 3(b)-1, but only if there are also two stable
symmetric keypoints at the 40 finest scales (Fig. 3(b)-4). In order to reduce false
positives, the latter is done after NCRF inhibition (Fig. 3(d)). If not a single eye
cell responds, the scale interval of the saliency map is not appropriate and the
feedback loop will step through all saliency maps (Fig. 3(c)), until at least one
eye cell responds.

Second, “eyes” cells respond if two “eye” cells are active on an approximately
horizontal line (Fig. 3(a)-1), each “eyes” cell being a grouping cell with two
dendritic fields. If no eye pair is found, a new saliency map is selected (feedback
loop).

Third, when two eyes can be grouped, a “nose” cell is activated, its dendritic
field covering an area below the “eyes” cell in the saliency map (Fig. 3(a)-2). If
no peak is detected, a new saliency map is selected (feedback loop).

Fourth, if both “eyes” and “nose” cells respond, a “mouth” cell with two
dendritic fields at approximate positions of the two mouth corners (Fig. 3(a)-3)
is activated. If keypoints are found, a “face” cell will be excitated. If not, a new
saliency map is selected (feedback loop).

The process stops when one face has been detected, but in reality it might
continue at finer scale intervals (there may be more faces with different sizes in
the visual field). However, see the Discussion section. The result obtained in the
case of “facel96” is shown in Fig. 4, where 4+, O and x symbols indicate detected
and used keypoints at eyes, nose and mouth corners (actual positions of face and
eyes cells are less important). More results are shown in Fig. 5, which includes a
correctly detected (!) fake face. Obviously, more features must be used, including
the multi-scale line/edge representation.

6 Discussion

As Rensink [21] pointed out, the detailed and rich impression of our visual sur-
round may not be caused by a rich representation in our “visual memory,” be-
cause the stable, physical surround already “acts” like memory. In addition,
focused attention is likely to deal with only one object at a time. His triadic ar-
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chitecture therefore separates focused attention to coherent objects (System II)
from nonattentional scene interpretation (Layout and Gist subsystems in Sys-
tem III), but both Systems are fed by low-level feature detectors, e.g. of edges,
in System I.

In this paper we showed that keypoints detected by end-stopped operators,
and in particular a few partial keypoint maps that cover overlapping scale inter-
vals, may provide very important information for object detection. Exploring a
very simple processing scheme, faces can be detected by grouping together ax-
ons of end-stopped cells at approzimate retinotopic positions, and this leads to
robust detection in the case of different facial expressions. However, the simple
scheme explored only works if the eyes are open, if the view is frontal, and if
the faces are approximately vertical. For pose-, rotation- and occlusion-invariant
detection, the scheme must be fed by Rensink’s short-term Layout and Gist sub-
systems, but also the long-term Scene Schema system that is supposed to build
and store collections of object representations, for example non-frontal faces.

Owing to the impressive performance of current computers, it is now possi-
ble to test Rensink’s [21] triadic architecture in terms of e.g. Deco and Rolls’ [8]
cortical architecture. The ventral WHAT data stream (V1, V2, V4, IT) is sup-
posed to be involved in object recognition, independently of position and scaling.
The dorsal WHERE stream (V1, V2, MT, PP) is responsible for maintaining a
spatial map of an object’s location and/or the spatial relationship of an object’s
parts as well as moving the spatial allocation of attention. Both data streams
are bottom-up and top-down. Apart from input via V1, both streams receive
top-down input from a postulated short-term memory for shape features or ob-
jects in prefrontal cortex area 46, i.e. the more ventral part PF46v generates an
object-based attentional component, whereas the more dorsal part PF46d spec-
ifies the location. As for now, we do not know how PF46 works. It might be the
neurophysiological equivalent of the cognitive Scene Schema system mentioned
above, but apparently the WHAT and WHERE data streams are necessary for
obtaining view-independent object detection through cells with receptive fields
of 50 degrees or more [8]. However, instead of receiving input directly from sim-
ple cells, the data streams should receive input from feature extraction engines,
including end-stopped cells.

Acknowledgments. The images used are from the Psychological Image Col-
lection at Stirling University (http://pics.psych.stir.ac.uk/). Research is partly
financed by PRODEP III Medida 5, Action 5.3, and by the FCT program POSI,
framework QCA TIII.
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Abstract. Studies on object visual working memory have claimed that
we can maintain 3-5 objects. However, change detection tasks used in
previous work have problems in evaluating feature-bound object repre-
sentations in working memory. We devised a paradigm called multiple-
object permanence tracking (MOPT) for more strict evaluation, where
observers are required to identify the type of switch in feature combi-
nation between objects during an occlusion period, thus eliminating the
use of feature memory or stimulus salience. We showed that capacity of
feature-bound representations is more limited than previous estimates.
To examine whether this limitation reflects memory retrieval or mainte-
nance, we used a cueing version of MOPT. A flashing cue with 100 %
validity was presented on a target object just before or after a feature-
switch event. If memory-retrieval is the bottleneck, postcue will facili-
tate the task performance. A type identification task evaluating feature-
bound representations failed to show any benefit of postcue, whereas a
simple change detection task possibly reflecting saliency-based represen-
tations showed a significant benefit. This suggests that the previously
reported capacity of 3-5 objects may reflect saliency-based representa-
tions. In contrast, feature-bound representations can be stored only for
1 or 2 objects.

1 Introduction

Our visual world contains numerous objects, and these objects have various
different visual features. To perceive the world properly, correspondences must
be made between feature values and multiple objects. This process of feature
integration into coherent object representation has often been discussed under
the name of “binding problems”.

Feature binding has been studied empirically in the context of visual percep-
tion. Treisman and Schmidt [10] demonstrated that feature binding in visual per-
ception is not automatic, and requires visual attention. The problem of feature
binding in visual memory has only recently received attention from researchers,
but the nature of feature binding in visual working memory is still poorly un-
derstood. As detailed below, we have devised an experimental paradigm called
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multiple object permanence tracking (MOPT) [8,9] to address this issue, and
have shown that our ability to hold feature binding in visual working memory
is much more limited than previously revealed. This study extended this work
to investigate whether the limitation in memory for feature binding is due to
memory maintenance or memory retrieval.

1.1 MOPT and Memory for Feature Binding

Kahneman and colleagues proposed the notion of object file to account for how
the visual system keeps track of object information in a visual scene [4]. Kah-
neman et al. [4] described an object file as “a temporary episodic representa-
tion, within which successive states of an object are linked and integrated”, and
claimed that the visual system can hold multiple object files simultaneously.
Along this line, Luck and Vogel [6] showed that humans can hold about four
object files simultaneously, using a change detection task with multidimensional
objects. These studies suggest that the visual system binds object features by
focused attention to form object files, and about four object files are maintained
in the visual working memory (see [2] for a review).

However, these previous studies have problems in evaluating memory for
feature binding at least in two respects. First, the stimulus design is not suitable
for the issue of feature binding. As in the stimuli used in perceptual feature
binding, we need to manipulate the combination of features while keeping the
identities of component features constant. Most studies with change detection
paradigm for visual memory have used a change of a feature to a new value,
which can be detected without using conjunctions. Second, the task design of
change detection may obscure the representations to be investigated. In the
change detection task, any change can lead to correct detection. Thus, a change in
feature combination may produce other kinds of changes in stimulus information.
Consider the notion of saliency [3,5]. Many studies on visual cognition propose
that objects’ saliency determines deployment of visual attention. Saliency is
assumed to be computed based on the summation of an object’s features, thus
saliency itself does not maintain the information about feature combination. To
illustrate how saliency can be used in change detection, assume for simplicity
that saliency of an object is a simple sum of component feature saliency values.
Suppose that for an observer, saliency values of red, blue, circle, and square are
0.5, 0.3, 0.7, and 0.4, respectively. A change from a pair of red circle and blue
square to a pair of red square and blue circle produces a saliency change from
(1.2,0.7) to (0.9,1.0).

To overcome these problems, we devised a paradigm called multiple object
permanence tracking (MOPT) to investigate whether humans can track multi-
ple object files (Saiki, [8,9]). In the MOPT task, four to six objects defined by
different colors and shapes are placed at equal eccentricity, then rotated behind
a windmill-shaped occluder (Figure 1). In the middle of the rotation sequence,
features of two objects may be switched during an occlusion. The task of the
observer was to identify what kind of switch occurred. Because each object is
defined by shape and color, there are four types: no switch, color switch, shape
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Fig. 1. Schematic illustration of MOPT paradigm. By manipulating relative motion of
objects and an occluder, effects of object motion in memory for feature binding can be
evaluated.

switch, and both switch. This task satisfies two requirements discussed above.
First, stimuli have identical set of features and only their combination changes,
and second, the type identification procedure requires access to feature binding
representations, because it is almost impossible to identify the switch type just
by stimulus salience. Speed of disk rotation was manipulated by relative motion
of disks and occluder, to investigate the effect of motion in a parametric manner.

A series of experiments revealed that (1) even when objects are stationary, the
task performance was quite poor compared with previous studies, and (2) object
motion further impaired the performance, even if the motion speed was slow and
easily trackable [11]. When memory capacity was estimated by a standard formula,
it was only about 1.5 objects when stationary, and 1 object when moving.

1.2 Cueing Paradigm to Probe Memory Retrieval

The purpose of this study was to examine whether the severe limitation of mem-
ory for feature binding reflects limit in maintenance or in retrieval of visual
working memory. One may be able to hold only 1 or 2 feature-bound object
representations in visual working memory. Alternatively, memory can hold 4 to
5 objects simultaneously, but the difficulty resides in the process of retrieving
memory representations in parallel in matching perceptual and memory repre-
sentations. To discriminate these two alternatives, we added a new feature to
the MOPT paradigm. New experiments used cues to indicate a changing object.
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Fig. 2. Mapping between change types and responses in Experiments 1 and 2. Exper-
iment 1 used type identification procedure, and Experiment 2 used a simple change
detection.

Cues were 100% valid, and were presented either just before or after a change
occurred, called precue or postcue condition, respectively. If a cue is effective, the
precue condition is expected to show significantly better task performance com-
pared with the no-cue control. This is because observers can maintain only cued
object information to identify switch type. The critical condition was the postcue
condition. If the difficulty in MOPT reflects memory retrieval, the postcue will
facilitate performance, because it provides an effective retrieval cue. Wheeler
and Treisman [12] showed that single probe condition, where only one probe ob-
ject was used, improved performance compared with the whole probe condition,
where observers had to retrieve memory for all objects. Alternatively, if the diffi-
culty reflects memory maintenance, the postcue will not facilitate performance,
because there are only one or two feature-bound object representations to be
retrieved.

2 Experiment 1

2.1 Method

Participants. The experiment used six participants, including one author, and
all displayed normal color vision.

Materials. Participants were shown a pattern of four colored objects and an
occluder on top. Smooth rotation of the pattern and occluder at constant angular
velocities resulted in alternating appearance and disappearance of the pattern.
The four colored objects were configured in a diamond pattern, with each object
placed at a visual angle of 2.9° from the center of the occluder. Objects were
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colored using four equiluminant colors (20.85¢d/m?, red [CIEz = .56,y = .34];
green [z = .28,y = .60]; blue [z = .19,y = .14]; and yellow [z = .43,y = .49]),
and combinations of these colors were counterbalanced across trials. Shapes used
for objects in the experiment were circle, square, hexagon and triangle. The col-
ored pattern was occluded using a gray windmill-shaped occluder (20.85¢d/m?),
and the background was black (0.5cd/m?). The sequence was either regular
clockwise or counterclockwise rotation throughout, containing one visible period
in which locations of features of two objects were switched. A total of four events
were possible: both-switch with simultaneous switch of color and shape; color-
switch with color switch alone; shape-switch with shape switch alone; and no
switch (Figure 2). In Experiment 1, no switch trials were not used. The occluder
displayed four openings of 20°, through which the colored pattern could be seen.
A single trial contained seven occlusion periods, and a switch event occurred
between the 3th and 5th occluded periods. Time and location of switches were
unpredictable to the observers. Participants were asked to identify event types
without feedback as to which was correct.

The main independent variables comprised object motion and cueing. To
keep exposure duration of the pattern equivalent, object motion was manipu-
lated by the relative motion of the pattern and occluder, as described by Saiki
[9]. Object motion factor comprised of moving and stationary. In the moving
condition, objects were rotating with the angular velocity of 84°/s, whereas the
occluder was stationary. In the stationary condition, the occluder was rotat-
ing with 84°/s, whereas the objects were stationary. Note that both conditions
had exactly the same duration of visible period (518ms) and occluded period
(518ms). The cueing factor had three conditions: precue, postcue, and no-cue.
The precue was presented at a period just prior to the switch to one of the to-be-
switched objects as a flash. Cued object was selected randomly between the two.
Flashing cue was presented for 12ms at the middle of a visible period of 518ms.
Thus, a cue was presented 259ms after an object appeared. The postcue was
the same as the precue, except for being presented just after the switch. No-cue
condition was the control condition, where no cue was presented (Figure 3). Ex-
perimental programs were written in MATLAB, using Psychophysics Toolbox
extensions [1,7].

Procedure. Each experimental trial began with a keypress by a participant.
After the beep, the initial display with objects and an occluder stationary for
500ms. Then moving sequence began, followed by the appearance of three re-
sponse boxes for event types (color, shape, and color-and-shape). Participants
selected responses by clicking a response box. To avoid verbal encoding of color
and shape, articulatory suppression was used by getting subjects to say “da,
da, da”. The entire experiment comprised three experimental sessions, each con-
taining 216 trials. Participants performed one session a day. Within each session,
cueing, and object motion conditions were randomly mixed from trial to trial.
For each cueing condition, each object motion condition comprised 108 trials,
with 36 trials for each event type, for a total of 648 experimental trials.
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Fig. 3. Schematic illustration of cueing paradigm. Flashing cue with 100 % validity
was presented either just before or after the switch. No-cue control condition was
also used.

2.2 Results and Discussion

Figure 4 shows proportions of correct type identification as a function of object
motion for three cueing conditions. First, the effect of precue was evaluated
by comparing with no cue condition. There was a strong effect of precue in
both stationary and moving conditions. An ANOVA with a 2 (cueing: precue
and no-cue) x 2 (object motion: stationary and moving) x 3 (event type: color
switch, shape switch, and both switch) design was conducted for the proportion
of correct identification. The main effects of cueing (F'(1,5) = 139.01,p < .01)
and object motion (F'(1,5) = 71.78,p < .01), and their interaction (F(1,5) =
7.05,p < .05) were statistically significant. Planned comparisons revealed that
the stationary condition showed significantly higher correct identification than
the moving condition in the no-cue condition, (F(1,5) = 32.02,p < .01). In
the precue condition, both conditions showed no significant difference due to
extremely high correct identification rates (F'(1,5) = 3.72,p > .1). Thus, if one
can focus attention in advance, one can maintain a feature-bound representation
for the attended object, regardless of its motion. Second, the effect of postcue
was evaluated. As shown in Figure 4, there was no effects of postcue at all.
An ANOVA revealed the significant main effects of object motion (F'(1,5) =
27.27,p < .01) and event type (F(2,10) = 9.16,p < .01). There was no advantage
of postcue, and stationary condition showed better performance.
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Fig. 4. Mean proportions correct in Experiment 1

Because Experiment 1 mixed precue and postcue in the same session, and
precue was obviously quite effective, it may be the case that participants inten-
tionally focused on precues and ignored postcues, though they were instructed
that two kinds of cues were included. To test this possibility, we conducted an
additional experiment where the precue condition was eliminated. The results
were the same, revealing that only object motion had a significant main effect
(F(1,5) = 83.084,p < .01). Clearly, the lack of postcue effect was not due to
strategic ignorance by inclusion of precue. Even when participants knew that all
cues were for memory retrieval, they could not utilize the postcues effectively.

The lack of postcue effects in this experiment is inconsistent with Wheeler
and Treisman’s findings [12]. One possible reason is that flashing cue used in
this experiment was not strong enough to be an effective cue for memory re-
trieval. Although, flashing was quite effective as a precue, this does not neces-
sarily mean that it is an effective retrieval cue. Alternatively, the discrepancy
reflects difference in task design. A simple change detection task used in Wheeler
and Treisman [12] could reflect representations other than feature binding, such
as saliency. If this is the case, flashing cue with a simple change detection task
will facilitate participants’ performance.

3 Experiment 2

3.1 Method

Method was the same as in Experiment 1, except for the following changes.
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Participants. The experiment used six participants, including one author, and
all displayed normal color vision.

Materials. No change sequences were added. There were four event types: color
change, shape change, both change, and no change. The task was a simple change
detection, thus no change was mapped to no response, and all other types were
mappied to yes response (Figure 2). Precue condition was eliminated, so that
all cues were postcue. The cue was 100 % valid when there was a switch. In the
no change sequence, cue was presented to a randomly selected object,and the
cue timing was matched with sequences with a switch. To reduce the length of
sequence, each sequence ended two occludion periods after the switch event. The
length of the no change sequence was matched with those with switch events.

Procedure. The task was a simple change detection. Participants judged yes
when they detect any type of switch. The entire experiment comprised two ex-
perimental sessions, each containing 144 trials. One session contained cues and
the other did not, and the order of cue and no cue sessions was counterbalanced
across participants.

3.2 Results and Discussion

Figures 5a and 5b show hit and false alarm rates, respectively, as a function
of object motion and cueing. First, hit rates show that postcue had a facilita-
tory effect in the stationary condition, but not in the moving condition (Figure
5a). An ANOVA for hit rate data with a 2 (cueing) x 2 (object motion) design
revealed a significant interaction (F(1,5) = 8.167,p < .05). Planned compar-
isons showed that postcue condition showed significantly higher hit rate in the
stationary condition, (F'(1,5) = 107.758,p < .01), whereas there was no signifi-
cant effect in the moving condition. Second, as shown in Figure 5b, false alarms
were in general low and there was no clear effects of object motion and cue-
ing. ANOVA for false alarms with the same design revealed no main effects or
interaction.

The results suggest that the lack of postcue effects in Experiment 1 is due to
limits in maintenance capacity of feature-bound representations. A simple change
detection task revealed a significant facilitation in the stationary condition. A
retrieval cue facilitates judgment of whether there is any kind of change, but it
does not help identifying the type of change. One interpretation of Experiments
1 and 2 in this study, and Wheeler and Treisman [12] is that we can hold multi-
ple saliency-based representations in visual working memory, which are sensitive
to retrieval bottleneck, whereas the capacity of feature-bound representations is
more limited.

Another interesting result was the lack of postcue effects in moving condi-
tion, suggesting that even saliency-based representations are not stored simulta-
neously when objects are moving. This may reflect that saliency representations
are location-based, so that motion with occlusion disrupts their continuity.
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Fig. 5. Results in Experiment 2. (a) Mean hit rates. (b) Mean false alarm rates.

4 General Discussion

The present study investigated whether the limitation in feature-bound memory
observed with MOPT tasks reflects limits in memory maintenance or memory
retrieval, using a cueing version of MOPT. There was a significant effect of
precue, but no effect of postcue, suggesting that helping memory retrieval does
not facilitate the task performance. This result supports the hypothesis that
limitation of feature-bound memory reflects memory maintenance, not memory
retrieval. This was not due to peculiarity of MOPT paradigm itself, or the type
of cue, because Experiment 2 with a simple change detection task showed results
consistent with previous findings.

We interpret these data as different types of memory representations of ob-
jects. The type identification paradigm in Experiment 1 measures a function of
feature-bound representation where component features of an object are bound
together as a coherent whole. If such representations are formed, we should be
able to identify the type of change, in addition to whether a change occured. On
the other hand, a simple change detection task in Experiment 2 and many previ-
ous studies measures a function of less analytical representations such as object
saliency, as well as feature-bound representations. Difference in postcue effects
between Experiments 1 and 2 suggests that Experiment 2 and many previous
works mainly measured saliency representations.

One limitation of this study is the use of explicit memory task. No facilitation
by retrieval cue in an explicit type identification paradigm does not necessarily
mean the lack of any type of feature-bound representations in our brain. Mul-
tiple feature-bound object representations may be used only in implicit ways.
Although there are some studies on object working memory using implicit mea-
sures such as object review paradigm [4], it is unclear whether these previous
works provide unequivocal evidence for the existence of feature-bound represen-
tations. For example, information which produced the object preview benefit
[4] may be some type of saliency representations. Feature-bound representations
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in implicit memory is an important future direction, and new developments in
experimental paradigm are necessary.
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Abstract. The primary event of vision is the absorption of photons by
photosensitive pigments, which triggers the transduction process pro-
ducing the visual excitation. Although animal eyes and eyeless photore-
ceptive systems developed along several levels of molecular, morphologi-
cal and functional complexity, image—forming rhodopsin family appears
ubiquous along visual systems. Moreover, all Metazoa have supplemen-
tary extraocular photoreceptors that regulate their temporal physiology.
The investigation of novel non-visual photopigments exerting extrareti-
nal photoreception is a challenging field in vision research. To study
molecular and functional differences between these pigment families, we
propose the cnidarian Hydra, the first metazoan owning a nervous sys-
tem, as a powerful tool of investigation. Hydra shows only an extraocular
photoreception lacking classic visual structures. Our findings provide the
first evidence in a phylogenetically old species of both image— and non—
image—forming opsins, giving new insights on the molecular biology of
Hydra photoreception and on comparative physiology of visual pigments.

1 Introduction

Visual information, in the sense of what we catch and extract from the external
world, represents the coding and the processing of a continuous image-forming
mechanism. The primary step of the image construction is photoreception. It
takes place in the photoreceptorial cellular structures of visual systems that re-
spond directly to light, thanks to the presence of a visual pigment, absorbing its
energy and converting it into an electrical signal. Following light excitation, all
image component elements are elaborated by specialized peripheral neural cir-
cuits and then transmitted by visual pathways to higher brain visual structures
for further processing which culminates with visual perception (for a complete
treatment of neural and cognitive features of the visual stream see [1]).
Photoreception is phylogenetically one of the oldest sensorial systems due
to the amazing ubiquity, in all animal phyla, of light—sensitive morphological,
functional and molecular elements (from simple invertebrate light—sensitive cells
to more complex vertebrate eyes) [2]. The photoreception process occurs within
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highly specialized sensory cells, called photoreceptors, able to convert light into
electrical signal. It is based on the scheme of a G-protein signal transduc-
tion cascade comprising three proteins, a G—protein—coupled receptor (GPCR),
a G-protein (G) and an effector protein (E) [3]. Although the expression of
the structure—function relationship in vertebrate and invertebrate visual cells
leads to different cellular mechanisms underlying phototransduction, basically,
photoreception starts with the photochemical isomerization of the retinal cro-
mophore of the GPCR. This process is followed by the binding with a G—protein
which leads an enzymatic visual cascade culminating in the production of a sec-
ond messenger, the effector protein E, which gates light—sensitive ion channels in
order to modulate and shape the electric signal toward the nervous system |[3].
Nevertheless, the early steps of the transduction cascade are notably conserved
in their principal GPCR and G—protein elements [4].

Both vertebrate and invertebrate photoresponses follow the above transduc-
tion scheme although remarkable differences concern the structure/function rela-
tionship of GPCR rhodopsin (Rh) and its photochemical reactions, the activation
of distinct G—protein subtypes, the enzymatic processes occurring in the visual
cascade and the electric signal of the visual excitation [3,4,5] (Fig. 1). Light—
induced cascade produces a huge chemical amplification (e.g., 1 photo—excited
Rh activates 500 G* and finally 250 Na™ channels are closed in vertebrate rods),
proving the functional presence of a diffusible chemical effector [3].

The cyclic GMP (cGMP) is the final messenger that gates light—sensitive
channels in vertebrates in response to light stimulation. As final result, a de-
creasing of cGMP level (caused by the enzymatic activity of a cGMP-phosphodi
esterase, PDE) closes the light—-dependent channels producing a hyperpolariz-
ing receptor potential due to a reduction of the Na™ influx [6]. In thabdomeric
photoreceptors mainly a phosphoinositide (PI) pathway signalling system rules
the visual excitation cascade. Upon light stimulation, the G—protein activates a
phospholipase C (PLC) generating a fast production of two intracellular messen-
gers: inositol-1,4,5-trisphosphate (IP3) and membrane lipid soluble diacylglyc-
erol (DAG) which starts parallel signalling pathways acting on the intracellular
Ca?* concentration. The light-induced excitation terminates with the opening
of light—sensitive channels that favour a cation influx and the increasing of mem-
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Fig. 1. Phototransduction pathways in vertebrate and invertebrate photoreceptors
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brane conductance that leads to a depolarizing receptor potential [5]. Recently,
ciliary photoreceptors hyperpolarizing to light stimulation have been found in
scallop [5]. Their receptor potential, mediated by a cGMP-activated Kt con-
ductance, looks like that of vertebrate rods and cones [6] and their transduction
behavior resembles that of some invertebrate extraocular photosensitive cells
which have KT channels gated by cGMP [7]. The identification in invertebrates
of multiple effector enzymes and their functional role are still debated.

In addition to classic ocular or retinal structures, vertebrates and inver-
tebrates utilize supplementary extraocular photoreceptor (EOP) systems for
non-image forming (non-visual) functions [8,9]. Photic information mediated
by EOP integrates visual activity involved in temporal (time—of-day) and be-
havioral physiology of the animal (e.g., photoperiodism in locomotion and re-
production, timing and entrainment of circadian rhythms). Extraretinal or non—
image forming photosensitive cells in invertebrates, and non-rod non—cone cells
in vertebrates are mainly located within nervous system and share with retinal
photoreceptors the same G—coupled phototransduction scheme but varying in
some molecular and functional events [Gotow et al., this volume].

The searching for novel opsin—based photopigments triggering non image—
forming photoreception is a new challenging field in vision research. Recently,
these pigments have been identified in cells beyond the retinal photoreceptors [10]
in several species. To deepen primary mechanisms of phototransduction, “simple”
animal models, in which the homologues of the major signaling pathways can be
better analyzed, have been proved as useful tools of investigation. Among those,
we propose Hydra (Cnidaria, Hydrozoa), the first metazoan having a nervous
system, in which photoreception is exerted only by EOP systems [11,12]. This
paper reports main similarities and differences among visual and non—visual
pigment families and their functional role in vertebrates and invertebrates. We
also focus on the identification and the molecular characterization of presumably
functional different opsin—based proteins in Hydra, outlining common strategies
for light—detection and photo-signaling in Metazoa.

2 Rhodopsins for Seeing

As introduced above, the photoreceptors’ light—detecting capability is due to
the absorbing process of photons determined by the presence light—sensitive pig-
ments. The luminous sensitivity (hence the ambient chromatic extracting fea-
tures) of a visual cell is function of photopigment spectral properties that have
evolved as function of the chemo—physical environmental characteristics.

In Metazoa the universal photosensitive protein for vision is rhodopsin (Rh),
one of the GPCRs that constitutes the largest group of transmembrane receptor
protein [13]. Rhodopsin (35-55 kDa) is constituted by a cromophore, 11-cis reti-
nal (aldehyde of vitamin A1), covalently linked to a single polypeptide opsin by a
Schiff-base [14] (Fig. 2). Exceptionally, insects use 3-,4-OH retinal cromophores
[15]. The crystal structure of bovine Rh has confirmed that the cromophore is
bound to Lys296 and Glu113 is the counter-ion in vertebrate Rh [16]. Opsin has 7
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Fig. 2. Bovine Rh structural model. Amino acid residues responsible for chromophore
binding, spectral tuning and signal transduction are shown. Cytoplasmic domains (III,
IV, V, VI, VII helices’ top) are involved in G—protein coupling. Modif. from [4].

membrane—-embedded a—helical segments connected by 3 extracellular loops and
3 cytoplasmatic loops. Rhodopsin is located with the chromophore in the center
of the membrane, the N-terminal is on the intradiscal side and the C—terminal
with the phosphorylation sites is on the cytosolic side [14]. In rod photoreceptors
Rh molecules perform rapid rotational and translational movements and diffuse
laterally [14]. Conversely, in rhabdomeric photoreceptors, Rh is not mobile being
anchored to microvilli membrane by cytoscheletric structures [15].

The visual cycle starts with the absorption of light by Rh, triggering the
11-cis to all-trans photoisomerization of the chromophore and formation of
metarhodopsin (M), after the fast production of intermediates (photo—, batho—,
lumi-rhodopsin), that is the transition state able to activate the G—protein sig-
nal transduction. Photochemical cycle is roughly common in vertebrates and
invertebrates apart from the number of Ms and the regeneration mechanisms
[14,15]. In vertebrates M, all-trans cromophore dissociates from opsin and must
be re-isomerized by slow enzymatic isomerase produced by retinal pigment ep-
ithelium. In invertebrates, M is reconverted in Rh by light with A in the range of
its absorption: this fast photoregeneration is complementary to a slow renewal
process similar to vertebrate Rh regeneration.

Vertebrate and invertebrate Rhs share the same cromophore but a differ-
ent opsin: they differ in both molecular weight (higher in invertebrates, insects
and vertebrates have the same MW) and spectral sensitivity. Invertebrate Rh
ranges from A4 350 to 550 nm, while vertebrate Rh oscillates between A4z
450-530 nm [15]. Humans have Rh (A4, 496 nm) and 3 kinds of cone pigments,
green—, blue— and red—sensitive pigments (A4, 419, 531 and 558 nm), classified
in 3 opsin groups, LWS (red— and green—seunsitive), RH1 (rhodopsin) and SWS1
(blue—sensitive) [17]. Drosophila has 5 Rhs differently located in the photore-
ceptors constituting the ommatidium (R1-6 A0, 480 nm, blu— and green—Rh5
Amaz 440 and 520 nm, ultraviolet Rh3 and Rh4 A4, 345 and 375 nm) [15].

This fact gives reason of the great variability among all animal phyla to
perceive, discriminate and integrate light information arising from natural envi-
ronments with various chromatic and luminous contents. In other words, pho-
toreceptors sample the visual environment and their spatial and spectral charac-
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teristics determine the optical information available to the brain. The molecular
interactions between the opsins and chromophores define the spectral properties
of a particular visual pigment. Differences in spectral shifts between pigments
are due firstly to changes in the aminoacid composition of the opsins expressed
within those photoreceptors.

In the bulk of our understanding of phototransduction, cutting—edge ques-
tions still need exhaustive answers. They concern the evolution of visual systems
and the development of functional adaptations conserving molecular phyloge-
netic foundations from photosensitive ancestors. Multidisciplinary approaches
greatly contributed to unravel the key—players involved in photosignaling. The
powerful combination of electrophysiology and genetics has contributed to under-
stand dynamical components (e.g., enzymatic mechanisms, ion channel gating)
[18]. The most direct methods of structural analysis are X-ray crystallography,
solution and solid-state NMR, atomic force microscopy (AFM), EM and image
processing. They have enabled, to date, the molecular detail of more than ten
distinct proteins of the phototransduction pathway (e.g., G protein transducin,
cGMP—gated channels). Surely, the crystal structure of bovine rod Rh solved
at 2.8 A resolution has represented the turning point for a modern molecular
depiction of the phototransduction components [16].

Comparative molecular strategies are addressed to reconstruct the opsin gene
family pattern of duplication and functional diversification in vertebrates and
invertebrates in order to outline the evolutionary history of visual pigments.
This approach provides insights to the understanding of the molecular bases of
spectral tuning of visual pigments as well as the evolutionary processes taken
by different species to adapting to their photic environment. Despite inter— and
intra—species functional differences, molecular genetics approaches have reported
the sequence of vertebrate and invertebrate rhodopsins, showing the existence
of similar regions of aminoacids conservation.

Phylogenetic trees of the vertebrate photosensitive proteins demonstrated
that vertebrate opsin sequences (to date 113 classified) fall into five fundamental
retinal subfamilies (RH1, RH2, SWS1, SWS2, LWS/MWS) and one non-retinal
(P) [17]. Cones share isoforms that are different from those of rods. The difference
in the molecular properties of these isoforms (and the switch of their expression)
influences the light sensitivity between rods and cones [17].

Color vision evolved in vertebrates from the ancestral tetrachromatic system
to the reduced dichromacy of mammals and the re-emergence of trichromacy in
primates. The molecular basis of spectral tuning in red— and green—sensitive cone
pigments have been studied by site—directed mutagenesis which demonstrates
that the spectral shift is caused by 5-7 aminoacids additive in effect [17].

To date, in invertebrates 59 visual pigment sequences have been identified
and assigned to 3 sub-classes following functional constraints: LW—green—, blue—,
UV-absorbing pigments. Sequence alignment and comparison have revealed sev-
eral structural features common to all visual pigments. Lowest similarities are
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function of the phylogenetic distances between the examined phyla. A phyloge-
netic tree has been constructed on the basis of the “rootless tree” model although
the small number of sequences induces several doubts [15]. The tree is consti-
tuted by five limbs that group pigments according to their taxonomic relations
and functional properties (limbs I, IT V insect, III crayfishes, IV cephalopods).
Sequence comparison between invertebrate and vertebrate opsins has re-
vealed more differences than degrees of similarity assigning respective pigments
to two super—classes [15]. Hence, evolutionary analysis of visual pigments sug-
gests that opsins utilize similar set of protein—protein interactions for signaling
and main typology of sub—molecular structure is retained for that function.

3 Opsins for Timing

Vertebrates and invertebrates share other photosensory systems in addition to
classical vision. Lower invertebrates lacking obvious eyed or optical structures
use nervous or dermal cells (single or clustered) for light sensing. They do not
form images but detect only irradiance. Any type of light sensing outside reti-
nal/ocular systems is termed Extraocular Photoreception (EOP) [8,9].

Little more than a decade ago, apart the vital role in eyeless invertebrates,
EOP was considered an unnecessary evolutive residue than a complementary
component of visual function. Until recently, the EOP role has been recognized
fundamental in the photoentrainment of circadian clocks, located in central brain
and peripheral tissues, whose pacemaker activity provides endogenous timetable
for vital expressions (development, reproduction, photoperiodism) [19].

Novel circadian photoreceptors do not depend upon the input of retinal pho-
toreceptors. In fly sine oculis mutant the activity of extraocular H-B (Hofbauer—
Buchner) eyelets and brain LNs neurons (lateral neurons) is necessary to generate
circadian rhythms. Mice rd/rd (retinal degenerations) mutants show a massive
degeneration of rods and cones but still retain circadian activity, pineal mela-
tonin suppression, and pupil size modulation that all overlap those of mices with
normal retinas. All circadian responses are abolished by the eye removal. Blind
or retinal disease patients having lost conscious light perception show circadian
responses and melatonin suppression. On the whole, these results indicate that
in mice and humans eye image—forming and novel non—image forming photore-
ceptors co—exist [19)].

Different experimental approaches in vertebrates have identified for these
responses several photopigments all referred to as opsin-like proteins; insects
provide exception using also the blue-light absorbing protein cryptochrome [20].
To date, since the first non—visual opsin, pinopsin, was identified in chicken pineal
in 1994, novel opsins include: vertebrate ancient VA—opsin (expressed in a subset
of amacrine and horizontal cells), parapinopsin (in catfish parapineal organ),
exo-rhodopsin (in zebrafish pineal gland), encephalopsin (in amphibian deep
brain regions), Opn5 neuropsin (in mice eye, brain and testis), Opn4 melanopsin
(different tissue expression patterns in all vertebrates but constant in retinal
ganglion cells), peropsin (in mouse retinal pigment epithelium, RPE) and RGR
(RPE-retinal G protein—coupled receptor) [4, 9-10, 15, 17, 21-22].
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Nowadays, a renewed molecular phylogenetic classification of known opsins
comprises seven subfamilies: 1) vertebrate visual and non—visual opsins, 2) en-
cephalopsins, 3) invertebrate Gg-coupled opsins and melanopsins, 4) inverte-
brate Go—coupled opsins, 5) neuropsins, 6) peropsins, 7) RGR isomerases [22].

Molecular and functional diversity of opsins indicate that higher percentages
of these proteins deal with non—-image forming systems. Indeed, in vertebrates,
retinal photoreception is not restricted to the rod/cone pathways but is involved
in non-image forming process [10]. So, the recent discovery of intrinsically pho-
toresponsive retinal ganglion cells (ipRGCs) has provided the morphological
correlate of non—visual phototransduction, namely non-rod non—cone photore-
ception [23], candidating melanopsin as the novel photopigment for this task
(though a role of isomerase was not excluded). Recent papers collectively show
that melanopsin is a photopigment more close to invertebrate opsins than a clas-
sical vertebrate rod—cone opsin [24]. Surprisingly, in primate Opn4—expressing
RGC cells projecting to the lateral geniculate nuclei (the brain structure relaying
image—forming information) send color and irradiance signals arising from dif-
ferent rod/cone inputs. Thus, image—forming and non-image—forming systems
are merged and melanopsin may contribute to conscious visual perception [25].
These outstanding achievements notch our current opinions on vision and will
influence future approaches to human light detection.

4 The Animal Model Hydra and Its Opsin—Based
Pigments

The cnidarian Hydra shows EOP since it has no conventional visual structures;
nevertheless single or clustered photosensitive cells have not yet been identified.
Its photosensitivity can be measured electrophysiologically as modulation of a
periodic behavior consisting of continuously alternating phases of body shorten-
ings and elongations [12]. These movements are due to the agonist/antagonist
actions of the myofibrils contained in the epitheliomuscular cells of both the
ectodermal and endodermal layers. Our previous studies proved that different
photic stimulation protocols are effective on the modulation of bioelectric cor-
relates of the animal’s periodic behavior [11]. Hydra’s behavioral action spec-
trum indicates red blindness and two peaks of response around 450 and 550 nm;
corresponding respectively to an inhibitory and an excitatory effect on the oc-
currence of the cyclic behavioral sequence [11]. By polyclonal antibodies against
squid rhodopsin, we identified an opsin-like protein (named by us HyRH) likely
localized in sensory nervous cells of the ectodermal layer [26].

To isolate the HyRH gene, we have designed pairs of degenerated primers
corresponding to the most conserved regions of known invertebrate Rhs. The
BLAST suite at NCBI/NLM (www.ncbi.nlm.nhi.gov/BLAST) was used for
bioinformatic screening of sequence data. Amplification of the target band of
250 bp was performed on Hydra vulgaris genomic DNA by conventional PCR
(polymerase chain reaction) (Fig. 3). The correspondence between the size of
the obtained fragment with that of the expected one will induce us to perform
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300 bp
200 bp

100bp
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Fig. 3. PCR amplification on Hydra vulgaris genomic DNA by degenerated rhodopsin
primers. Best amplifications (lanes 3-4) correspond to the better specificity /quantity
ratio. Lane 1: 100 bp DNA ladder. Lane 2: MgSO4 2.5mM. Lane 3: MgSO4 3mM.
Lane 4: MgSO4 3mM, DMSO 5%. Lane 5: MgSO4 3mM, DMSO 10%. Lane 6: MgSO4
3.5mM. Lane 7: MgSO4 4mM. Annealing temperature 51.5 °C.

the amplimer sequence and to design more specific probes to clone HyRH by
RT-PCR (reverse transcription PCR) and RACE (rapid amplification cDNA
ends).

Furtherly, our Hydra opsin(s) gene screening fits well the search for photopig-
ments triggering EOP, ongoing in non-image forming photoreceptors. Among
novel opsins, we focused on peropsin pigment (RRH), which is expressed in ver-
tebrate RPE and it may act as direct light—sensor or as photoisomerase [21].
Possibly, Hydra ectodermal molecular and functional elements producing EOP
processes could be phylogenetically close to those of vertebrate RPE.

The finding in Hydra genome of a sequence of 540 bp (GenBank CB073527),
reported as similar to the mouse RRH, strengthened our aim. We designed pairs
of RRH primers from this partial cDNA sequence, testing them on Hydra vulgaris
genomic DNA and cDNA after RT-PCR of the total RNA. We obtained good
evidence by a sharp amplification of the expected 312 bp fragment (Fig. 4).

This result has encouraged us to verify further light influences on the RRH
expression as supported by the fact that circadian rhythms and light regulate
mRNA expression of visual and non-visual photoisomerases [27]. Preliminary

300bp 312 bp
200bp .

100bp

Fig. 4. RT-PCR expression analysis of peropsin-like sequence of Hydra vulgaris at
different light adaptation settings (lanes 2,4,6) with RT [-actin, 344 bp, as endoge-
nous reference (lanes 3,5,7). Same sequence amplification on genomic DNA (lanes 8-9).
Annealing temperature 52 °C.
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experiments have been performed with total RNA extracted by animals adapted
for 3 days with different light cycles: L/D cycle (12:12 light-dark hours), L
cycle (24h light-on), D cycle (24h light—off). At first, no marked differences were
observed between the three groups with conventional PCR (Fig. 4). However,
to screen significant differences in the RRH mRNA expression, a necessary real
time quantitative PCR is in progress, also with animals adapted to normal and
altered circadian light conditions.

5 Conclusions and Future Work

We propose the cnidarian Hydra, thanks to possible molecular and functional
diversifications of its opsins, as a theoretical and experimental phylogenetic link
to higher photoreceptive systems and as putative common animal ancestor hav-
ing multiple opsin genes. The early identification in its EOP system of Rh and
RRH belonging to ectodermal /neural epithelia could support the hypothesis of
ancestor pigments bifurcating later into visual and non—visual functions.

Our findings call for molecular, anatomical and physiological investigations
concerning the localization of Hydra novel photopigments and photosensitive
cells, and their eventual correlations with invertebrate and vertebrate homo-
logues/analogues visual photoreceptors, inner retina non—visual cells and RPE
opsin-—containing cells.! Firstly, we will refine the Rh and RRH characterization
as well we will verify possible presence of melanopsin that is functionally closer
to invertebrate opsins than to vertebrate ones. Moreover, as Hydra cells show-
ing HyRh immunoreactivity seem to be of the ciliary type [5], we are aimed to
search: 1) by patch—clamp recordings from single putative photosensitive cells,
if cGMP and/or IP3 pathways mediate the visual cascade, 2) by immunohistol-
ogy using anti-cGMP and —IP3 antibodies, the intracellular phototransductive
players. Also, we plan to search NO—stimulated elements of the cGMP route by
protocols for the NADPH-diaphorase activity [28].

An ultimate release [29] shows an invertebrate-like phototransduction cas-
cade triggered by melanopsin. It emphasizes that the search for photosensory
non—visual mechanisms in vertebrates and invertebrates, and their interactions
with visual ones, is not matter of bizarre science but a new intriguing challenge.
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Abstract. A visual system not only needs to recognize a stimulus, it
also needs to find the location of the stimulus. In this paper, we present
a neural network model that is able to generalize its ability to iden-
tify objects to new locations in its visual field. The model consists of
a feedforward network for object identification and a feedback network
for object location. The feedforward network first learns to identify sim-
ple features at all locations and therefore becomes selective for location
invariant features. This network subsequently learns to identify objects
partly by learning new conjunctions of these location invariant features.
Once the feedforward network is able to identify an object at a new
location, all conditions for supervised learning of additional, location de-
pendent features for the object are set. The learning in the feedforward
network can be transferred to the feedback network, which is needed to
localize an object at a new location.

1 Introduction

Imagine yourself walking through the wilderness. It is very important that you
recognize the company of a predator, wherever the predator appears in your
visual field. Location invariant recognition enables us to associate meaningful
information with what we see (here: danger), independent of where we see it.
Hence location invariance is a very important feature of our visual system.

Nonetheless, location invariant recognition also implies a loss of location in-
formation about the object we have identified. Yet, information about where
something is in our environment is also essential in order to react in a goal-
directed manner upon what is out there.

We have previously proposed a neural network model of visual object-based
attention, in which the identity of an object is used to select its location among
other objects [1]. This model consists of a feedforward network that identifies
(the shape of) objects that are present in its visual field. In addition, the model

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 235-244, 2005.
© Springer-Verlag Berlin Heidelberg 2005



236 G.T. van der Voort van der Kleij et al.

also consists of a feedback network that has the same connection structure as
the feedforward network, but with reciprocal connections. The feedback network
is trained with the activation in the feedforward network as input [1]. By using a
Hebbian learning procedure, the selectivity in the feedforward network is trans-
ferred to the feedback network. We argue that this is a very natural and simple
way to keep the feedback network continuously up to date with ongoing learning
in the feedforward network.

How does this architecture allow the step to go from implicitly knowing
what to knowing where? Suppose the feedforward network identifies a circle in
its visual field. The feedback network carries back information about the identity
of this shape to the lower (retinotopic) areas of the model. In these areas, the
feedback activation produced by the circle interacts with feedforward activation
produced by the circle. The interaction between the feedforward network and
the feedback network (in local microcircuits) results in a selective activation at
locations in the retinotopic areas of the model that correspond to the location of
the circle. This activation can be used to direct spatial attention to the location
of the target [1].

Previous research has focused on location invariant recognition in feedfor-
ward neural networks [2,3]. Several models are proposed, in which information
processing is routed in a bottom-up manner to a salient location rather than to
other locations (e.g., see [4]). The goal of this paper is to explore the complemen-
tary task of finding, in a top-down manner, the location of what is recognized in
a location invariant manner in the visual field. The model of Amit and Mascaro
can perform this task [5]. They assume a replica module with multiple copies
of the local feature input that gives (gated) input to a centralized module that
learns to identify objects completely independent of location, and vice versa. We
provide an alternative mechanism for location invariant object recognition, by
which cells in the feedforward network not only become selective for location in-
variant features, but also for location dependent features. Next, we explore how
learning such location invariant object recognition in the feedforward network
transfers to location invariant learning in the feedback network in our neural
network model. This transfer is necessary in order to find something at a new
location.

We have built up learning in the feedforward network in such a way that
it initially learns to identify simple features (e.g., oriented lines, edges) at all
possible locations. After that, the feedforward network learns to identify ob-
jects at some possible locations. The rationale behind this learning procedure
is that learning to recognize an object may then partly involve abstracting new
conjunctions of known, location invariant features. This enables the feedforward
network to generalize its ability to identify an object at trained locations to
new locations. Simulations of the network confirmed this line of thought. These
simulations are first presented in this paper.

The second simulations presented here investigated how the ability of the
feedforward network to recognize an object at a new location relates to find-
ing an object at a new location, given the fact that learning in the feedforward
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network is built up in successive stages. The simulations demonstrate that rec-
ognizing an object at a new location does not automatically lead to finding that
new location of the object. However, we show that the recognition of an object
at a new location facilitates efficient, supervised learning of additional location
dependent features in the feedforward network. Once the improved selectivity for
the object at that location in the feedforward network is transferred to the feed-
back network, the interaction between the feedforward network and the feedback
network does enable the selection of the new location of the object.

2 Network Architecture

For the simulations we used a similar neural network model of (the ventral
pathway in) the visual cortex that was used in the simulation of object-based
attention in the visual cortex [1]. It basically consists of a feedforward network
that includes the areas V1, V2, V4, the posterior inferotemporal cortex (PIT),
the central inferotemporal cortex (CIT) and the anterior inferotemporal cortex
(AIT), and of a feedback network that carries information about the identity of
the object to the lower retinotopic areas in the visual cortex (V2 - PIT). The
model shares the basic architecture and characteristics of the visual cortex. The
receptive fields size of cells in an area increases, while climbing up the visual
processing hierarchy. Secondly, the connections between cells in the network are
determined so that the retinotopic organization is maintained throughout area
V1 to area PIT. Differently, area CIT and AIT have input connections from all
cells in the previous area. Cells in CIT and AIT receive information covering the
whole visual field (all positions). Every two successive areas are interconnected.
For example, area AIT only receives input from area CIT.

Figure 1 illustrates the architecture of the network schematically. From area
V1 to area PIT, cells are arranged in a two-dimensional array that makes up
the visual field. The number of layers in an area defines the number of cells per
retinotopic position (e.g., two from area V2 to area PIT). Multiple layers within
an area are not interconnected. Each layer in V1 codes for line segments of one
of four possible orientations. The input is set in area V1 by activating cells in
the four layers of cells. Area AIT functions as the output layer of the network.

3 Simulating Location Invariant Object Identification

The network was trained with backpropagation in three successive stages. In
the first stage, the network learned to identify oriented line segments (having
the length of two cells in the input layer) presented at any position within the
networks visual field. In the second stage, the network was trained to iden-
tify edges consisting of various combinations of the oriented line segments (see
figure 1) at any position within the networks visual field. In order to avoid
(potential) catastrophic interference, the oriented line segments learned in the
previous stage were also included in the training. Note that the nature of the
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Fig. 1. The architecture of the network. The symbols above the cells in layer AIT show
the features that the cells were trained to identify.

collection of edges (two different combinations of each identical set of line seg-
ments) forces the network to abstract local relation information at a low level
in order to identify the edges correctly. Hence, throughout these two stages
of supervised training, the network learned to identify features of increasing
complexity. In the final stage, the network was trained to identify objects (see
figure 1) consisting of line segments and of one or more trained edges. Impor-
tantly, the network was only exposed to the objects at four possible locations (see
figure 2a). Again, the training set also incorporated features that were previously
learned (at all locations).

The first two training stages were chosen to generate a network, in which cells
in V4 and PIT are selective for a variety of simple and more complex features like
the cells in comparable areas of the monkey brain [6]. The training in two succes-
sive stages offered the network an opportunity to draw on formerly constructed
selectivity while encoding new, more complex information (i.e., bootstrapping).
Note that the exact features that cells in the network learn to abstract are not
set in advance, but develop as a result of learning. Furthermore, representation
in the network is distributed, due to the connection structure of the network [1].

Cells in CIT have input connections that cover the whole visual field. In
principle, during training these cells could become selective only for features
that appear in a subset of the visual field. However, the number of cells in area
CIT was not sufficient to allow such a specialization for location information. In
order to identify the oriented lines and edges at all locations, the cells in CIT
learned to abstract features largely independent of location information.

Interestingly, if cells in area CIT are selective for features largely independent
of location information after the first two training stages, then the network may
subsequently learn to identify the objects partly by learning new conjunctions
of such location invariant features. In other words, the network could shape the
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selectivity of some cells by building upon the location invariant selectivity of cells
that are already present. Such a mechanism would give the network the ability
to generalize the identification of the objects to locations where the objects are
never presented before.

4 Results of Location Invariant Object Identification

We trained the feedforward neural network according to the training scheme
described above. This was done successfully five times, each time resulting in
slightly different connection weights between the areas in the network.

Figure 2b shows the squared error of the networks output over the number of
passes that the network has gone through the training set, both for the second
and the third stage of training. The data for only one network are displayed
in the graph, but these data are well representative for other instances of the
network. As can be seen in the figure, the network very quickly learns to identify
the objects in the third stage, once it has learned to identify the oriented lines
and the edges in the previous stage.

After the training, the networks response was tested for each of the four
objects presented at nine possible locations. Four of the locations were identical
to the locations at which the objects appeared during training. In contrast, the
objects were never presented before at the other five locations (see figure 2a).
Given the connection structure of the network, more cells in the network receive
input from an object when it is presented in the center of its visual field than
when it is presented in a more peripheral location. Therefore, locations where
objects appeared during training and new locations are chosen in such a way
that on average the same number of cells in the network respond to an object
at each kind of location (i.e., trained or new), apart from the center location.
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Fig. 2. (A) The nine possible locations in the visual field where objects were presented
during testing. The network was exposed to objects at four locations during training
(white). Before testing, the objects had never been presented at the five other (gray)
locations. (B) Squared error of the networks output over the number of epochs during
training, for the second (2) and third (3) learning stage.
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Each panel in figure 3 shows the activation value of one cell in area AIT after
the processing of its selective object and the other objects, at each location. Each
cell clearly responds selectively to the object that it has been trained to identify.
Moreover, each cell is optimally active when its preferred object appears at one of
the trained locations, but it is also active, although to a lesser extend, when its pre-
ferred object appears at a new location. Particularly, the diamond and the square
(object 1 and 2) are identified most strongly at new locations. The reduced response
for a preferred object at new locations compared to trained locations shows that the
network partly encodes location dependent features for the objects. This possibly
takes place lower in the processing hierarchy of the network. However, the network
is clearly able to generalize its identification of objects to new locations. This shows
that the network also abstracts new conjunctions of known location invariant fea-
tures in addition to location dependent features.
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Fig.3. Each panel shows the activation values of one cell in area AIT trained to
identify the object drawn above or under the graph, after presentation of each of the
4 objects at both trained 0, 1, 7, 8 and untrained 2, 3, 4, 5, 6 locations

5 Simulating Location Invariant Top-Down Visual Search

Figure 4b illustrates how the (partly) location invariant object identification
displayed by the feedforward network relates to the models ability to find the
location of an object between other objects, when this object appears at new
locations or trained locations in the visual field. In this second simulation the
model performed a top-down visual search task. In this task, a cue is presented
first. After that, the target object, matching the cue, appears in the visual field
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with three distracters (see figure 4a). The location of the cued object then has
to be selected. The network was tested on this visual search task repeatedly
with each of the four objects presented as the target. For each target object,
180 random search displays are presented (set as input) to the network. In the
model the task is simulated as follows.

In the simulation, a cue selectively activates a cell in area AIT of the feedback
network. Top-down activation in the feedback network results in the activation
of all other cells in lower areas of the feedback network that are selective for
features of that object. Next, the cued object and the other objects are set as
input at random, non-overlapping locations in the visual field of the feedforward
network. The feedforward network of the model processes all the objects simul-
taneously. After that, the interaction between the processing in the feedforward
network and in the feedback network is simulated by computing the covariance
between the activation of cells in the feedforward network and the activation of
cells in the feedback network [1].

For each object, the covariance values of all the cells selective for the object
in area PIT are summed up. To normalize the sum for each object, the sum
of covariance values for an object is divided by the number of cells, which are
selective for the object. The group of cells selective for one of the presented
objects that has the highest level of normalized covariance indicates the loca-
tion selected for the target. Note that area PIT still has a retinotopic orga-
nization and that cells in this area thus are also partly selective for location
information.
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Fig.4. (A) The top-down visual search task. A cue firstly indicates the target object
(left) and after that the target object is presented between other objects (middle). The
model then has to select the location of the target object (right). (B) The proportion
of correct selections of the targets location for each of the objects as the target, when
the target is presented at either the new locations, the trained locations or the center
location.
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6 Results of Location Invariant Top-Down Visual Search

Figure 4b illustrates the results of the simulation. For each of the four objects
as the target, the proportion of correct selections of the targets location in the
visual field is depicted separately for the trained locations, the new locations,
and the (new) center location of the target. The data are averaged over five
instances of the model. As can be seen in the figure, the network is better in
finding the targets location when its location is one of the locations at which
the network is trained to identify the target, than when its location is one of the
locations at which the network is not trained to identify the target. Apparently,
the networks ability to generalize its identification of an object to new locations
does not transfer automatically to the task of finding the location of an object
between other objects.

Part of the reason probably lies in the quality of the feedback connections that
are the basis for top-down attentional selection in the model. The connections
in the feedback network are trained in a Hebbian manner on all the activation
patterns in the feedforward network during training [1]. As a result, cells in the
feedback network that are selective for trained locations code more elaborate
information about an object than cells that are selective for new locations (see
figure 3). That is, at trained locations, cells in the feedback network are selective
for both location invariant features and for location dependent features, just like
cells in the feedforward network. Instead, at new locations, cells in the feedback
network are at most selective for location invariant features.

Furthermore, to retrieve information about the location of an object at new lo-
cations, the reduced object selectivity in the feedback network has to interact with
the activation in the feedforward network, which is also less selective for an object
at new locations than for an object at trained locations. Hence, the limitations in
the feedback encoding of an object at new locations and the limitations in the feed-
forward encoding of an object at new locations aggravate each other.

Despite this multiplicative effect of a less elaborated encoding of an object at
new locations, we would still expect the network to select the location of the target
in a visual search task somewhat above chance level. Figure 4b points out that this
is, on average, not the case in our simulation. It is possible that cells in the network
that respond to multiple objects present in the visual field (i.e., cells with large
receptive fields), degrade the already basic, generalized feedforward encoding of
the target at a new location too much for the model to put its top-down selection
mechanism into effective use [7]. Nevertheless, the network selects object 1 and 2
at new locations between other objects above chance level. Note that these two
objects are precisely the objects, which the feedforward network already identified
most strongly at new locations (see figure 3).

7 Bridging the Gap Between Recognition and Localization

In summary, even when the network recognizes an object at a new location, this
does not mean that it can immediately find the location of that object. Obviously,
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in real life it is very important that we rapidly learn to bridge this gap. What is the
mechanism that may constitute that bridge?

Our simulations demonstrate that an object at a new location can be identified.
All requirements for supervised learning are therefore present; an object is present
at anew location and it is recognized. Figure 2b shows that, in supervised learning,
the feedforward network can learn to abstract additional location dependent fea-
tures of objects relatively fast. As a result the feedforward network becomes more
selective for the object at that new location. This increased selectivity of the feed-
forward network transfers to the feedback network by means of the Hebbian learn-
ing in the feedback network [1]. After this, the interaction between the feedforward
network and the feedback network will enable the localization of the object.

A similar result has emerged in a study, in which subjects had to search for a tri-
angle of a particular orientation between triangles of another orientation [8]. The
ability of the subjects to identify the target between the other objects improved
dramatically over several days of training, but this learning was localized to a par-
ticular region of the visual field, namely the area used for training. This result might
indicate that representations of the trained object are build separately for different
positions across the cortical area [8].

It is crucial for the mechanism that we propose that the feedforward network
learns in a build up manner, in which more complex features can partly be learned
from more simple, location invariant, features. This allows the network to general-
ize its ability to identify an object to new locations and triggers more elaborated,
location dependent learning that allows the network to find the object at new lo-
cations as well.

8 Discussion

Our neural network model predicts that the generalization to new locations by the
visual system is more restricted when we have to find an object between other ob-
jects than when we have to recognize an object. In line with the second simulation,
and with the study of Sigman and Gilbert [6], we hypothesize that when we search
for an object between other objects, the abstraction of new location dependent fea-
tures of an object may be essential to make the search more reliable. It might also
speed up the search process.

We speculate that a visual system can rapidly abstract additional, location de-
pendent features that are needed to reliably find an object at new locations, once
it recognizes an object to some extent. Learning new, location dependent features
proceeds in parallel to learning new conjunctions of known location invariant fea-
tures. It possibly takes place mostly lower in the visual processing hierarchy. Our
suggestions relate to Ahissar and Hochstein’s Reverse Hierarchy Theory (RHT)
[9], although RHT specifically focuses on perceptual learning, and asserts that vi-
sual perceptual learning gradually progresses backwards from high-level areas to
the input levels of the visual system.

A visual system may generalize its recognition of an object to new locations,
when it learns to identify the object partly by means of new conjunctions of loca-
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tion invariant features for which cells of the system are already selective. Simula-
tions demonstrated this principle in our neural network model. Such learning may
take place higher up the visual processing hierarchy. Our neural network model
learned to recognize objects at multiple locations before testing its ability to gen-
eralize recognition to new locations. Yet, the neural network model may have shown
comparablelocation invariant object recognition with fewer trained locations. Nev-
ertheless, it is very likely that we learn to recognize an object at multiple locations,
even during a single observation, due to movement of the object or ourselves (e.g.,
eye-movements, head movements, etcetera).

The neural network model localizes objects in disjoint windows, like some other
models of visual search [5]. In the future, the selection of one of multiple, overlap-
ping disjoint windows may be substituted by a WTA process, which localizes the
location with the highest activation in the retinotopic areas of the model after the
interaction between the feedforward and the feedback network.

The neural network model is not yet very robust to clutter. Scaling up its size
and changing training to include a larger number of features and objects, will make
its cells selective for a larger collection of both location dependent and location in-
variant features. In addition, providing multiple examples of an object with a real-
istic amount of within-object variability will strengthen the need to learn the most
informative features for discriminating between that object and other objects [5].
Together these extensions could result in sparser object representations, helping
the neural network model to cope with clutter.
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Abstract. In recent years, issues of inattention blindness and change blindness
have thrown doubt on theories of vision that assume that the visual signal is
inwardly represented for further recognition and processing. The aim of this
paper is to review so called enacted theories of vision and argue that they are
too severe in terms of removing inner representations from the argument and
removing the possibility of mental imagery. This is followed by an exposition
of an axiomatic approach we have developed to explain issues of visual
consciousness and show how this, while respecting enacted theories provides a
new model of visual awareness which not only attempts to characterise the
natural version, but may inspire the design of machinery.

1 Introduction

An often-seen film of an experiment by Simons and Chabris [1] shows a group of
people bouncing a ball between them. The audience are asked to count the number of
times a particular person bounces the ball. The astonishing event is that a person in a
gorilla suit walks across the playing area, but only about 20% of the observers
actually notice it. When shown the film again and released from the counting task,
the audience laugh in disbelief. This is inattention blindness

Another film from the same laboratory shows Simons approaching an unsuspecting
target individual on campus and asking him for directions. While the target is in full
flow, a group of people carrying a door separate Simons from the target and stealthily
replace Simons by Chabris. There is little physical similarity between the two. However
the target carries on with his explanation unperturbed. When he is finished, Chabris
asks the individual whether he had noticed anything odd. Yes, is the answer, he noticed
being disturbed by people carrying a door. Then Simons makes his appearance and the
target in some disarray suddenly realises what had gone on. This is change blindness.

Similar experiences involve the projection of still scenes, separated by a blank, in
which vast areas of the scene are removed (New York skyline, the reflection of a
building in a lake etc.) and this goes totally unnoticed by most of the audience.
Strangely, if the separating blank is removed, the change becomes obvious. Then,
without a blank, Kevin O’Regan of the Experimental Psychology Research Centre at
the René Descartes University shows an image of a woman and a car in a busy street
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and asks whether, over a two minute period, anything has changed. Most viewers do
not notice that the colour of the car has slowly changed from bright red to bright blue
under their very eyes. The car occupies about 30% of the screen.

Kevin O’Regan and Alva Noé& based a theory of vision on the idea that change
blindness and inattentional blindness should not be ‘explained away’ as aberrations
due to careless attention in an otherwise rich and accurate perceptual system. They
published a seminal paper which drew both criticism and support for proposing that
‘the way we see’ should undergo a radical revision [2]. This has become known as the
enacted or sensorimotor theory of vision which is reviewed in this paper and attempts
to understand better the role of attention which appears to be the thief that robs our
vision of gorillas and other major changes in the world.

A major objection to this theory is that because it assumes an automatic link
between visual input and motor responses it asserts that the world itself is the memory
of the system which if not attended generates the blindnesses mentioned above. This
makes it hard to explain visual imagery and imagination. Here I summarise our own
axiomatic neuromodelling approach that includes visual consciousness and show that
it provides an extention to enacted theory while removing the inadequacies.

2 Enacted Vision: A Summary

Specifically, O’Regan and Noég set out to address two puzzles [3]:

“ ... how can we see at all if, in order to see we must first perceptually
attend to that which we see? ...”

And

“ ... if attention is required for perception, why does it seem to us as if we
are perceptually aware of the whole detailed visual field when it is quite clear
that we do not attend to the whole detail ...”

The first step in their argument is to distinguish between being perceptually
sensitive to sensory input and attending to it so as to bring it into awareness. The
example given is that we can drive a car without attending to all the details of the
road. But should a child suddenly jump into the road, we may well slam on the
brakes before actually becoming conscious of what has happened. Noé and O’Reagan
call this kind of automatic link between perception and action the rules of
sensorimotor contingency. These are rules that are built into living systems like the
rules for homing in on a visual target might be in a guided missile. The organism is
said to have mastery of the sensorimotor contingency rules if it can move itself or its
sensory apparatus (e.g. eyes) to compensate for the peculiarities of the apparatus
itself. For example, the superior colliculus that controls eye movement will cause the
eyes to saccade exactly to the right spot in the world where a light might have just
flicked on, despite the distortions and blind spots found on the retina.

Attention then, is the process of breaking into and controlling this sensorimotor
activity. So one can be perceptually active without being aware, but one cannot be
aware without being perceptually active. This solves the first puzzle: attention is a
result of the sensorimotor contingency and perception is a kind of access of or
‘breaking into’ this process even though much of the detail of how ‘breaking into’
works, is missing. The second puzzle is well illustrated in pictures such as fig. 1.
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Fig. 1. The rabbit figure on the left feels almost as present as the one on the right despite being
behind blobs

In looking at the left version of the picture, although we cannot see the detail, the
rabbit appears as an entity. No& and O’Reagan argue that it is the sensorimotor
contingency that gives us the feeling that ‘if only I could get out there and remove the
spots, I would see the whole rabbit’. And this, they argue, happens when we look
around at anytime. Although our fovea is tiny we know that once having seen bits of
the world we can get back to them at any time. So the world provides us with all the
short-term memory we need to achieve this sensation of rich detail. It never needs to
be reconstructed in the head: we are just masters of a lot of sensorimotor
contingencies which leads us to appreciate the richness that is out there in the world.

Now, is it the case therefore, that having a rich world in our head despite the
inaccuracy of our sensory equipment is a ‘grand illusion’? Not so, say O’Reagan and
Noé&. Most of us would not subscribe to the richness being in our heads (illusion) but
realise that it’s only out there (no illusion). The notion of a grand illusion is,
therefore, wrong. In a sense it could be said that the world serves as the brain’s short
term memory. The sensation of richness comes from a sense of ability that if we want
to access detail, it’s out there for us to get it, no need to keep it in the head.

The major difficulty with this theory is that it does not allow for the occurrence of
mental imagery. As this is an aspect of consciousness , I introduce below our
axiomatic theory of consciousness particularly in the way that impinges on an
understanding of visual awareness and imagination.

3 Axioms of Being Conscious

In this section I summarise the five primary pillars on which the design and
functioning of a materially conscious machine can be based. I call these ‘axioms’
referring to assumed truths that may not be proven, but which is sufficiently evident
to support a theory. These are the five primary elements of my sensation which I
discover by looking inside myself, that is, by introspecting. The details of this
approach are discussed at length in a recent book [4]. The use of introspection
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becomes justified as, when it comes to modelling inner sensation, behaviour becomes
the untrustworthy parameter as the same behaviour can be due to various thoughts.
Then ‘thought’ has to be addressed directly. The scientist therefore is stuck with his
or her own inner sensation as the starting point for an enquiry.

3.1 A list of Axioms

The five axioms, the five different kinds of thought which are important to me and I
feel need distinguishing are the following:

1. Ifeel that I am a part of, but separate from an ‘out there’ world.
I feel that my perception of the world mingles with feelings of past
experience.

3. My experience of the world is selective and purposeful.

4. T am thinking ahead all the time in trying to decide what to do next.

5. Thave feelings, emotions and moods that determine what I do.

This is by no means an exhaustive or, indeed, an original list. It is just an initial
one, that many others have identified and may be added to in the future. But this is
enough for the time being.

3.2 Axiom 1 : The ‘Self’ in a Real World Out There

To make some headway, let me concentrate on one aspect of being conscious — the
visual sensation of me being in the middle of an out-there world. Given that we
believe in a neural activity which is identical to sensation, how could this happen?
Why does the neural activity have this property of a sensation of me in an out-there
world rather than some funny buzzes in my head or some sort of a headache?

I am staring at a vast white wall. Suddenly a little black fly lands on the wall, right
in front of me. How do I know this? The tiny change in the world out there must have
caused a tiny change in the Neural Activity, which is identical with my having the
sensation of the little fly on the wall. It is possible that if the fly is tiny enough, the
transmission across my visual apparatus is just inadequate to change Neural Activity
at all. I would then not ‘see’ the fly on the wall at all. So, it is possible to think in
terms of minimal visual events which call for minimal neural activity. That is a
minimal visual event is that event which, were it to be smaller or less intense, it would
not be sensed at all. Now imagine the fly shifting very rapidly slightly to the right. In
slow-motion terms, the fly disappeared from where it was and reappeared somewhere
nearby. I am conscious of this change. What this means is that the minimal neural
activity for the new position of the fly must also be a new and unique neural activity.

Now, say, another fly, the same size as the last one lands next to the first one, but
in the same position where the first one originally started. I now sense the two flies
together as a separate visual event, but one which I sense as being composed of the
first two. One way of achieving this is for the minimal events and the composed
event just to be the firing of neurons in positions that faithfully reproduce the events
in the world out there as would occur on a photosensitive surface. It would even mean
that vast visual events, a waterfall, fireworks, my dog and the visitor who has just
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rung my doorbell could be uniquely represented in my neural system. But this would
not be sufficient — what’s missing is the ‘out-thereness’ of these neural
representations of flies.

Out Thereness: Depiction in the Brain

Perceiving the flies on the wall or waterfalls is different from just seeing these things
as if they were photographs. Somehow or other, the neural representations, to be
identical to my perceptual sensation, must be identical to this feeling of space I have
around me — a space in which I can move and influence things, a space which
accommodates me in the centre of it and gives me what I call my point of view.

Looking closely at what happens in the brain gives us a good clue as to how this
feeling of space might arise. First, the retina at the back of the eye is not like a
photographic plate in one major respect. It only records accurately (by neural firing)
a very small part of the world out there. There is an area in the centre of the retina
called the fovea that has a high density of neural sensors (cells that fire in response to
the intensity of the light falling on them). If you stretch out your arm in front of you
and look at your thumb, the fovea records accurately an area about the size of your
thumbnail. The rest of the retina records light patterns, in much less detail, both in
colour and shape. This is called the perifovea.

Now, say I am fixating on a fly with my fovea, and another fly lands nearby, the
event in the perifovea, will cause my eye to move to the new event to record it
accurately. By this time the first event is no longer accurately recorded in the retina,
but it is in my sensation. This means that neurons in my visual system beyond the
retina must not only receive signals from the fovea, but also of where the fovea is and
how it has moved. Without going into details of neuroanatomy here it is well known
that such areas exist in the brain. That is, my neural activity for visual consciousness
relies as much on what the fovea records as where the fovea is and how it moves.

Not only this, but when objects are closer or farther, this too is recorded as a result
of the muscular mechanisms for eye convergence and focus. That is neurons
responsible for giving me my sensation receive signals from muscles involve in eye
positioning and shape. It is even known that neurons that drive muscles used in
touching a seen object or are just preparing to move a finger to touch it broadcast
firing signals that influence the firing of neurons that create sensation. No wonder
that my visual sensation of the world out there is much richer than a photograph - its
neural identity is extraordinarily rich. We have called this inner identity of neural
activity a depiction. We chose depiction to get away from the word representation
because of the richness that the neural activity implies. A photograph is a
representation and, in computing, just symbols could be used to represent objects in
the world (F for fly or F2 for another fly). Representations therefore have a
functional character about them while I intend depiction to mean the full rich material
quality that is required for being conscious.

Evidence: Locking

Is all this reliance on depiction just a theory or is there evidence that it actually
happens in living conscious organisms? In fact, the evidence is overwhelming and
continually being discovered. As I have suggested, depiction occurs because some
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cells are selected to fire only if muscles are being active in a particular way. In
neurology, this selection process is called ‘locking’.

Locking was first discovered as ‘gaze locking’ in an area of the brain called V3A
which represents the form of visual stimuli  This was the pioneering work of
Galletti and Battaglini from the University of Bologna [5]. They found that certain
cells in monkeys would respond to small visual stimuli, but only if the eyes of the
monkey were pointing in a particular direction. If the monkey would change its
direction of gaze, different cells would respond to the same stimulus.

The same laboratory went on to discover even more evidence of locking. For
example, neurons in visual area V6 (devoted to space representation) will only fire if
certain arm muscles are engaged in moving the arm in a particular way . Other
neurons in another part of the visual system are locked to neck muscle action. The
fashion for looking for locked neurons has spread to other laboratories and such
neurons have been found in profusion throughout the cerebral cortex (i.e. the part that
is deeply implicated in making us conscious).

The Centrality of Axiom 1

The ability to internalise the out-there world is the central feature of consciousness: it
is a kind of pivot on which all else depends. We should bear this in mind when
considering the other axioms and their implied mechanisms.

3.3 Axiom 2: My Experience of the World Out There

Staying again with visual sensation, it is clear that, if I close my eyes, the visual world
does not go away: I can imagine what things look like, that is, what they looked like
at some time in the past. The sensation is not quite as vivid as when I am actually
looking at something, but there nonetheless.

These ‘visions’ need not go away when I do open my eyes. Indeed they are part of
my visual interaction with the world out there. I often loose my keys. When looking
for them under cushions or behind the toaster I form a mental image of what they will
look like when I do see them. Should I see a different bunch of keys, the differences
between the depiction of these and the mental image are intensely, almost painfully,
felt. When seeing a well known face, it is known that I can form a sufficiently
appropriate mental image of the person even before my fovea has had a chance to
look at every feature. That is, the mental image snaps in.

There is another aspect to these inner sensations: they can construct something we
may never have seen or experienced. Reading Shakespeare’s Macbeth, the full
impact of Birnam Wood descending on Dunsinane, is generated in our visual
sensation even if we have never seen the play. This is a case where visions are
generated by words, but visions could be generated by any of the sensory modalities:
the smell of freshly baked bread can trigger scenes from childhood, touching a slimy
surface in the dark can create nightmarish visions of unpleasant gutters.

The material implication of these inner visions and memories is, in broad terms,
quite simple. In detail it is fascinating and difficult. The broad principle is that of
feedback or re-entry in depictive neural structures. Having a mental image of
something that has happened in the past has a strong material implication: closed
information paths in depictive networks must exist which can sustain depictive firing
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patterns: the state of an automaton or state machine. So much for the mechanism of
sustaining images, but where does what we imagine come from? How could it be that
having seen examples of black dogs and white cats, we could imagine what a white
dog or a black cat might look like even though we may never have seen one. The fact
that we can do this implies that blackness and whiteness might be depicted and
learned in different parts of the mechanism from, say, shape. Indeed, it is well known
that, in the brain, different areas of the visual cortex become independently active for
colour, shape and motion.

Then whiteness or any other colour-ness, is learned to be a stable depiction and
associated with words in one part of the cortex while doggy-ness or catty-ness is
learned in another. Then these learned features will be depicted independently if
triggered by appropriate words even if the combination has never been seen before.

Finally, if depictions such as colour and shape happen in different parts of the
brain, how is it that a black cat, say, feels like a single sensation? This is the
celebrated binding problem.

Unwinding the Binding Problem
All sorts of solutions have been proposed to the binding problem. Crick and Koch, for
example, first maintained that a signal with a firing rate of 40 pulses per second links
any disparate activities that bind into one sensation [6]. They now prefer to talk of cell
assemblies that ‘coalesce’ into single sensations through long-routed connections [7].
My colleague Barry Dunmall and I have suggested [8] that binding is a direct result
of the muscular locking that I mentioned earlier in this paper. Going back to the fly on
the white wall imagine that the fly could be red or blue. What happens when the fly
is red? To simplify the rather complex way that colour and shape are represented in
the visual cortex, I shall just call these two areas C and S. Whether the fly is red or
blue, it will cause a group of cells to fire in S, and these cells are locked by the
position of the fly on the wall. The fly, if only S were present, would feel like a blob
in a particular out-there position. In C, however, two different groups of neurons
would be activated one for the blue fly and the other for a red one. But whether blue
or red they would all be locked by the position of the fly on the wall. The fact that
this feels like a coloured blob in exactly the same place on the wall as the activity in S
is due to the fact that, due to locking, the two activities are controlled by where in the
world is the event that is causing them. This is the beauty and the cause of richness of
the depictive process — the neurons causing a single sensation could be dispersed
among different specialised parts of the brain.

Binding in Imagination

Of course, the binding problem applies to the basic depictive process of axiom 1.
How does it affect axiom 2: imagination? = The depictive areas in which I have
suggested feedback creates the ability to reconstruct visual images (say) occur
physically beyond the locking process. That is, what is remembered are ‘out there’
depictions. The only odd thing is that during a proper recall of an out-there events,
many depictive areas are required to deliver their memories at once. This process is
not perfect. It is quite possible to be in a situation where we remember the shape of,
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say, a hat that the Queen was wearing in a newsreel of Ascot last week but cannot
remember its colour, or vice versa — remember the colour and not the shape.

3.4 Axiom 3: Attention: Out to Get Experience

So far, I have spoken of worlds out there as if the conscious organism just blunders
around in them. Nothing is further from the truth. Selecting what we experience in
the world and how we think about the world in our imagination, requires some
selection mechanisms. This, in neurology and psychology, is called ‘attention’.

In recent years attention has advanced in importance as a vital aspect of
consciousness. Our tendency to attend to some things and not others determines what
eventually enters our consciousness — the topic of this paper. There we shall see that,
in vision in particular, specific brain areas such as the ‘superior colliculus’ are
involved in the attentive selection of eye position for the most efficient extraction of
meaning from complex images. Suffice it to say here that we have already noted that
movement of the fovea contributes to depiction. Attention appears to call for
important axiomatic mechanisms: it has been hailed by several investigators as the
“Gateway to Consciousness”. We return to this in the next section of the paper. For
completeness, we now consider the remaining two axioms.

3.5 Axiom 4: Thinking Ahead

Thought is not just a process of having static depictions. It is a highly dynamic process.
We are constantly thinking ahead, considering alternatives and, every now and then,
deciding what to do next. What are the material implications of this possibility.

It is the simple property of a recursive net that it can remember sequences as well
as the stationary patterns we have seen above. As before, the neurons repeat at the
output axon the state of the input synapse. It helps to realise that there is always a
slight delay between a change in input (say of duration f) and the corresponding
change of output.

Say that I am looking at a pencil on my desk and deciding that I want to pick it up.
This thought is a sensation of my actually doing it in my head, before I do it for real.
My depictive areas are producing a kind of depicted movie in my head in anticipation
of the real act. This comes from the fact that the depictive areas can learn appropriate
depictive sequences as part of the build-up of experience as a sequence of depictive
states. That is, as a child I learn to pick things up by trial and error. When I succeed
reliably, my visual, tactile and muscular neurons have, together, learned to go from
state to state by the same axiom 2 mechanism that allows them to remain stable in one
state. There is very little technical difference between learning sequences and
learning single stable states. So thinking ahead has to do with the system running
through depictive sequences that are possible from the current state. But if there are
many possibilities how are these controlled? What is it to want to execute one of the
possible plans? This leads to axiom 5.

3.6 Axiom 5: Emotions — The Guardians of Thought

One of the criticisms levelled at those who speak of conscious machines is that there
is one element of humanity that machines cannot have: feelings and emotions. I
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would argue that as these seem to be essential to being a conscious human being they
must be essential to a model conscious machine. I would be very suspicious of the
value of a machine model of being conscious were it not to have mechanisms that
play the role of emotions in living organisms.

In the first instance emotions are related to the evaluation of depictive input.
Children not more than a few hours old will show signs of fear (facial expression
and a retreating action) if a large object moves towards them. The same occurs if
the child is allowed to move freely over a glass surface that appears to stretch over a
precipice. The child avoids the precipice and shows signs of fear. On the other hand
the child shows contentment on being fed when hungry. So, basic emotions such as
fear and pleasure, are neural activities that appear to be pre-wired at birth. They
have obvious survival value. Other emotions in this innate group are anger, surprise,
disgust and love.

Other emotions and feelings are developed during perceptual life. Feeling hurt after
being rebuked or being jealous of the attention someone else is getting are examples
of a vast group of such subtle phenomena. On the basis that every scrap of our
sensation is due to some neural firing patterns, I would expect such patterns to have
distinct characteristics that both adapt to be attached to perceptual depictive events as
well as imagined events. As planning proceeds according to the mechanisms of
axiom 4, predicted states of the world trigger emotional neural firing which
determines which plans are preferred for execution and which might lead to unwanted
consequences.

Volition and emotion are areas that have proved to be controversial. Not only does
the question of free will have a theological and philosophical theory, but in modern
neurology some doubts have arisen as to whether we are in wilful control of all our
actions.

4 Axioms and Enacted Vision

The O’Regan and Noé& enacted sensorimotor contingency is discovered in several
ways in the axiomatic, depictive descriptions set out above. The most obvious place
is the mechanism of eye movement that involves the superior colliculus mentioned
earlier. It is known that this, in a totally unconscious way, moves the fovea of the eye
to places where things are happening (changes, movements, edges and so on ...)
which may be detected in the perifovea. But that is not all that causes the eye or,
indeed, the head or body to move to bits of world that require attention: a sudden
sound, the memory of having left the gas on in the kitchen, needing to check whether
what is thought to be a familiar face, has correspondingly familiar features. Further, a
strategy that involves memory and planning (axioms 2/4) can constrain foveal
attention (e.g the ball rather than the gorilla). Note that here I speak of ‘external’
attention mechanisms that correspond to sensorimotor contingencies. Whatever this
mechanism might be, the results of attending are left in axiom 1 depictive machinery
for a while.
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Fig. 2. A minimal architecture with axiomatic/depictive properties. The perceptual module
directly depicts sensory input and can be influenced by bodily input such as pain and hunger.
The memory module implements non-perceptual thought for planning and recall of experience.
The memory and perceptual modules overlap in awareness as they are both locked to either
current or remembered world events The emotion module evaluates the ‘thoughts’ in the
memory module and the action module causes the best plan to reach the actions of the
organism.

We recall that axiom 1 machinery is depictive by virtue of the fact that it ‘knows’
(i.e. encodes) the muscular effort that is being exerted in order to achieve a foveal
position of the eyes. It is a mass of neurons that ‘put things in place’, but not for any
length of time. It may be best to refer to fig. 2. The perceptual module is active all
the time and keeps a fading trace of experience which is accessible for a while, but
does not necessarily lay down retrievable memories in the memory module.

It is possible then to interpret the ‘breaking in’ through attention as a facilitation of
the transfer of depictions from the perceptual module (axiom 1) to the memory
module (axiom 2) where it will be a much paler version of what may briefly have
been accurately depicted in the perceptual module, but where it will have a much
more enduring and accessible existence. Then, according to axiom 3, the true
function of attention is to control this facilitation. This requires a great deal more
research and thought as to how such mechanisms work in the brain or even how they
might work in a robot. However, it provides a basis for incorporating the ideas of
sensorimotor contingencies into a broader framework that does not exclude the
consciousness of mental imagery. This may be focussed as follows.
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4.1 Axiomatic Puzzle Solving

The First Puzzle: Attention Without Seeing?

In this section we show how the axioms deal with the two puzzles outlined by
O’Reagan and Noé. First one needs to address how it is that we can we see at all if, in
order to see we must first perceptually attend to that which we see?

As stressed above, the key axiom here is 3 — attention. Attention is easily said but
it is a complex concept and it may be found at many levels. First, as said above, the
eye-moving superior colliculus can be influenced from a variety of sources some of
which can be active ahead of depiction in axiom 1 and 2 mechanisms. It is quite true
that in order to see, the basest mechanisms must be at work. As mentioned earlier, the
effects of change, motion, edges are all automatic and pre-depictive. However,
without them, according to axiom 1, depiction cannot happen. Second, deeper
strategies for seeing are then triggered by the developing depiction. For example
when a face is flashed suddenly on a previously blank screen, the foveal gaze will
automatically be drawn to areas with much detail, such as an eye or the corner of a
mouth. This will then be depicted causing the strategy of looking for base features to
be switched to a higher level. Further saccades to where one might expect to find
important features, such as the other eye or the mouth become controlled from
Axiom 2 mechanisms which are perceived even if the drive to find facial features may
be somewhat automatic — like driving. There are even higher levels of search, for
example, were a pair of twins distinguished by a little mole, having decided I am
looking at one of the two, the search for the mole becomes a conscious affair driven
strongly by the axiom 2 machinery.

Even ambiguous figures such as the well known “duck/rabbit”, depend on
hypothesis generation in Axiom 2 mechanisms (Fig. 3) . Hypothesis, ‘it’s a duck’
causes the eyes to choose switching the gaze between the eye of the image and its
beak with the occasional saccade to the wiggle at the back of the head. Should the
hypothesis be, ‘it’s a rabbit’ the saccades become more frequent from eye to wiggle
(seen as a mouth now) with the odd glance at the ‘ears’. The reason this is an
ambiguous illusion is that the low level attention triggers a hypothesis for a higher
level interpretation (duck or rabbit) which then controls the higher level attention to
execute a defined set of saccades.

Fig. 3. Duck or Rabbit?



256 1. Aleksander and H. Morton

But a tiny perturbation can switch the whole system to settle into the alternative set
of saccades. So the answer to the first puzzle is that perceptual (i.e. conscious)
attention is not necessary to begin to build up a depiction: the process of base
attention is innately automatic. Then as the depiction is being built, and perception is
developing, perceptual attention sets in, which allows the developing depiction in
axiom 1 mechanisms to allow hypotheses to emerge in axiom 2 memory mechanisms.
I find it hard to describe this as a process of ‘breaking in’, more a question of the
sensorimotor contingency stimulating depictive knowledge.

The Second Puzzle: Why Are We Unaware of Not Attending to Input?
The second peculiarity that is addressed by O’Regan and Noé is that if attention is
required for perception, why does it seem to us as if we are perceptually aware of the
whole detailed visual field when it is quite clear that we do not attend to the whole detail?
The second attentional mechanism mentioned above, where the depictive mechanism
(ax. 2 machinery) drives attention to fill important gaps in depiction, clearly stops at
some point where sufficient detail is present in the depiction. This is pretty rich and
satisfying even if all the available detail may not be included. In fact this theory
explains why we are not so bothered by the black blobs over the rabbit and why the
‘presence’ of the rabbit (fig. 1) is similar for the left and right images. The detail in each
of the images causes very similar attention strategies to be unleashed, and these are due
to the rabbit rather than the blobs. As indicated by the axiomatic/depictive theory it’s
the interplay between the mechanisms of the fist three axioms that give us the sense of a
rich world. It may not be complete, but what is there is sufficient for our needs and
therefore satisfying even if not all gorillas are accounted for or, helpfully, if blobs don’t
get in the way of what really draws our attention.

5 Current Research: The Necker Cube

A simple and well-known ambiguous figure is the Necker cube shown in fig. 4. The
peculiarity of this figure is that the same sensory input gives rise to two sensations: one
where X appears to be in front of Y and the other with Y in front of X. It turns out that
this simple ‘illusion’ has a unique, 170-year history of attempts at explanation [9]
which range over the psychophysical, the neurological and the cognitive. The
significance of this in models that involve axiomatic approaches to enacted vision is that
it points to an ambiguity in the unconscious, sensorimotor contigency mechanisms and
provides cues as to how this enters conscious perception [10].

X

Fig. 4. The Necker cube looks like a wire frame that sometimes has point X in front and
sometimes point Y
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Experiments show that while fixing eye gaze on strategic corners of the cube has
some effect on the periods spent in one of the two sensations it is impossible
consciously to stop the reversals altogether. This indicates that it is necessary to
elaborate the structure of fig. 4 to distinguish between dorsal and ventral processing
streams and check hypotheses about how the dorsal, through having direct
unconscious access to motor cortices (action module) that would drive a limb to touch
the frame (sensorimotor contingency) also impacts on the ventral, conscious
perception of the frame (perception and imagination modules). This is current work
which should throw more light on enacted vision.

6 Conclusion: A New Generation of Computer Vision Systems?

Enacted vision ideas herald a new age in both the understanding of vision in living
organisms and the design of artificial vision systems, particularly the design of
visually competent robots. It is the contention of this paper that in its initial
formulation by O’Regan and Nog, the existence of an independent sensorimotor
contingency is too severe, and should be treated alongside models such as the
depictive/axiomatic scheme summarised in this paper. In terms of visually driven
robot design this is likely to improve the distinction between inbuilt or learned
reactive mechanisms (the sensorimotor contingency) and acquired experience, that is
the visual consciousness of the system.
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Abstract. This work is about the central role of “expectations” in mental life
and in purposive action. We will present a Cognitive Anatomy of expectations,
their reduction in terms of more elementary ingredients: beliefs and goals.
Moreover, those ingredients will be considered in their ‘quantitative’
dimension: the value of the Goal, the strength of the Beliefs. We will base
several predictions on this analytical decomposition, and sketch a theory of
hope, fear, frustration, disappointment, and relief, strictly derived from the
analysis of expectations. Eventually, we will discuss how can we capture the
global subjective character of such mental states that we have decomposed;
how to account for their gestaltic nature.

1 Premise: The Anticipatory Nature of Mind

Basically mind is for “anticipation” [1], or — more precisely — for building and
working upon “anticipatory representations” [2] [3] [4]. A real “mental” activity and
representation starts to be there when the organism is able to endogenously (not as the
output of current perceptual stimuli) produce an internal perceptual representation of
the world (simulation of perception). Which is the origin and the use of such strange
ability? There are several uses or functions but many (if not all) of them are
anticipatory. For example, the organism can generate the internal “image” for
matching it against perceptual inputs while actively searching for a given object or
stimulus while exploring an environment; or can use it as prediction of the stimulus
that will probably arrive, as in active ‘recognition’. It can use the perceptual
expectation like in Anticipatory Classifiers, for implicitly monitoring the ‘success’ of
the rule-based, reactive behavior, and as criteria for reinforcing or not the rule. But it
can also entertain a mental representation of the current word just for working on it,
modifying this representation for virtually ‘exploring’ possible actions, events,
results: “what will/would happens if...?”.

This precisely is “intelligence”: not just the capacity to exhibit complex adaptive
behaviors (like in social insects or in spiders), nor the capacity to solve problems
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(for example by stupid and blind trial and errors!), but the capacity to solve a
problem by working on an internal representation of the problem, by acting upon
‘images’ with simulated actions, or on ‘mental models’ or ‘symbolic
representations’ by mental actions, transformations (‘reasoning’), before performing
the actions in the world. The architect designs in her mind (and on a piece of paper)
her building before building it; this is not the case of a spider although what it will
build will be very complex (and - for us - beautiful).

Those mental representations that characterize the mind and the mental work are
mainly for anticipation: before the stimulus to be matched (prediction), before the
action to be executed (project), etc. This means that the ability that characterizes and
defines a “mind” is that of building representations of the non-existent, of what is not
currently (yet) “true”, perceivable.

This clearly builds upon memory, that is the re-evocable traces of previously
perceived scenes; usually is just past “experience” evoked and projected on the future.
But this is only the origin. A fully developed mind is able to build never-seen scenes,
new possible combinations of world elements never perceived; it is a real building
and creation (by simulation) not just memory retrieval.

Moreover, the use of such internally and autonomously generated representations
of the world is not only “epistemic”, for knowledge of the past, the present, the
future: that is memory, perception, prediction and expectations. Those
representations can have a radically different function: they can have motivational,
axiological, or deontic nature; saying us not how the world is, was, will be; but how
the world should be, how the organism would like the world to be. That is these
representations can be used as goals driving the behavior. While an adaptive
organism tends to adjust its epistemic representations (knowledge; beliefs) to the
“reality”, to make their fidelity to the world as much as possible; on the opposite an
effective goal-directed system try to adjust the “objective” external world to its
endogenous representation! To change the world (through the “action” which in fact
is goal-directed behavior) and make it the more close as possible to its internally
creative mental picture (that could be a picture of something never already
existing)! This really is a “mind”: the presupposition for hallucinations, delirium,
desires, and utopias.

Like “signs” are really signs when they can be used for deception and lie, not when
they just are the non-autonomous index of reality, propagating from it; analogously,
mental representations (that in fact - as any “representation” - are complex “signs”)
are really there were they can be false and independently generated from reality. The
use of this is not only prediction (by definition the future is currently not-true) but
also more importantly for the purposive character of the behavior, for internal explicit
goal representation.

"In this perspective the “homeostatic” view of goals and of their cybernetic, feed-back
machinery is a bit misleading. “Homeo-stasys” gives the idea of maintaining and restoring an
existing state that can be disturbed; but in fact the cybernetic model and the notion of goal
refer also to the instauration of states that have never been there! This is why the notion of
“purposive” behavior is much better, although definitely founded on the same model.
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1.1 Steps in Anticipation: Anticipatory Behaviors vs. Anticipatory
Representations

Any purposive behavior (in strict sense), any goal-directed system is necessarily
anticipatory, since it is driven by the representation of the goal-state (set-point) and
activated by its mismatch with the current state of the world [5] [6]. But not any
anticipatory behavior, and even not necessarily any behavior based on anticipatory
representations is goal-directed [2].

As for the claim relative to the fact that not any anticipatory behavior [7] is based
on explicit cognitive representations of future relevant/concerning events, that is on
expectations, one should consider many instances of ‘implicit’ or merely behavioral
anticipation or preparation, where the agent simply ‘reacts’ to a stimulus with a
behavioral response (conditioned/learned or unconditioned/inborn) but in fact
the response is functional, apt to some incoming event. The stimulus is some sort
of ‘precursory sign’ and the response in fact is preparatory to the ‘announced’
event:

Precursory stimulus = Preparatory behavior = Event
(e.g. noise) (e.g. jump) (e.g. approaching predator)

In this case there is no explicit ‘mental’ representation of the future event. It is just
a case of what we propose to call ‘merely anticipatory behavior’. A Stimulus St is
exploited (thanks to selection or learning) as the precursor and the ‘sign’ of a
following event Ev, and it is adaptive for the organism to respond immediately to St
with a behavior which in fact is just the ‘preparation’ to the forthcoming Ev; the
advantage is that the organism is ‘ready’, ‘prepared to’ Ev. But this does not require a
‘mental’ anticipated explicit representation of Ev, that is the prediction, or better the
‘expectation’ that Ev will occur.

1.1.1 Surprise

The first level of cognitive anticipation is the retrieval from memory of previous
perceptual experience to be compared with the incoming perceptual input (some sort
of procedural ‘prediction’). The use of this perceptual anticipation is multiple.

On the one side it is applied not only to action but also to the processes of the
world and it is for monitoring the course of the events. Its function seems to be
detecting unusual events that might require additional epistemic processing (for
example attention) or a fast reaction. One might claim that even before this clearly
any form of pattern matching (where the pattern is either inborn or learned) is an
implicit form of anticipation since it should be based on past experience and -more
importantly- should fit some features of the environment, should be adapted to it,
thus implicitly expecting and predicting given features in the environment [§].
Beyond this, there are true predictions activated by premonitory signs that
‘announce’ a given event.

The function of this systematic monitoring of the world is also of continuously
updating and readjusting the world representation, to see whether predictions are
correct and pertinent and the world can be ‘assimilated’ to current schemata or if it is
the case to have some ‘accommodation’ of them (Piaget).
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On the other side, the internal simulation of the next percept is fundamental for
teleonomic behavior; during the action it is crucial to compare the perceptual
feedback (both proprioceptive and external) with some representation of the expected
state of the body and of the world. Indeed, we can argue that whenever an agent
executes an action there is at least an automatic not intentional perceptive test on the
success of the action. This idea is supported from empirical research and is a building
block in neuro-psychology inspired computational models of action control (see [9]
for a review): the importance of sensory feedback for the adjustment of the goal-
directed motor behaviour in phase of action execution. Only this match or mismatch
(after the test) can say to the agent if there is something wrong. [10]

This kinds of sensory-motor expectations already allows some form of ‘surprise’,
the most peripheral one, just due to perceptual mismatch; a first-hand surprise.
‘Surprise’ is the automatic reaction to a mismatch. It is:

- a (felt) reaction/response

- of alert and arousal

- due to an inconsistency (mismatch, non-assimilation, lack of integration) between
incoming information and our previous knowledge, in particular an actual
prediction or a potential prediction;

- invoking and mobilizing resources at disposal of an activity for a better epistemic
processing of this 'strange’ information (attention, search, belief revision, etc.),

- aimed at solving the inconsistency,

- and at preventing possible dangers (the reason for the alarm) due to a lack of
predictability and to a wrong anticipation.

The deeper and slower forms of surprise are due to symbolic representations of
expected events, and to the process of information integration with previous long-
term knowledge. This is surprise due to implausibility, un-believability of the new
information. [11]

In this work we mainly focus on true predictions (based on inference, reasoning,
mental models) (although they can also be mental ‘images’ in sensory format), and
on their combination with explicit goals to produce the specific mental object called
‘Expectation’.

Low level ‘predictions’ are based on some form of ‘statistical’ learning, on frequency
and regular sequences, on judgment of normality in direct perceptual experience, on the
strength of associative links and on the probability of activation [12].

High level predictions have many different sources: from analogy (“The first time
he was very elegant, I think that he will be well dressed”) and, in general, inferences
and reasoning (“He is Italian thus he will love pasta”), to natural laws, and — in social
domain - to norms, roles, conventions, habits, scripts (“He will not do so; here it is
prohibited”), or to “Theory of Mind” (“He hate John, so he will try to...”; “He
decided to go in vacation, so he will not be here on Monday”).

1.1.2 Proto-Expectations
As for anticipatory-representation-based behaviors that are not strictly goal-directed
(intention like) let us briefly discuss also a weaker and more primitive form of
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‘expectation’; the anticipatory representation of the result of the action in
‘Anticipatory Classifiers’ (AC) [13] [7]. In our interpretation, they are not simply
‘predictions’. They represent a forerunner of true Expectations because the agent is
not unconcerned, but it actively checks whether the prediction is true, because the
result is highly relevant, since it satisfies (or non-satisfies) a drive, and provides a
reward. But on the other side, for us — in their basic form- they can (and should) be
distinguished from true ‘goal’ in the classical ‘purposive behavior’ sense [5] [6].

As we just said Expectations should be distinguished from various forms of mere
anticipation and of behavioral preparation. These are the implicit and procedural
forerunners of true cognitive expectations. These are pseudo-expectations: the agent
behaves “as if” it had an expectation. Consider for example unconditioned salivation
in Pavlov experiments. This is just a preparatory reaction for eating. It is based on a
current stimulus eliciting a response that is useful (a condition) for a future behavior:
preparation. Consider automatic coordination (either inborn or learned) in swallowing
or walking, or in dodging a flying rock. Finally, consider our implicit and procedural
trust that the ground will not sink under our feet, or that water is liquid, and snow
cold, etc. In some case there is no representation at all; but simply a default behavior
or procedure: the expectation is the lack of special control (ex, of the ground).

However, in other cases there is the anticipatory representation internally
generated, simulated, of a sensation (perceptual input) which will be compared with
the actual one. This is very close to an Expectation (at least to its Prediction
component); however, there is no necessarily an explicit real Goal initiating the
process, searching for the action, and a purposive-behavior feedback, for monitoring
and adjusting the action. A simple AC is enough. An AC can just remain a production
rule, a classifier, something close to a stimulus-response link, that has also (in the
right part) some representation of the predicted/learned result.

Cond ==> Act + ExpResult

This representation is compared against the actual result: if it matches (correct
expectation) the links (between Cond and Act and between Act and ExpResult) will
be reinforced; if it does not match (wrong prediction) the rule will be weakened.

We assume that this (which for us too is the device underlying Skinner’s
‘instrumental learning’ [1]) in not necessarily yet ‘purposive behavior’ and that the
expected result (ExpResult) is not really a Goal (like in the TOTE model). The
behavior is data/input driven, rule-based, not explicitly ‘purposive’, not top-down
elicited and guided by the representation of its Goal, and cannot be creative and new,
cannot start a problem-solving activity [2].

In this paper we will model only explicit anticipatory representations, and in
particular Expectations in strong sense, and their role in a goal-directed mind and
intentional behavior. We will present a Cognitive Anatomy of Expectations, their
reduction in terms of more elementary ingredients: beliefs and goals; and their
‘strength’. We will base several predictions on this analytical decomposition. We will
present a theory of hope, worries, frustration, disappointment, relief, ready for
artificial creature: could robots and software agents move from low level form of
anticipation, surprise, etc. to explicit expectations and related mental states?

Let us start by disentangling simple predictions from true expectations.
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2 Cognitive Anatomy of Expectations

2.1 Prediction vs. Expectation

‘Expectation’ is not synonymous of ‘prediction’ or ‘forecast’; they have a common
semantic core (a belief — more or less certain >~ about the future ?) and thus a
partially overlapping extension. We consider a forecast [3] [4] as a mere belief about
a future state of the world and we distinguish it from a simple ‘hypothesis’. The
difference is in term of degree of certainty: a hypothesis may involve the belief that
future p is possible while in a forecast the belief that future p is probable. A forecast
implies that the chance threshold has been exceeded (domain of probability).
According to the agent’s past experience or knowledge of physical or social rules and
laws p should happen (in an epistemic sense). 4

Putting aside the degree of confidence (we need a general term covering weak and
strong predictions), one might say that EXPECTATION =» PREDICTION, or better
that both of them imply a representation of a possible future: a possible Belief about
the future. But they also have different features. The primary difference is that in
‘expectation’ (but not necessarily and conceptually in ‘prediction’) there is also a
motivational component; some Goal of the subject X is involved. X is ‘concerned’:
she didn’t just ‘predict’ and be indifferent to the event or mindless. Let’s carefully
analyze this motivational and active component.

2.1.1 Epistemic Goals and Activity

First of all, X has the Goal to know whether the predicted event or state really
happens (epistemic goal). She is ‘waiting for’ this; at least for curiosity. This concept
of ‘waiting for’ and of ‘looking for’ is necessarily related to the notion of expecting
and expectation, but not to the notion of prediction.

Either X is actively monitoring what is happening and comparing the incoming
information (for example perception) to the internal mental representation; or X is
doing this cyclically and regularly; or X will in any case at the moment of the future
event or state compare what happens with her prediction (epistemic actions) [14] [15].
Because in any case she has the Goal to know whether the world actually is as
anticipated, and if the prediction was correct. Schematically >,

% In some Dictionary ‘Expectation’ is defined as: “1. a confident belief or strong hope that a
particular event will happen” (Encarta® World English Dictionary © 1999 Microsoft
Corporation). Notice also the positive connotation of the expected event (hope), while in fact
also ‘negative or bad’ expectations are possible (worries). Notice also the second definition:
“2. a mental image of something expected, often compared to its reality” where both the
nature of an explicit mental representation, and the monitoring/epistemic activity are
correctly identified.

3 Also predictions and expectations about the past are possible but only in the sense that one
will come in the future to know something about the past and has some hypothesis and wish
on that.

* Consider for example the definition of ‘forecasting’: “to predict or work out something that is
likely to happen...” (Encarta® World English Dictionary © 1999 Microsoft Corporation.)

3 We will not use here a logical formalization; we will just use a self-explanatory and synthetic
notation, useful for a schematic characterization of different combinations of beliefs and
goals. For a real formalization of some of these mental attitudes see [4].
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Expectation x p =2
Bel x at t’ that p at t” (where t” > t°)
Goal x from t’ to t”> KnowWhether x p or Not p at t” (£’ > t”)

This really is ‘expecting’ and the true ‘expectation’.

2.1.2 Content Goals

This Epistemic/monitoring Goal is combined with Goals about p: the agent’s
need, desire, or ‘intention that’ the world should realize. The Goal that p is true
(that is the Goal that p) or the Goal that Not p. This is really why and in which
sense X is ‘concerned’ and not indifferent, and also why she is monitoring the
world. She is an agent with interests, desires, needs, objectives on the world, not
just a predictor. This is also why computers, that already make predictions, do not
have expectationsﬁ.

When the agent has a goal opposite to her prediction, she has a ‘negative
expectation’; when the agent has a goal equal to her prediction she has a ‘positive
expectation’ (see § 3.1). To be true a Goal equal to the prediction in Expectation is
always there, although frequently quite weak and secondary relatively to the main
concern. In fact, when X predicts that p and monitors the world to know whether
actually p, she has also the Goal that p, just in order to not disconfirm her
prediction, and to confirm to be a good predictor, to feel that the world is
predictable and have a sense of ‘control’. (see § 3.2). We are referring to
predictability, that is, the cognitive component of self-efficacy [16]: the need to
anticipate future events and the consequent need to find such anticipation validated
by facts. This need for prediction is functional in humans in order to avoid anxiety,
disorientation and distress. Cooper and Fazio [17] have experimentally proved that
people act in order to find their forecasts (predictions) validated by facts and feel
distressed by invalidation.

3 Defining Expectations

In sum, Expectations are axiological anticipatory mental representations, endowed
with Valence: they are positive or negative or ambivalent or neutral; but in any case
they are evaluated against some concern, drive, motive, goal of the agent.

In expectations we have to distinguish two components:

e On the one side, there is a mental anticipatory representation, the belief about a
future state or event, the “mental anticipation” of the fact, what we might also
call the pre-vision (to for-see).

The format of this belief or pre-vision can be either propositional or imagery (or
mental model of); this does not matter. Here just the function is pertinent.

e On the other side, as we just argued, there is a co-referent Goal (wish, desire,
intention, or any other motivational explicit representation).

® For example, computers make weather ‘forecasts’ but it would be strange to say that they
‘have expectations’ about the weather. Currently they are ‘unconcerned’.
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Given the resulting amalgam these representations of the future are charged of
value, their intention or content has a ‘valence’: it is positive, or negative, and so on.

e Either, the expectation entails a cognitive evaluation [18].

In fact, since the realization of p is coinciding with a goal, it is “good”; while if
the belief is the opposite of the goal, it implies a belief that the outcome of the
world will be ‘bad’.

e  Or the expectation produces an implicit, intuitive appraisal, simply by activating
associated affective responses or somatic markers [18]; or both;

e  Or the expected result will produce a reward for the agent, and — although not
strictly driving its behavior, it is positive for it since it will satisfy a drive and
reinforce the behavior.’

We analyze here only the Expectations in a strong sense, with an explicit Goal; but
we mentioned Expectations in those forms of reactive, rule-based behaviors, first in
order to stress how the notion of Expectation always involves the idea of a valence
and of the agent being concerned and monitoring the world; second, to give an idea of
more elementary and forerunner forms of this construct.

3.1 Positive and Negative Expectations

Expectation can be:

positive (goal conformable): (Bel x p*)'" & (Goal x p")
negative (goal opposite): (Bel x p*)"™" & (Goal x —p")
neutral: (Bel x p")"" & —(Goal x p") & —(Goal x —p")
ambivalent: (Bel x p')*" & (Goal x p') & (Goal x —p")

3.2 To Be Happy or to Be a Good Predictor?

To be more subtle, given the Epistemic Goal that we have postulated in any true
Expectation, one might say that in negative expectations always there is a minor
conflict, since X on the one side desires, wishes that p [G1: (Goal x p)], but since she
is induced (by some evidence or experience) to forecast that Not p, she also has the
opposite goal [G2: (Goal x —p)]. However, this goal usually is not so relevant as the
first objective, since it is just in order to confirm X to be a good predictor or that the
world is predictable enough; it is just a by-product of control mechanisms and meta-
goals. If the negative expectations result to be wrong, X is happy as for G1, but G2 is
frustrated. Vice versa, if the negative expectation has been right, X is unhappy as for
G1, but can have some ‘comfort’ because at least she is a good predictor, expert of the
world. In positive expectations, since the G1 and G2 converge (that is X has the Goal
that p both for intrinsic reasons, and for confirming her prediction and competence),
when the prediction is wrong the frustration is appraised without compensation.

" We mention this because it is the case of proto-expectations or expectations in ‘Anticipatory-
Classifiers’ based behaviors, strictly conceived as reactive (not really goal-driven) behaviors,
but based on anticipatory representation of the outcomes.
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4 Expectations and Intentional (Goal-Driven) Behavior

Intentional and in general goal-driven action requires and implies Expectations in
strict sense, but not the other way around. Expectations are broader that intentional
(or goal-directed) actions, they are not necessarily related to action; since even
goals are not necessarily related to action.® First of all, there are Expectations also
for goals we are not actively pursuing. Second, not all goals imply expectations.
Inactive goals, or already realized goals, or discarded goals do not bring any
expectation.

4.1 Expectation Without Intention and Pragmatic Action

Only active and non-realized goals build Expectations. This covers two kinds of
goals:

A) Active achievement goals °: goals to be achieved by the subject’s action; to be
brought about; it is not simply a matter of waiting for them.

B) Self-realizing achievement goals; the agent has nothing to do for achieving
them (X has just to wait) since they are realized by other agents and she can just
delegate [19] this realization to them. The delegated ‘agent’ can either be “nature”
and some natural process, and usually X can do nothing at all because the desired
state only depends on the world (“tomorrow be a sunny day”’; “to grow and become a
woman”); or can be a social agent Y like X, acting in a common world. For example,

Y stops the bus as desired by X, and X relies on this.

Having such a goal may perfectly produce an Expectation (positive or negative)
when there also is a prediction about the desired event. X is just expecting, while
doing nothing for realizing the Goal, but doing something for monitoring the world. If
I wish that tomorrow will be sunny (since I plan for a trip in the country) and I believe
it (positive expectation: hope), I can do nothing for it being sunny, but when I wake
up in the morning I check whether it is sunny or not. Let’s call these ‘passive
expectation” while calling ‘active expectations’ those related to intentional pragmatic
actions and active pursuit of the Goal. Obviously a passive expectation can become an
active one during the evolution of the events.

4.2 Expectations in Intentions

As we said, no Intention is possible without Expectation, but this is not a new
irreducible primitive, to be added for example in the BDI (Beliefs, Desires,
Intentions) framework [20] [21]. It can and must be recollected to beliefs and goals.
And it is a molecule, not a set of atoms; a mixed attitude: in part epistemic, in part

8 Although we are pushed — especially in English — to conceive ‘goals’ as ‘objectives’,

‘targets’ of some action.
° For a complete analysis we should also take into account the distinction between achievement
and maintenance goals (see [19]).
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motivational.'® In fact in order to deliberate to act and to commit to a given course of
action [23] one should believe a lot of things (that it is to be preferred, that is not self-
realizing or already realized, to have a plan, to be able and in condition for executing
the actions, etc.). Among those beliefs supporting intentions [24] some crucial ones
are the beliefs about the expected effects of the actions (that motivated its choice) and
the expected achievement. One cannot intend to do action o in order to achieve p if
she does not believe that after action o is executed p will be true. Thus any Intention
presupposes and entails a ‘positive’ Expectation.

More precisely, also a weak positive expectation is compatible with intentional
behavior. At least one has not to believe that —p; otherwise her act would be
completely irrational (subjectively useless). Thus there is a Weak Expectation, when
X has the Goal (and in this case the Intention) that p and does not believes that not p
in the future: = (Bel x = (p )™ & (Goal xp *);

X is ‘attempting’, intentionally trying to realize p.

In any case in intentional action it is excluded a negative certain expectation
Bel x = (p ")~ & (Goal xp ")
We mean: acting with the certainty to fail. It would be fully irrational.

5 The Quantitative Aspects of Mental Attitudes and of Their
Emergent Configurations

As we have just seen, decomposing in terms of beliefs and goals is not enough. We
need ‘quantitative’ parameters. Frustration and pain have an infensity, can be more or
less severe; the same holds for surprise, disappointment, relief, hope, joy, ... Since
they are clearly related with what the agent believes, expects, likes, pursues, can we
account for those dimensions on the basis of our (de)composition of those mental
states, and of the basic epistemic and motivational representations? We claim so.

Given the two basic ingredients of any Expectation (as we defined it as different
from simple forecast or prediction) Beliefs + Goals, we postulate that:

P1: Beliefs & Goals have specific quantitative dimensions; that are basically
independent from each other.

Beliefs have strength, a degree of subjective certainty; the subject is more or less
sure and committed about their content [25].

Goals have a value, a subjective importance for the agent.

This gives us four extreme conditions (but in fact those variations are continuous
and one should model precisely this continuity):

' In AI there have been other attempt to insert Expectations among the necessary mental
ingredients of a BDI like agent [22]. The difference is not only that we derive several
“psychological” assumptions and consequences from our model, but also that we do not
introduce Expectations as an additional primitive. We prefer to build these mental states on
former ingredients (beliefs and goals/intentions) in order to have mental states that preserve
both properties, epistemic and conative. Expectations have a specific functional role in
practical reasoning that is better understood when those mental states are defined in a
compositional fashion.
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BELIEF
high credibility | low credibility
(pretty sure) | (perhaps)
high value |
(very important) 1 | 2
GOAL \
low value |
(marginal) 3 | 4

To simplify, we may have very important goals combined with uncertain
predictions; pretty sure forecasts for not very relevant objectives; etc.
Thus, we should explicitly represent these dimensions of Goals and Beliefs:

% %
Bel  x P Goal "~ x p'

Where % in Goals represents their subjective importance or value; while in Beliefs
% represents their subjective credibility, their certainty.
An Expectation (putting aside the Epistemic Goal) will be like this:

% %
Bel x p' & Goal 7 x [=] p'

The subjective quality of those “configurations” or macro-attitudes will be very
different precisely depending on those parameters. Also the effects of the invalidation
of an expectation are very different depending on:

a) the positive or negative character of the expectation;
b) the strengths of the components. (See § 6.)

We also postulate that:

P2: The dynamics and the degree of the emergent configuration, of the Macro-
attitude are strictly function of the dynamics and strength of its micro-
components.

For example anxiety will probably be greater in box 2 than in 1, inferior in 4,
nothing in 3. Box 2 (when the expectation is ‘positive’) produces an intense hope; and
so on. Let us characterize a bit some of these emergent macro-attitudes.

5.1 Hope and Fear

‘Hope’ is in our account [3] [4] a peculiar kind of ‘positive expectation’ where the
goal is rather relevant for the subject while the expectation (more precisely the
prediction) is not sure at all but rather weak and uncertain.

BellOW Xp & Goalhlgh Xp'
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We may also have — it is true - ‘strong hope’ but we explicitly call it ‘strong’
precisely because usually ‘hope’ implies low confidence and some anxiety and
worry. In any case, ‘hope’ (like explicit ‘trust’) can never really be subjectively
‘certain’ and absolutely confident. Hope implies uncertainty.

Correspondingly one might characterize being afraid, ‘fear’, as an expectation of
something bad, i.e. against our wishes:

% %
Bel " x p'& Goal ~ x —p'

but it seems that there can be “fear” at any degree of certainty and of importance.''

Of course, these representations are seriously incomplete. We are ignoring their
‘affective’ and ‘felt” component, which is definitely crucial. We are just providing
their cognitive skeleton [26].

5.2 Expecting Artificial-Agents

One reason for such a quite abstract, essential (and also incomplete) analysis is that
this can be formalized and implemented for artificial creatures. Computers and robots
can have different kinds of Expectations: low level perceptual expectations for
monitoring the world; proto-intentions for monitoring the action and reinforcing it by
learning; and high level explicit expectations. They are in fact able of making
predictions on the physical world and on the other (also human) agents. They can do
this on various bases (from inference and analogy to statistical learning, from laws
and norms to mind reading and plan recognition) as we do; and they can have true
‘purposive’ behavior, intentional actions guided by pre-represented goals. Thus, they
can entertain true Expectations. It would be necessary to also represent and use the
strength and credibility of Beliefs (based on sources and evidences) [24] and the value
of the Goals (on which preferences and choices should be based). Given this and
various kinds of Epistemic actions, one might model surprise, disappointment, relief,
hope, fear, etc. in robots and software agents.

Which should be the advantage of having machines anxious like us?

Seriously speaking, we believe that these reactions (although unfelt and
incomplete) would be very adaptive and useful for learning, for reacting, for
interacting with the user and with other agents. (See § 8.)

5.3 Analytical Decomposition and the Gestalt Character of Mental Attitudes

Moreover, a hard problem for symbolic (and analytic) cognitive science deserves to
be underlined: the mental Gestalt problem. Disappointment, expectation, relief, etc.

"'To characterize fear another component would be very relevant: the goal of avoiding the
foreseen danger; that is, the goal of Doing something such that Not p. This is a goal
activated while feeling fear; fear ‘conative’ and ‘impulsive’ aspect. But it is also a
component of a complete fear mental state, not just a follower or a consequence of fear. This
goal can be a quite specified action (motor reaction) (a cry; the impulse to escape; etc.); or a
generic goal ‘doing something’ (“my God!! What can I do?!”) [27]. The more intense the
felt fear, the more important the activate goal of avoidance [26].
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seem to be unitary subjective experiences, typical and recognizable "mental states";
they have a global character; although made up of (more) atomic components they
form a gestalt. To use again the metaphor of molecules vs. atoms, the molecule (like
‘water’) has emergent and specific properties that its atoms (H & O) do not have.
How can we account for this gestalt property in our analytic, symbolic,
(de)composition framework? We have implicitly pointed out some possible solution
to this problem. For example:

— A higher-level predicate exists (like ‘EXPECT’) and one can assume that
although decomposable in and implying specific beliefs and goals, this
molecular predicate is used by mental operations and rules.

— Or one might assume that the left part of a given rule for the activation of a
specific goal is just the combined pattern: belief + goal; for example, an
avoidance goal and behavior would be elicited by a serious negative expectation
(and the associated ‘fear’), not by the simple prediction of an event.

— One might assume that we "recognize" - or better “individuate” (and
“construct”)- our own mental state (thanks to this complex predicate or some
complex rule) and that this "awareness" is part of the mental state: since we
have a complex category or pattern of "expectation" or of "disappointment" we
recognize and have (and feel) this complex mental state.

This would create some sort of "molecular” causal level. However, this might seem
not enough in order to account for the gestaltic subjective experience, and reasonably
something additional should be found in the direction of some typical "feeling"
related to those cognitive configurations. Here we deal with the limits of any
disembodied mind (and model) (See § 8.).

6 The Dynamic Consequences of Expectations

As we said, also the effects of the invalidation of an expectation are very different
depending on: a) the positive or negative character of the expectation; b) the strengths
of the components. Given the fact that X has previous expectations, how this changes
her evaluation of and reaction to a given event?

Invalidated Expectations
We call invalidated expectation, an expectation that results to be wrong: i.e. while
expecting that p at time t’, X now beliefs that NOT p at time t’.

(Bel x p')*" < ==> (Bel x —p")"™*

This crucial belief is the ‘invalidating’ belief.

EE I3

e Relative to the goal component it represents “frustration”, “goal-failure” (is
the frustrating belief): I desire, wish, want that p but I know that not p.
FRUSTRATION: (Goal x p*) & (Bel x —p")
e Relative to the prediction belief, it represents ‘falsification’, ‘prediction-
failure’:

INVALIDATION: (Bel x p')"" & (Bel x —p")" ™
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(Bel x p*)'" represents the former illusion or delusion (X illusorily believed at time t
that at t p would be true).

This configuration provides also the cognitive basis and the components of
“surprise”: the more certain the prediction the more intense the surprise. Given
positive and negative Expectations and the answer of the world, that is the frustrating
or gratifying belief, we have:

P =P
Bel x p & Goal x p no surprise + achievement surprise + frustration
disappointment
Bel x —p & Goal x p | surprise + non-frustration no surprise + frustration
relief

6.1 Disappointment

Relative to the whole mental state of “positively expecting” that p, the
invalidating&frustrating belief produces “disappointment” that is based on this basic
configuration (plus the affective and cognitive reaction to it):

DISAPPOINTMENT: (Goal” x p")'* & (Bel” xp")' & (Bel” x —p )"

At t X believes that at t” (later) p will be true; but now — at t” — she knows that Not
p, while she continues to want that p. Disappointment contains goal-frustration and
forecast failure, surprise. It entails a greater sufferance than simple frustration [28]
for several reasons: (i) for the additional failure; (ii) for the fact that this impact
also on the self-esteem as epistemic agent (Badura’s “predictability” and related
“controllability”) and is disorienting; (iii) for the fact that losses of a pre-existing
fortune are worst than missed gains (see below), and long expected and surely
expected desired situation are so familiar and “sure” that we feel a sense of
loss.

The stronger and well grounded the belief the more disorienting and restructuring
is the surprise (and the stronger the consequences on our sense of predictability). The
more important the goal the more frustrated the subject.

In Disappointment these effects are combined: the more sure the subject is about
the outcome & the more important the outcome is for her, the more disappointed the
subject will be.

e The degree of disappointment seems to be function of both dimensions and

components 2. It seems to be felt as a unitary effect.
“How much are you disappointed?” “I'm very disappointed: I was sure to succeed”
“How much are you disappointed?” “I'm very disappointed: it was very important for me”
“How much are you disappointed?” “Not at all: it was not important for me”
“How much are you disappointed?” “Not at all: I have just tried; I was expecting a failure”.

12 As a first approximation of the degree of Disappointment one might assume some sort of
multiplication of the two factors: Goal-value * Belief-certainty. Similarly to ‘Subjective
Expected Utility’: the greater the SEU the more intense the Disappointment.
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Obviously, worst disappointments are those with great value of the goal and high
degree of certainty. However, the surprise component and the frustration component
remain perceivable and function of their specific variables.

6.2 Relief

Relief is based on a ‘negative’ expectation that results to be wrong. The prediction is
invalidated but the goal is realized. There is no frustration but surprise. In a sense
relief is the opposite of disappointment: the subject was “down” while expecting
something bad, and now feel much better because this expectation was wrong.

RELIEF: (Goal x —p") & (Bel x p') & (Bel x —p")"*

e The harder the expected harm and the more sure the expectation (i.e. the more
serious the subjective threat) the more intense the ‘relief’.

More precisely: the higher the worry, the treat, and the stronger the relief. The
worry is already function of the value of the harm and its certainty.

Analogously, joy seems to be more intense depending on the value of the goal, but
also on how unexpected it is.

A more systematic analysis should distinguish between different kinds of surprise
(based on different monitoring activities and on explicit vs. implicit beliefs), and
different kinds of disappointment and relief due to the distinction between
‘maintenance’ situations and ‘change/achievement’ situations. In fact expecting that a
good state will continue is different from expecting that a good state (that currently is
not real) becomes true; and it is different worrying about the cessation of a good state
vs. worrying about the instauration of a bad event. Consequently, the Relief for the
cessation of a painful state that X expected to continue, is different from the Relief for
the non-instauration of an expected bad situation. Analogously: the Disappointment
for the unexpected non-prosecution of a welfare state (loss) is psychologically rather
different from the non-achievement of an expected goal.

FORECAST that P

currently P currently Not P
(expected (expected
continuation) instauration)
GOAL P Disappointment Disappointment
loss 1 missed gain 2
ACTUALLY
Not P
GOAL Not P | Relief 3 Relief 4
cessation, alleviation escaped danger

'3 Or — obviously - (Goal x pt’) & (Bel x —pt’) & (Bel x pt).
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More precisely (making constant the value of the Goal) the case of loss (1) is
usually worst than (2), while (3) is better than (4). This is coherent with the theory of
psychic suffering [28] that claims that pain is greater when there is not only
frustration but disappointment (that is a previous Expectation), and when there is
‘loss’ (1), not just ‘missed gains’ (2), that is when the frustrated goal is a maintenance
goal not an achievement goal.

7 The Implicit Counterpart of Expectations

Since we introduce a quantification of the degree of subjective certainty and
reliability of Belief about the future (the forecast) we get a hidden, strange but nice
consequence. There are other implicit opposite beliefs and thus implicit Expectations.

For “implicit” beliefs we mean here a belief that is not ‘written’, contained in any
‘data base’ (short term, working, or long term memory) but is only potentially known
by the subject since it can be simply derived from actual beliefs. For example, while
my knowledge that Buenos Aires is the capital city of Argentina is an explicit belief
that I have in some memory and I have just to retrieve it, on the contrary my
knowledge that Buenos Aires is not the capital city of Greece (or of Italy, or of India,
or of ...) is not in any memory, but can just be derived (when needed) from what I
explicitly know. Until it remains implicit, merely potential, until is not derived, it has
no effect in my mind; for example, I cannot perceive possible contradictions: my mind
is only potentially contradictory if I believe that p, I believe that g, and p implies Not
g, but I didn’t derive that Not q.

Now, a belief that “70% it is the case that p”, implies a belief that “30% it is the
case that Not p”'*. This has interesting consequences on Expectations and related
emotions. The Positive Expectation that p entails an implicit (but sometime even
explicit and compatible) Negative Expectation:

Yo t %o t
Bel xp Bel x—p
& > &

%t %t
Goal oxp Goal oxp

This means that any hope implicitly contains some fear, and that any worry
implicitly preserves some hope. But also means that when one get a ‘relief’” because a
serious threat strongly expected is not arrived and the world is conforming to her
desires, she also get (or can get) some exultance. It depends of her focus of attention
and framing: is she focused on her worry and evanished treat, or on the unexpected
achievement? Vice versa when one is satisfied for the actual expected realization of
an important goal, she also can get some measure of relief while focusing on the
implicit previous worry.

' We are simplifying the argument. In fact it is possible that there is an interval of ignorance,
some lack of evidences; that is that I 45% evaluate that p and 30% that Not p, having a gap
of 25% neither in favor of p nor of Not p [29] [30].
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Not necessarily at the very moment that one feels a given emotion (for example
fear) she also feels the complementary emotion (hope) in a sort of oscillation or
ambivalence and affective mixture. Only when the belief is explicitly represented and
one can focus — at least for a moment — her attention on it, it can generate the
corresponding emotion.

8 Concluding Remarks

This analysis obviously is very simplistic, and reductionist. It misses a lot of important
psychological aspects. As we mentioned, an important missed point is the fact that those
mental states (especially when ‘affective’) are usually joined with bodily activation and
feeling components, and these components —with their intensity- shape the whole
subjective state and determine the nature of future reactions. Moreover, other cognitive
aspects are elicited by and combined with those configurations. For example, in
worrying the activity of monitoring, waiting, be more or less anxious. Now the degree
of relief also depends on the presence and intensity of those somatic components and of
those activities (Was the subject very stressed, feeling her stomach contracted? ... Was
she continuously checking and checking?) .

We also did not consider the important interaction between the two basic
components and their strength. For example, there might be an influence of the goal
on the belief. In ‘motivated reasoning’ [31], in wishful thinking we tend to believe
more agreeable (goal conformable) beliefs and we defend ourselves from bad (goal
opposite) beliefs. In Expectations we precisely have goal-related beliefs, thus — with
an important value of the goal — we might be prone to go against the independent
sources and evidences of our beliefs and change their credibility in conformity with
their desirability. In other words, our predictions might be influenced by the value of
the expected outcome. Vice versa, in some psychological attitude or personality one
might reduce the concern, the value of the goal just in order to not feel so bad in case
of failure, since she mainly focuses such an eventuality.

However, this simplification is just a necessary, preliminary step: nothing prevents
Al and ALIfe from enriching this skeleton with more mussels and blood. This anatomy
is necessary for identifying basic structural relationships between mental states, and — in
this case- the crucial (sometimes hidden) role of expectations in mind.

Notice that —even with such a simplification - several nice predictions follow from
this cognitive anatomy. For example, we predict that Disappointment implies
Surprise, but not the other way around; or that Hope implies a Prediction, but not vice
versa. We can predict that there is a contradiction between ‘to be frightened of’
something and be disappointed if it does not happen; or between forecasting that p
and be surprised when it actually happens; or between ‘hoping’ that p and feeling
down if it happens. We predict that a strong hope, when the prediction is realized,
entails satisfaction, realization; while in the opposite case entails frustration,
disappointment, and pain.

Will we have the satisfaction of surprising our artificial Agent, our computer or our
domestic robot? And possibly even of disappointing them (as they frequently
disappoint us)? We think so, and — as we said — this objective has been an additional
reason for being schematic. Computers and robot can have Expectations and one
might model robotic surprise, disappointment, relief, hope, fear, etc.
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Of course, to really having artificial fear or hope one should reproduce or simulate
also the ‘affective’ component, that is the ‘feeling’, by providing to computers,
artificial agents, and robots a ‘body’ not simply a hardware. This means introducing
some form of proprioception and enteroception, pain and pleasure, feeling what
happens to the body and its internal states and events, its automatic reactions to the
world; and modeling the impact of these signals (motions) on the ‘mental’
representations and activity [26]. This is still quite far to be achieved. This is why we
can have for the moment only the ‘cold’ counterpart of those affective states, just
reduced to the mental representations on which they are based.

However, the objective remains that of building some (useless?) anxious machine.
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Abstract. This paper presents a cognitive model for an autonomous
agent based on emotional psychology and Bayesian programming. A
robot with emotional responses allows us to plan behaviour in a dif-
ferent way than present robotic architectures and provides us with a
method of generating a new interface for human/robot interaction. The
use of emotional modules means that the emotional state of the robot
can be obtained directly and, therefore, it is relatively simple to ob-
tain a virtual face that represents these emotions. An autonomous agent
could have a model of the environment to be able to interact with the
real universe where it is working. It is necessary to consider that any
model of a real phenomenon will be incomplete due to the existence of
uncertain, unknown variables that influence the phenomenon. Two ex-
ample arquitectures are proposed here. Using these architectures some
experimental data, to verify the correctness of this approach, is provided.

Keywords: Cognitive Models, Autonomous Agents, Bayesian Program-
ming, Bayesian Units.

1 Introduction

Humanizing computer interfaces has long been a major goal of both computer
users and programmers [1]. Humanizing has at two main advantages, firstly
that of making interfaces easier and more comfortable to use and secondly of
giving interfaces a more human appearance [2]. The human face is one of the
most compelling components of a human-like interface. Facial expressions are
an important channel of nonverbal communication. Emotional expressions over
time may make people’s faces descriptive of their personalities and their state
of mind. There are some papers that study the importance of the face in the
interaction and communication between people [3] [4].

On the other hand, an autonomous agent could have a model of the en-
vironment to be able to interact with the real universe where it is working.
Nevertheless, it is necessary to consider that any model of a real phenomenon
will be incomplete due to the existence of uncertain, unknown variables that
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influence the phenomenon. The effect of these variables is to cause the model
and the phenomenon to never have the same behaviour. Although reasoning
with incomplete information continues to be a challenge for autonomous agents,
learning and probabilistic inference tries to solve this problem using a formal
base. Bayesian programming [5] [6] [7] is a formalism, based on the principle of
the Bayesian theory of probability and is proposed as a solution when dealing
with problems relating to uncertainty and incompleteness.

Certain parallelisms exist between this kind of programming and the struc-
ture of living organisms, as shown in a theoretical way in [6]. In this way, natural
evolution provided living beings with both the pertinent variables, and the ade-
quate decomposition and parametric forms.

2 Fusing with Bayesian Programming

As commented above, it is necessary to bear in mind that any model of a real
phenomenon will always be incomplete due to the permanent existence of un-
known, hidden variables that will influence the phenomenon. These variables
cause the model and the phenomenon to adopt different behaviour. An artificial
system must perceive, infer, decide and act using an incomplete model of the
environment. Bayesian inference and learning try to solve this problem using a
formal theory. Bayesian programming is a new formalism, and it is proposed as a
solution when dealing with problems relating to uncertainty and incompleteness.
A Bayesian program is defined as a means of specifying a family of probability
distributions. It is made up of different components (see figure 1).

Pertinent variables

Decomposition
. Spec () .
Description { Parametric
Program Forms
Programs
Identification based on Data(d)
Question

Fig. 1. Structure of a Bayesian program

The first is a declarative component where the user defines a description.
The purpose of a description is to specify a method to compute a joint distribu-
tion on a set of variables given a set of experimental data () and preliminary
knowledge (7). The second component is of a procedural nature and consists of
using a previously defined description with a question. A question is obtained by
partitioning the variables into three groups: Searched, Known and Unknown,
computing a probability distribution of the form P(Searched|Known). Answer-
ing this question consists in deciding a value for the variable Searched according
to P(Searched|Known) using the Bayesian inference rule:

P(Searched|Known ® 6 ® w) =
i x Y. P(Searched ® Unknown @ Known|d @ ) 1)

Unknown
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Considering both the system decomposition in modules and the fusion of
information a definition of Bayesian processing Unit is proposed, based on the
Bayesian programming formalism. A processing unit u is a description that de-
fines this probabilistic distribution: P(I ® S ® O ® |u), where I is an input
variable that specifies the information to be processed, S is a state variable that
represents the situation of the processing unit and O is an output variable that
specifies the newly generated information.

The variables I, S and O are allowed to be atomic and can be made up
of some random variables that will be assumed as discrete. The decomposition
of this probabilistic distribution and its form is not limited. In this way, the
decomposition of the variable or input variables can be defined using queries to
other processing units. Specific learning is not specified in order to allow the
system designer to use the method that he considers to be more appropriate.
The variable state S represents the situation in a processing unit. For example,
in reactive behaviours, where the input information directly provides the output
information, the shape of the probability of this variable will tend to be uniform.
In more complex behaviours S can take more complex shapes depending on the
information to be processed and the desired output.

3 Proposed Architectures

An emotion is an affective state, a subjective reaction to the environment that
shows internal feelings, motivations, wishes, needs and objectives. Emotions and
the actions linked to them are an essential part of an organism’s relation with its
environment. They can be the means by which a person appraises the significance
of stimuli and prepares the body for an appropriate response [8]. The core of
an emotion is readiness to act in a certain way [9]. In this way, emotions can
interrupt ongoing action; they also prioritise certain kinds of social interaction.

3.1 Complementary Architecture to Obtain a Human/Robot
Interface

In the model proposed here an autonomous agent, which can have a traditional
management system, is able to plan a set of objectives. With this system and us-
ing the principles of the emotional bases previously commented, a subconscious
model that combines the emotions provided by the robot, is defined. These emo-
tions depend on the condition of all variables (sensors, laser, batteries...) and the
previous knowledge of the environment. An emotion can make the robot change
its behaviour in a reactive or deliberate way.

In our case we have a previous navigation system that is able to deliver
correspondence under petition [10]. This system will be expanded with four
emotional modules to help achieve the tasks and provide an effective mechanism
for building an interface with the characteristics outlined above.

Emotional Modules. An emotional module is a Bayesian processing unit that
interacts with other emotional modules, with the traditional system for the res-
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olution of objectives or with the robot using an interface connected directly to
the robot. An emotional module usually has a corresponding human emotion. It
is advisable to combine all the emotional modules using a Bayesian unit that we
call subconscious. This unit is responsible for collecting all the emotional charge
of the robot in a given moment.

As previously stated, an emotional module can act directly with the robot
actuators. However, the conscious system must be connected to the robot to
execute tasks. A Bayesian execution unit is proposed to be in charge of controlling
the robot. This unit will carry out the tasks depending on the emotional values
of the robot and the present piece of work to be completed.

Most emotional modules have a reactive base, this is the reason why they will
not need a state variable. In our system (see figure 2a) we use the following mod-
ules: a dissatisfaction module (defined to show the probability that the robot has
a problem in the execution of its task), a tiredness module (defined as a protec-
tion system), a depression module that determines when work conditions are not
suitable (for example, when sensor readings provide low reliability or tiredness
levels are excessively high). It can produce a decrease in movement intensity or
even halt the robot. And finally a fear module (to maintain the integrity of the
robot and to take reactive action to avoid collisions and obstacles). This mod-
ules are grouped using a subconscious module (that determines the state of the
robot and is used in the interface development). In order to execute an action
we require an execution module. This is a system that determines which actions
are more probable to execute. This probability depends on the outputs of the
emotions that interact with the system as well as the actions proposed by the
traditional system. We briefly will describe some of them:

Fear. The main function of this module is to maintain the integrity of the robot
and to take reactive action to avoid collisions and obstacles. Input variables
are the action to be executed in this moment (Ac) (it must be provided by the
conscious module, it is made up of variables that describe robot actuators, in this
case Vrot for rotational velocity and Vitrans for transactional velocity) and the
readings from sensors (Ps). Starting from these variables, the module obtains
an indication of the robot’s degree of fear (Vmie) and the action to be executed
(Amie) in order to avoid any actions that could damage the robot.
In this way, the following decomposition is defined with these variables:

P(Ps® Ac ® Vmie ® Amie|r) =
P(Ps|r) x P(Ac|Ps ® m)x P(Vmie|Ac ®@ Ps ® m) x P(Amie|Vmie ® Ac® Ps®@ )=
P(Ps|m) x P(Ac|w) x P(Vmie|Ac ® Ps ® ) x P(Amie|Vmie ® )

Initially the distribution of the sonar readings P(Ps|m) and the distribution
of the actions to be executed P(Ac|m) are unknown. These terms are uniform
distributions. P(Vmie|Ac ® Ps ® 7) is specified as a table that defines the fear
degree of the robot from the sensor values and the action developed. Finally,
P(Amie|Vmie ® 7) is a table that represents the action to be taken depending
on the fear degree obtained.
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Fig. 2. a) Complementary Architecture. Conscious module is a classic system for the
interaction of the robot with the world. Subconscious module combines the emotional
system modules determining the present state of the robot. A dissatisfaction module is
defined to show the probability (Vins) that the robot has a problem in the execution
of its task. There are two input variables that establish this probability: completed
task rate (C'c) and task completion problems (Oc). Tiredness is defined as a protection
system. In this way, the function of this unit is to calculate the condition of the robot
from the time of continuous execution (Pt) and the state of the batteries (Pbat). The
unit shows if the robot needs to return to the charge station in order to recharge its
batteries or if the robot must restrict its movements (Vcan). The depression module
determines when work conditions are not suitable, for example, when sensor readings
provide low reliability or tiredness levels are excessively high. Knowing the system
reliability (F'c) and tiredness level (Vcan) the robot will calculate the degree of de-
pression (Vdep) and the action to be taken (Adep).A fear module is used to maintain
the integrity of the robot and to take reactive action to avoid collisions and obstacles.
Input variables are the action to be executed in this moment (Ac) and the readings
from sensors (Ps). Starting from these variables, the module obtains an indication of
the robot’s degree of fear (Vmie) and the action to be executed (Amie) in order to
avoid any actions that could damage the robot. Finally, we use an execution module in
order to determine which actions are more probable to be execute. b) Architecture for
an Autonomous System. The Dissatisfaction, Tiredness, Depression and Fear modules
work in the same way as the previous architecture. The Satisfaction module includes
all objectives that the robot must perform. The Controller module manage the robot
from the emotional modules, it indicates the actions to execute (A) from the results of
the emotional modules and the previous an current state of the robot.

The specification of tables for some terms of the module decomposition pro-
vides some advantages. These advantages are obtained when we specify the prob-
lem to solve in an inverse way than usual. Given an output, any possible input
that generated it, is reasoned. Inverse programming has two main advantages:
it is robust in unexpected situations (an output will always be obtained even
in not considered cases) and taking into account conditional independence the
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number of cases increases in a lineal way with the number of variables. More
details can be found in [5].

Execution Module. As commented above, emotional modules and the tradi-
tional system can interact with the robot actuators. Therefore, it is necessary
to define a system that determines which actions are more probable to execute.
This probability depends on the outputs of the emotions that interact with the
system Vmie, Amie (for fear) and Vdep, Adep (for depression) as well as the
actions proposed by the traditional system A..

In this way, this joint distribution is defined with the following decomposition:

P(Vdep ® Adep @ Vmie @ Amie @ Ac @ ) =

P(Vdep|r) x P(Adep|Vdep ® m) x P(Vmie|Adep ® Vdep ® m)x

P(Amie|Vmie ® Adep ® Vdep @ m) x P(Ac|Amie ® Vmie ® Adep ® Vdep ® )X
= P(Vdep|r) x P(Adep|Vdep ® ) x P(Amie|Vmie ® m) x P(Ac|r) = 5 [ P(Ailr)

It is specified as the product of each term of the actions that form it. The
distribution P(Vdep|m) is supposed to be uniform for execution task and it is
included in the normalization term . P(A.|r) is defined starting from two
terms. The first term is the actions to be executed by the conscious system
obtained assigning probabilities to the set of actions to be executed. The second is
the subconscious module that usually will have more execution priority than the
conscious module. The rest of terms of the previous equation must be obtained
from the remaining modules (tiredness and depression).

Subconscious. The subconscious module determines the state of the robot and
is used in the interface development. This state is represented using a human face
that expresses the emotions of the robot in a given moment. In this way, the input
variables are the probability of the different emotions (Vins,Vcan, Vdep,Vmie).
Starting from these variables the system will obtain the face (Face) that best rep-
resents these emotions. In this way, the following decomposition is defined:

P(V;@V.®Vy® V@ Face @) = [ [ P (V|Face @ )

Conditional independence is therefore assumed for all emotions. This can
seem a strong hypothesis, for example, in the emotions tiredness and depression,
where both are related. Nevertheless, given a face it can be assumed that the
probability that it represents an emotion is independent from the rest. This
hypothesis provides some advantages [5]. On the other hand, it is defined:

P (V|Face ® m) = G (u(V, Face), o(V, Face))

Where G specifies a discrete Gaussian. The parameters of this Gaussian can be
learned by asking the robot users. Everybody that interacts with the robot will,
when given a face Face, say how it represents an emotion V. In this module, a
set of 17 representative faces have been designed.
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3.2 Architecture for an Autonomous System

In the previous section we presented an architecture that complements a classical
robotic system. This architecture provides a human/machine interface. One of
the benefits of using this architecture is that we can obtain the emotional state
of the robot. Nevertheless, it requires an external system to control the robot.

In this section another architecture, that has been designed specifically to
carry out a task (concretely a navigation task), is proposed. This architecture
contains a Controller module that decides the action for the robot to take. The
Controller module is the only one that controls the robot. Using this architecture
(see figure 2b) we develop an autonomous behaviour from the state of a set of
emotions.

The Dissatisfaction, Tiredness, Depression and Fear modules work in the
same way as the previous architecture. The Satisfaction module includes all of
the tasks to be executed by the robot. The main objective of the robot is to
move to a defined point, avoiding the obstacles in the environment. Although
not described in this paper, any navigation method between two points in a
known environment could be used, as long as the distance between the current
position and the final point is known. This distance will be used to establish the
Vs probability.

The Controller module manage the robot from the emotional modules. The
function of this unit is to give orders for the robot to carry out (A) taken from
the results of the emotional modules (Vi, A5, Vi, Ve, Vi, A4, Vi, and A,,), the
current state (5) and previous state (S”).

In this way, the following joint distribution is defined:

PAR SRS @V, A:; Vi@ Ve@Vi®@Aa@ Vi ® A @ 7) =
P(Vi| ) x P(As| Vs @ ) x P(Vi| ) x P(Ve|m) x P(Vy| Ve @) X P(Ag| Va ® 7)x
P(Vin| 7) X P(Am| Vi @ m) x P(S'| 7)x
PSS @A @Vm@Aa@Va@Ve@Vi® A; @ Ve @ ) X
PAIS®S @®Am @V ®Ag@Va@ V. @V, A; @V, ®@m) =
i X P(As| Ve ®@7) X P(Vag| Ve @) x P(Ad| Va®@7) X P(Ap| Vin @ ) %
P(S|S @V @Vy@ V.2V, V, ®@m)x
P(AIS®S @ Am @ Aa ® As @ T)

The First equation is obtained assuming conditional independences between
modules. & is a normalization term that groups the uniform distributions
(P(Vs|m), P(Vi|m), P(Ve|w) and P(S’|m)). Probabilities P(As|Vs ® ),
P(Vyg|Ve@m), P(Aq| Vg @ m) and P(Apm| Vi, @ 7) are defined in the emotional
modules previously presented. The probability of a global state .S depends on the
probability of a previous global state S’ and the state of the emotional units. In
the same way, an action A depends on the current state S, the previous state S’
and on the actions of the emotional modules. Both distributions can be defined
with a table. This table can be specified by the programmer or be learned as is
shown in [11].
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4 Experimental Validation

4.1 Complementary Architecture to Obtain a Human/Robot
Interface

The architecture proposed here has been designed for a correspondence deliv-
ery system presented in [10] and developed by the robot PeopleBot (http://
www.activmedia.com). This robot provides a good platform for the development
of human/robot interfaces because of its upright shape and its touch screen.
The emotional interface presented here has been implemented on this robot
and shown on its screen. This interface is based on the probability distribution
PV;®V.®@Vy®Vy, ® Face) and concretely in one of the questions that can be
asked to this unit applying equation 1: P(Face|V; @ V. @ Vi & Vi,).

a)

Fig. 3. Graphical representation of the probability P(Face|V; @ V. ® V4 ® V). a)
(Vi, Ve, Va, Vi) = (0,0,0,0) b)(V;, Ve, Va, Vi) = (0.2,0.23,0.21, 0.19).

-
al

Fig.4. a) Example of a fear sequence. The images show the transition from neutral
face to the base face of fear. b) PeopleBot in its working environment.

When a face is obtained from this distribution, this face is one of the 17
base faces designed for the system, where a base face represents a set of emo-
tions. From this base face a transition to a neutral face is generated, a neu-
tral face is a face devoid of emotion (see figure 4a). This process continu-
ously provides uniformity and realism to the facial movements. In figure 3 the
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value of the distribution P(Face|V; ® V. @ Vg ® V;,,) in two specific moments is
shown.

When the user wants to interact with the robot he has two options at his
disposal. The first is to use a verbal command (using the speech recognition
module integrated in PeopleBot) and the second is to use the touch screen where
the face is shown. When the user clicks the screen, all the information needed for
the management of the robot is shown. On the other hand, the use of emotions
provides the same versatility and operation as traditional systems, with the
difference that the separation between modules makes integration and reusability
easier. The use of emotional modules provides the robot with an emotional state.
This state can be used for planning, for the development of tasks and for building
an interface like that proposed in this paper.

a) b)

START

GOAL

° .--I ..I
& d)

Fig. 5. A robot trajectory. The graphs show the level of fear V;,, (left column), tiredness
Ve (center column) and satisfaction V; (right column) in four different positions of the
robot.

4.2 Architecture for an Autonomous System

The second architecture has been designed to develop a concrete navigation task.
This architecture fuses emotional modules in order to complete the tasks using
a Markovian point of view, taking into acount the present and the previous
robot state. The Satisfaction module contains the main tasks to be executed
by the robot, in this case the robot will try to reach a goal point. These be-
haviours will be affected by the other modules of the system. The Fear mod-
ule will reduce the velocity and rotational angle when it considers that the
robot is near to an obstacle and therefore, it is possible that the robot collides
with them. In this way, the Tiredness module also will modify the main be-
haviour, trying to reduce the robot motor overload in order to save the batteries
level. In figure 5 the robot is shown in four different positions in an environ-
ment. The graphs show, for each position, the level of fear (left column), tired-
ness (center column), and satisfaction (right column), taken from the respective
modules.
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5 Conclusions

In this paper a model to imitate human emotional behaviour has been proposed.
This model is based on Bayesian programming, and specifically Bayesian pro-
cessing Units. The main purpose of this paper is to provide a cognitive model
for an autonomous agent. A visual communication interface, simple to use and
whose interpretation is not restricted by language, are developed. A human face
capable of showing different emotions has been integrated into a robot. An asso-
ciation between human emotions and the tasks to be executed by the robot has
been produced. In this way the robot has been provided with emotional mod-
ules. In addition an autonomous architecture and example of its use have been
provided.

An emotional state of the robot is obtained from the information received
from the emotional modules presented in this paper. Using this state, a repre-
sentative face that defines this condition is obtained and shown as an indication
of its present feeling. Some experimental data, to verify the correctness of the
model and the interface, have been provided.

In an uncertain world it is necessary to work taking this uncertainty into
consideration. The model proposed here contains the uncertainty within itself
because it is rigorously based on Bayes Theorem. Future studies will try different
applications of this architecture in autonomous robots.
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Abstract. A common problem encountered in structural pattern recognition is
the difficulty of constructing classification models or rules from a set of exam-
ples, due to the complexity of the structures needed to represent the patterns. In
this paper we present an extension of a method for structural learning applied to
predictive toxicology evaluation.

1 Introduction

Structured information is widely used in many areas of computer science and in other
relevant scientific disciplines as robotics, chemistry, medicine, linguistics etc. Usu-
ally, structured information is represented by means of data structures able to express
a set of primitives and the relations existing among them. To this aim graphs are used
in this contest in a variety of forms; the most expressive ones are the Attributed Rela-
tional Graphs (ARG) [1] because they enrich the base structure with a set of attributes
associated to nodes and edges. Despite their attractiveness in terms of representational
power, structural methods (i.e., methods dealing with structured information) imply
complex procedures both in the recognition and in the learning processes.

Namely, a common problem with this kind of representation is the difficulty of
constructing, from a suitably chosen collection of examples, the models or the rules
that are needed to perform the classification task. In fact, the well known learning
methodologies available when the patterns are represented by means of vectors, like
the Statistical Learning theory or the Artificial Neural Networks, cannot be applied to
the more complex structures which encode the structural descriptions. These reasons
determined, in the scientific community, the birth of two different approaches to the
problem. One of the first paper introducing the first approach is [2]; the rational of it
relies upon the conviction that structured information can be suitably encoded in order
to obtain a representation in terms of a vector, thus making possible the adoption of
well-known statistical/neural paradigms. The main disadvantage deriving from the
use of these techniques is the impossibility of accessing the knowledge built by the
system. The second approach, pioneered by [3], faces the learning problem directly in
the representation space of the structured data, instead of converting graphs into
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vectors and using vector-based learning paradigms. The approach considers the de-
termination of the class prototypes as a symbolic machine learning problem: given a
suitably chosen training set, the goal of the system is to derive, by means of an induc-
tive process, a description of each class which is more general than the bare enumera-
tion of the training examples. In particular the description has also to cover instances
of the class which are not present in the training set, but still to preserve the ability of
discriminating the objects belonging to other classes. Furthermore, these descriptions
must be explicit and easily interpretable by humans (in contrast, for instance, with the
ones produced by neural networks), allowing an expert to validate or to improve
them, or to understand what has gone wrong in case of errors. First-order logic predi-
cates constitute a powerful representation means for this kind of knowledge, since
they are expressive enough to encode both structural descriptions and complex classi-
fication rules, and can be directly employed to build a classification system by means
of a logic programming language such as Prolog. For this reason the learning task has
been performed using an Inductive Logic Programming method [5], based on the
FOIL algorithm [6], which, given a set of positive and negative examples represented
by means of logical relations, produces for each class a classification rule expressed
as a Prolog program. This representation, although very expressive, results hard to be
managed due to the computational cost of the prototypation phase. In our approach,
that is an extention of [4], we formulate the prototypation problem directly in the
graphs space avoiding to need the expressive power of the first order logic program-
ming. This property allows to reduce considerably the complexity of the algorithm.

Our application domain is that of predictive toxicology evaluation that is the
characterization of the cancerogenic characteristics of chemical compounds. Due to
the countless number of chemical compounds it would be preferable to avoid the
use of biological tests because of the time needed to obtain the results. To this aim
it has been proposed to solve the problem of the predictive toxicology evaluation
identifying Structure Activity Relationships (SARs) that are models of the relation-
ship between the structural information of chemical compounds and their cancero-
genic characteristics. In the last years different works about the classification of
cancerogenic compounds were published: [7,8] presented systems based on logic
programming. However interesting, their approaches do not try to recognize always
the SARs because they used, for the classification, also the results of toxicity or
mutagenesis tests. The Department of Computer Science and Engineering of the
University of Texas at Arlington presented in 1994 a system, SUBDUE [9], for
logic inductive learning based on the graphs. The algorithm tries to describe the
training-set characterizing it with the substructures that more frequently occurs. The
prototypes are validated by means of an inexact matching algorithm. Afterwards in
2001 Gonzales et al. [10] modified the learning process of the algorithm. The learn-
ing process computes the prototypes considering the ability of covering the samples
of the same class. The weak point of these approaches is the representation of the
database: it results too complex for chemical compounds (Fig 1.) because using
simple graph representation, the nodes represents the objects (atoms, bonds and
structural groups) and edges represents the relations between the objects. The com-
plexity of the representation determines a considerable increase of the computa-
tional time for the prototypes calculation.
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Fig. 1. Representation of a part of a compound by the SUBDUE-CL system

2 The Proposed Symbolic Learning Method

The rationale of our approach is that of devising a method which, inspired to basic
machine learning methodologies, particularizes the inference operations to the case of
graphs. To this aim we consider descriptions given in terms of Attributed Relational
Graphs (ARG) and we introduce a new kind of Attributed Relational Graph, devoted
to represent prototypes of a set of ARGs. For this reason these graphs, called General-
ized Attributed Relational Graphs (GARGs), have to contain generalized nodes,
edges, and attributes. Then, we formulate a learning algorithm which builds such
prototypes by means of a set of operations directly defined on graphs. The algorithm
preserves the generality of the prototypes generated by classical machine learning
algorithms and moreover, similarly to most of machine learning systems [11, 12,13,
14], the prototypes obtained by our system are consistent, i.e., each prototype covers
samples of a same class.

2.1 Graph-Based Representations of Objects and Prototypes

We assume that the objects are described in terms of Attributed Relational Graphs
(ARG). An ARG can be defined as a 6-tuple (N, E, Ay, Ag, ay, ag), where N and
E c NXN are, respectively, the sets of the nodes and the edges of the ARG, Ay
and Ag the sets of nodes and edge attributes and, finally, ay and ag the functions
which associate to each node or edge of the graph the corresponding attributes.

We will assume that the attributes of a node or an edge are expressed in the form
H(pp,-...px,)» Where t is a type chosen over a finite alphabet T of possible types and

(P1,----Pi,) are a tuple of parameters, also from finite sets PI' yeeey Pk' . Both the number

of parameters (k,, the arity associated to type f) and the sets they belong to depend on
the type of attribute; for some type k, may be equal to zero, so meaning that the corre-
sponding attribute has no parameters. It is worth noting that the introduction of the
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Fig. 2. An example of the use of the type information: (a) A set of objects made of three differ-
ent kinds of parts (circles, triangles, rectangles). (b) The description scheme introduces three
types of nodes, each associated to a different part. Each type contains a set of parameters suit-
able for describing each part. Similarly, edges of the graph, describing topological relations
among the parts, are associated to two different types. (c) The graphs corresponding to the
objects in (a).

type permits us to differentiate between the description of the different kinds of nodes
(or edges); in this way, each parameter associated to a node (or an edge) assumes a
meaning depending on the type of the node itself. For example, we could use the
nodes to represent different parts of an object, by associating a node type to each kind
of part (Fig. 2).

A GARG is used for representing a prototype of a set of ARGs. In order to allow a
GARG (i.e., the prototype it represents) to match a set of possibly different ARGs (the
samples covered by the considered prototype), we extend the attribute definition. First
of all, the set of types of node and edge attributes is extended with the special type ¢,
carrying no parameter and allowed to match any attribute type, ignoring the attribute
parameters. For the other attribute types, if the sample has a parameter whose value is

. . t .
within the set P, the corresponding parameter of the prototype belongs to the set

B*t =§(P'), where §2(X) is the power set of X, i.e., the set of all the subsets of

X. Referring to the previous example of the geometric objects, a node of the prototype
could have the attribute rectangle({s,m},{m}), meaning a rectangle whose width is
small or medium and whose height is medium.

We say that a GARG G*:(N, E, Ay, Ag, ay, ag) covers a sample G and we use the
notation G |= G (the symbol |= denotes the relation called covering) if there is a map-

ping u: N*—N such that [ is a monomorphism and the attributes of the nodes and of
the edges of G™ are compatible with the corresponding ones of G. The first condition
requires that each primitive and each relation in the prototype is present also in the
sample; note that the converse condition does not hold, i.e., the sample can have addi-
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tional primitives/relations not considered by the prototype. This allows the prototype
to specify only the features which are strictly required for discriminating among the
various classes, neglecting the irrelevant ones. The latter condition constrains the
monomorphism to be consistent with the attributes of the prototype and of the sample
in the sense that the type of the attribute of the prototype must be either equal to the
special type ¢ or to the type of the corresponding attribute of the sample. In the latter
case, all the parameters of the attribute, which are actually sets of values, must contain
the value of the corresponding parameter of the sample.

o_top

701

rectangle(s or mor |, s or mor )

(a) (b)
L
on_fop, wi_top U U m
& reciangle(s or mor 1 1)
(c) {d)

Fig. 3. (a) A GARG representing the set of the four different ARGs associated to objects pre-
sented in (b), whose ARGs are given in Fig. 1c. Note that, for the sake of clarity, we have used
the disjunction (or) instead of the usual set-theoretic notation. Informally, the GARG represents
“any object made of a part on the top of a rectangle of any width and height.” (c) A specializa-
tion of the GARG given in (a), obtained by adding a node and an edge, and (d) the objects
covered by it. Informally, the latter GARG represents “any object made of a part on the top of
two other parts, that are a rectangle with a large height and any width and another unspecified
part.”

3 The Proposed Learning Algorithm

The goal of the learning algorithm can be stated as follows: there is a (possibly infi-
nite) set S of all the patterns that may occur, partitioned into C different classes

S ,Sé, with S[.* N S; =(J; for i # j; to the algorithm is given a finite subset
Scs” (training set) of labeled patterns (S =S, U...u Sc with §;,=§ N Sl.*),
from which it tries to find a sequence of prototype graphs Gl* ,G; ,....,G: , each
labeled with a class identifier, such that:

VGe S3i: Gl.* |= G (completeness of prototype set) M
VGe S',G" |=G = class (G) = ClassGi* (consistency of the prototype set)  (2)
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where class(G) and class(G") refer to the class associated with sample G and proto-
type G, respectively.

Of course, this is an ideal goal since only a finite subset of S” is available to the al-
gorithm; in practice, the algorithm can only demonstrate that completeness and con-
sistency hold for the samples in S. On the other hand, (1) dictates that, in order to get
as close as possible to the ideal case, the prototypes generated should be able to model
samples also not found in S, that is, they must be more general than the enumeration
of the samples in the training set. However, they should not be too general otherwise
(2) will not be satisfied. The achievement of the optimal trade-off between complete-
ness and consistency makes the prototypation a really hard problem.

A description of the learning algorithm is presented in the following: the algorithm
starts with an empty list L of prototypes and tries to cover the training set by succes-
sively adding consistent prototypes. When a new prototype is found, the samples
covered by it are eliminated and the process continues on the remaining samples of
the training set. Then a sample is compared sequentially against the prototypes in the
same order in which they have been generated, and it is attributed to the class of the
first prototype that covers it. In this way, each prototype implicitly entails the condi-
tion that the sample is not covered by any previous prototype. Thus, with a careful
choice of the order in which the prototypes are generated, the problems arising when
the samples of a class are subpatterns of another class are avoided.

The algorithm fails if no consistent prototype covering the remaining samples can
be found. It is worth noting that the test of consistency in the algorithm actually
checks whether the prototype is almost consistent, i.e., almost all the samples covered
by G’ belongs to the same class:

Consistent(G*)C) max S (G} >0 3
lsle]

where S (G*) denotes the sets of all the samples of the training set covered by a pro-
totype G, and S ; (G*) the samples of the class i covered by G and 0 is a threshold

close to 1. Note that the assignment of a prototype to a class is done after the proto-
type has been found, meaning that the prototype is not constructed in relation to an a
priori determined class. The most important part of the algorithm is the construction
of a prototype, starting from a trivial prototype with one node whose attribute is ¢
(i.e., a prototype which covers any nonempty graph), and refining it by successive
specializations until either it becomes consistent or it covers no samples at all. An
important step of this step is the construction of a set Q of specializations of the tenta-
tive prototype G'. The adopted definition of the heuristic function H, guiding the
search of the current optimal prototype, will be examined later.

To obtain Q, we have defined a set of specialization operators which, given a pro-

totype graph G* produce a new prototype G’ such that G~ specializes G". The con-
sidered specialization operators are:
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Node addition: G is augmented with a new node n whose attribute is ¢.
2. Edge addition: A new edge (nl* , n;) is added to the edges of G*, where nr

and n; are nodes of G and G" does not contain already an edge between

them. The edge attribute is ¢.
3. Attribute specialization: The attribute of a node or an edge is specialized
according to the following rule:

e If the attribute is ¢, then a type t is chosen and the attribute is re-
placed with t(Plt,....,Pktt ) This means that only the type is fixed,

while the type parameters can match any value of the corresponding
type.
e Else, the attribute takes the form l‘(pr yoee er ), where each p; isa

(nonnecessarily proper) subset of P[.t. One of the p; such that

‘ pl*‘ > 1 is replaced with pl.* - {pi} with p, € pf . In other words,

one of the possible values of a parameter is excluded from the pro-
totype.

The heuristic function H is introduced for evaluating how promising the provi-
sional prototype is. It is based on the estimation of the consistency and completeness
of the prototype (see (4), (5) and (6)).

H=H cons *H compl (4)

To evaluate the consistency degree of a provisional prototype G, we have used an
entropy based measure:

I. sG] s’
:99 - _Z,-: S(G*]Xlog2 S(G*}1 ®

i

S|

Hcons (S’ G* ) = _Z

i

log,

It follows that the larger the value of H (S ,G*) is, the more consistent G is.

The completeness of a provisional prototype is taken into account by a second term of
the heuristic function:

H, i (8,G")=s(G") ©)

4 Application to Predictive Toxicology Evaluation

The experimental phase has been carried out using the database NIEHS of molecular
chemical compounds. The database includes a training-set of 298 chemical com-
pounds (162 of them are cancerogenic and 136 non-cancerogenic) and two test sets
PTEl e PTE2 respectively of 39 and 23 chemical compounds (Fig. 4). The com



A Structural Learning Algorithm and Its Application 295

pounds are described in terms of atoms and bonds, structural groups included in the
compound and results of toxicity tests. In our approach, like in [9,10], only structural
information is used because we are interested in the Structure Activity Relationships.
It is manifest that ARGs are able to describe completely the structures of atoms,
bonds and structural groups. In our work we use the following representation:

e Atoms are represented by “atom” nodes whose parameters are: element and
charge;

e Bonds are represented by a couple of edges (for representing bidirectional
bonds) of type “bond”;

e Structural groups are described by “group” nodes whose single parameter
is the group name. These groups are connected to the atoms whose they are
constituted by an edge “part of’;

CH;
HiC
&

\
HyC HM

Fig. 4. Bidimensional chemical structure of 1,2-Dyhydro-2,2,4-Trimethylquinoline

Besides, because of in molecular structures, isolated atoms or structural groups do
not exists, the specialization operator Node addition was replaced by the operator:

e ConnectedNodeAddition: G” is augmented with a new node and it is con-
nected to one of the n pre-existent nodes of G ; both node and edge attributes
are ¢

The algorithm was implemented in Python/C++. The training of the system pro-
duced 86 prototypes spending about one week on a P4 512 RAM. The test on PTE
datasets showed the following results:

e OnPTEIL: 64% accuracy
e OnPTE2: 69% accuracy

In the following we report a comparative table of results obtained on PTE1 dataset
(because of the lack of results on PTE2 dataset) by different approaches. It is worth
noticing that [8] used also information deriving from mutagenesis tests; [7], instead,
used the results of in-vivo short term biochemical tests.

We can compare our system with the results obtained by [9,10] because they are
the only systems that used exclusively structural information for characterizing Struc-
ture Activity Relationships (SARs). The analysis of the results table induce to the
conclusion that, using the same input data, the proposed method produces the best
performances of accuracy for the database NIEHS.
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Table 1. Results of different algorithms on PTE1 dataset

Algorithm Type Accuracy (%)
TIPT [7] Logic Programming 67%
This Work Inductive Learning on Graphs 64%
Progol [8] Logic Programming 64%
SUBDUE-CL [10] Inductive Learning on Graphs 62%
SUBDUE [9] Inductive Learning on Graphs 46%

5 Conclusions

In this work we presented an extension of a method for the structure learning and its
application to the automatic identification of Structure-Activity Relationships. The
algorithm was tested on the dataset of the Predictive Toxicology Evaluation Chal-
lenge. The results were compared with the other approaches and they showed the
effectiveness of our method. Besides it is worth noticing that the proposed approach
produces interpretable prototypes that permit the user to interpret the results of the
learning process and to identify errors due to a poor representativeness of the train-
ing set.
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Abstract. The present paper is devoted to the pattern recognition
methods for combining heterogeneous sets of learning data: set of training
examples and the set of expert rules with unprecisely formulated weights
understood as conditional probabilities. Adopting the probabilistic model
two concepts of recognition learning are proposed. In the first approach
two classifiers trained on homogeneous data set are generated and next
their decisions are combined using local weighted voting combination
rule. In the second method however, one set of data is transformed into
the second one and next only one classifier trained on homogeneous set
of data is used. Furthermore, the important problem of consistency of
expert rules and the learning set is discussed and the method for checking
it is proposed.

1 Introduction

The design of the classifier in statistical pattern recognition generally depends on
what kind of information is available about the probability distribution of classes
and features. If this information is complete, then the Bayes decision scheme
can be used. If such information is unknown or incompletely defined, a possible
approach is to design a system which will acquire the pertinent information from
the actually available data for constructing a decision rule. Usually it is assumed
that available information on the probability characteristics is contained in a
learning set consisting of a sequence of observed features of patterns and their
correct classification. In such a case many learning procedures are known within
empirical Bayes decision theory, which lead to the different sample-based pattern
recognition algorithms (e.g. [3], [5]).

Another approach, interesting from both theoretical and practical point of
view, supposes that appropriate information is contained in expert knowledge. A
typical knowledge representation consists of rules of the form IF A THEN B with
the weight (uncertainty measure) «. These rules are obtained from the expert
as his/her conditional beliefs: if A is known with certainty then the expert’s
belief into B is «. In this case numerous inference procedures are proposed and

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 298-307, 2005.
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very well investigated for different formal interpretations of the weight o ([4],
6], [14]).

In this paper we shall focus our attention on decision algorithms for the
case in which both the learning set and expert rules are available. Additionally,
adopting the probabilistic interpretation of weight coefficients, we suppose that
expert rules are not provided with exact value of « (i.e. conditional probability),
but only an interval is specified (by its upper and lower bounds), into which this
probability belongs.

We may expect that the quality of the recognition algorithm will improve
when both kinds of information are concurrently utilized. The concept of pat-
tern recognition for considered case requires that both kinds of information have
unified formal interpretation. In this paper the probabilistic model is adopted
and hence we assign probabilistic meaning to both the information obtained from
experts and the numerical data. According to general principles of this model
we assume that the classes and features are observed values of appropriate ran-
dom variables for which the joint probability distribution exists but is unknown.
We treat expert-acquired information (rules) and numerical data as a source of
knowledge about the unknown probability characteristics.

This paper is a sequel to the author’s earlier publications ([10], [11], [12],
[13]) and it yields an essential extension of the results included therein.

The contents of the work are as follows. Section 2 introduces necessary back-
ground and provides the problem statement. In section 3 the important problem
of consistency of expert rules and the learning set is discussed and furthermore
the algorithm for evaluating it is proposed. In section 4 we present two differ-
ent concepts of pattern recognition algorithms for the problem in question. In
the first approach two classifiers trained on homogeneous data set are generated
and next their decisions are combined using local voting and linear combina-
tion rules. In the second method however, one set of data is transformed into
the second one and next only one classifier trained on homogeneous set of data
is used.

2  Preliminaries and the Problem Statement

Let us consider the pattern recognition problem with probabilistic model. This
means that vector of features describing recognized pattern x € X C R and its
class number j € M = {1,2,..., M} are observed values of a couple of random
variables (X,J), respectively. Its probability distribution is given by a priori
probabilities of classes

pi=PJ=j), jeM (1)
and class-conditional probability density function (CPDFs) of X
fix) = f(z/j), z € X, j € M. (2)

Pattern recognition algorithm ¥ maps the feature space X to the set of class
numbers M, viz.
UoX - M, (3)
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or equivalently, partitions X into decision regions:
CO ={zeX :¥(x)=1i}, iecM. (4)

If probabilities (1) and CPDFs (2) are known, i.e. in the case of complete
probabilistic information, the optimal (Bayes) recognition algorithm ¥*, mini-
mizing the probability of misclassification, makes decision according to the fol-
lowing rule:

U (x) =1 if pi(x) = 5
() =i if pi(z) = max pi(), (5)

where a posteriori probabilities p;(x) can be calculated from the Bayes formula.

Let us now consider the interesting from practical point of view concept of
recognition. We assume that a priori probabilities (1) and CPDFs (2) are not
know, whereas the only information on the probability distribution of J and X
is contained in the two qualitatively different kinds of data.

1. Learning Set:

S = {(x17j1)7(x27j2)7"'7(xN7jN)}7 (6>

where x; denotes the feature vector of the i-th learning pattern and j; is its
correct classification.
Additionally, let S; denotes the set of learning patterns from the i-th class.

2. Expert Rules:
R={Ry,Rs,....,Rum}, (7)

where
R, = {rgl),rl@), ...,rl(Li)}, ieM, ZLZ' - (8)

denotes the set of rules connected with the ¢-th class. The rule rgk) has the
following general form:

IF wgk) () THEN J =4 WITH probability greater than pgk) and less than pl(-k)7
(k)

where w;"’ () denotes a predicate depending on the values of the features x.

These rules obtained from an expert are a consequence of his experience and
competence and furthermore, they reflect the common regularities resulting from
the general knowledge. Experiences have proved that an expert is very frequently
not able to formulate the logical rules describing the dependences between the
observed and internal values of the system and he cannot describe his way of
reasoning. What is relatively easy to obtain is a kind of input-output description

of the expert decision making process.
(k).

We will continue to adopt the following equivalent form of the rule 7,
pgk) < pgk) < pgk) for x € ng), (9)

where
ng) ={zeX: wgk) (x) = true} (10)

will be called rule-defined region and
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(k) fDl(k) p@(x)dx
e fDW dzx

is the mean a posteriori probability of the i-th class in the set ng).

We suppose that rules R are not contradictory ([13]).

Let D; = {D™ k =1,2,...L;}, i € Mand D = {D¥ k = 1,2, L,
i € M} denote appropriate families of rule-defined regions and let additionally

Xp=UD and XY =uD; (12)

denote feature subspaces covered by families D and , D; respectively.
Now our purpose is to construct the recognition algorithm

U(S,R,x) = Usg(z) = i, (13)

which using information contained in the learning set S and the set of expert
rules R recognizes a pattern on the basis of its features x. Some propositions of
the rule (13) will be presented in section 4, first however, let discuss the problem
of consistency of rule set R and sample set S.

3 Consistency of the Expert Rules Set and the Learning
Set

In logical reasoning systems the problem of consistency of the gathered knowl-
edge is usually considered and the consistency is verified by proving that the set
of collected facts is consistent in the two-valued logic. As far as knowledge repre-
sentation with uncertainty characteristics is considered, the notion of consistency
is based on the assumed properties of uncertainty measure. In the case of the
approach being considered the gathered knowledge concerns the probabilistic
properties of the population and therefore the consistency conditions should be
considered in the probabilistic bearing. Generally, consistency conditions lead to
the following question: are probability characteristics resulting from the rules R
and learning set S consistent, i.e. does the learning set come from the population
with the probability distribution determined by the expert rules?

Since consistency of sets S and R should be treated as consistency of prob-
abilistic information contained in the both sets, hence we accept the hypothesis
that the set of rules and the learning set are consistent if probability of observa-
tions from the set S, under restrictions resulting from the set R, is over a some
adopted level.

Let introduce first families of sets B; = {Bi(l),Bi@),...BZ-(li)}7 i € M and
B ={BW B® ..BWY where Bi(m) and B(™) denote not empty constituents
of families of sets D; and D, respectively. It is clear, that sets from every family
are disjoint and furthermore Xr = UB and XI({) = UB;, i.e. families B and B;

form partitions of feature subspaces Xr and X 1(; ), respectively ([15]).
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Let next Ii(m) (fl-(m)) be the set of indices of rules from R; fulfiling the
conditions wgk) (x) for z € Bi(m) (for z € B™), or equivalently

I(m) {k : B(m) c D(k)} ’\(m) ={k: B c D(k)}. (14)
From (10) it results that in expert opinion
P < pi™ < pi™) =1, (15)

where (m) i

pl(_m) = min, _;om pl(.k), p;  =max, pg ), (16)
pgm) denotes mean a posteriori probability (see (12)) of the i-th class in the set
Bi(m). Let Ni(m) and N(™ denote the number of learning patterns belonging to
the set B; (M) from sets S; and S, respectively. Class numbers of learning patterns

from B( ) will be treated as observed values of Bernoulli random variable Y(m)

(m) 1if 2 € B™ is from ith class,
0if € B, is not from ith class.
with probability P(Y{™ =1) = p{™.
Let now introduce two definitions.
Definition 1. If
P(pim) <p™ < p™) > ™, (18)

where the confidence level is determined on the base of observations ng), then
we say that the sets S and R are locally (in the set BZ-(m)) consistent on the

level al(.m).

Definition 2. Sets R and S are said to be « consistent, where

Sl S 0" V(B™) 19)
M i :
S V)
In order to calculate «; 9) let note that for Bernoulli distribution on

the base of observation k: successes in n trials, we can determine the confidence
interval

o =

The endpoints in (21) (confidence limits) are equal ([16]):

k
k+(n—k+1)F(B,2(n—k+1),2k)’
(k+1)F(B,2(k+1),2(n — k)
n—k+ (k+1DF(3,2(k+1),2(n— k)’

pi(Bk,n) = (21)

p2(B,k,n) = (22)
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where F(0, k,n) is quantile in the range of 8 of a Snedecor’s F distribution with
k and n degrees of freedom.

Hence and from (19) and (21) we first find significance levels ﬁgm) and ﬂgm)
as solutions of the following equations:

P = pu (B, NI N, ™ = a8 NI NG, (23)

and next we simply get
al™ =1 (8™ 4 gi™). (24)

It should be emphasised that generally, proposed evaluation (19) of consistency
between two sets of data is not a measure of quality of set of expert rules (and in
consequence a measure of expert quality [1], [7]). There are many reasons which
can lead to the relatively small value of «, e.g. not sufficently numerous learning
set, noises in feature measurements or errors of learning set source. The index «
may be considered as a measure of expert rules quality in the case if we suppose

that learning set is noise-free and furthermore for every set Bi(m) the number
N satisfies inequality ([16]):

2
N(m) > (Ua) ) (25)
2p™) +p; )2
(2
where u,, is critical value of the Gaussian random variable for acceptable confi-
dence level a.

4 Pattern Recognition Algorithms

In the sample-based classification, i.e. when the only learning set S is given, one
obvious and conceptually simple method is to estimate a priori probabilities and
CPDFs and then to use these estimators to calculate a posteriori probabilities
(let say pgs) (x)), i.e. discriminant functions of the optimal (Bayes) classifier (5).

On the other hand, using this concept in the case when only the set of rules R
is given, we obtain the so-called GAP (the Greatest Approximated a posteriori

Probability) rule-based algorithm, which originally was introduced in [10]:

— e () _ (R)
Urp(x) =1 if p; '(z) = max py (). (26)

pgR)(x) denotes approximated a posteriori probability of i-th class, which - for
x € B _is calculated from the set R according to the following formulas:

— forie M™ ={I : fi(m) # O}

(m) A(m)
+D; (m) )
9 ﬁz = I'IllAl'l p@ )
2 kelm

p
pi(x) =

i

P = min p®,  (27)
i kelm *
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— forie M — M.

pie)=[1— Y /M= | M™ . (28)

jGM(m)

The final value of pER) (z) should be normalized to 1, i.e.
R
(@ 2)/ Y pila (29)
ieEM

When both sets S and R are given we propose two concepts of recognition
algorithms, which are presented in next subsections. In our propositions informa-
tion included in sets S and R is submitted to processing and fusion. Difference
consists in order of both activities.

4.1 Mixed Algorithm

In so-called mixed algorithm decision is made according to the following rule:

o — i (SR) - (SR)
sR@) =i it pl*" (@) = max p*"(a), (30)
where

P (@) = y(z) pP (2) + [1 = v(@)] pF, 0< (@) < 1. (31)

It means, that first we calculate approximated (estimated) values of a pos-
teriori probabilities separately from both sets, and next we use their weighted
sum in the Bayes algorithm (5).

In the mixed algorithm (30) a mixing coefficient y(x) plays the crucial role.
Assuming that v(x) is constant in set B(™) and equal to ™), m = 1,2, ...,1, we
propose three methods of calculating it.

1. The first method takes into account intuitively obvious character of depen-
dence between 7™ and the number of learning patterns in B(™) (let say
N(™) and the accuracy of determining a posteriori probabilities p;(z) in
rules R for x € B (let say A(™)). Namely, (™ should be a decreasing
function of N(™) and A for example:

1—Am
(1 —AM)) 4 (1 — =N’

4(m) = (32)

2. In the second approach, for a particular B(™ such value v(™ € [0,1] is
applied which maximizes the number of correctly classified learning patterns
from B(™).

3. As previously, but now (™ ¢ {0,1}. It means that we always use a simple
algorithm W5 or Wy, which for each set B(™ is selected independently to
obtain the better local result of recognition.
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4.2 Unified Algorithms

Now, in order to find (13) we will transform one set of data into the second set
and next, having the homogeneous form of information, we can simply use either
the GAP algorithm (for transformation S — R/) or recognition algorithm with
learning (e.g. NN - nearest neighbour decision rule [3], [5]) for transformation
R— S

Our proposition of procedures for ”the unification of information” leads to
the following algorithms.

Algorithm R — S’
(m)

Input data: Ni/(m)—the number of generated patterns for region B,
fori=1to M
for m=1 to [; /
for k=1 to Ni(m)
generate random class number j € M with probabilities
if j=1
then
(variant 1) p(j) = (p™ +p"™)/2
(variant 2) p(j) ranéomly (uniformly) selected
(m)
}

i

from the interval [p(™) p
1
else

p(j) = [1—p()]/(M — 1)
fi
generate random feature vector x uniformly distributed
in Bl(m)
endfor
endfor
endfor

Algorithm S — R’

Input data: o - confidence level for created rules
L; - number of rules for i-th class (1 € M)

7
Di(k) - feature regions for rules k=1,2,..., L,
for i=1to M
for k=1 to L,

find N*) - number of learning patterns belonging to Di(k)

find Ni(k) - number of learning patterns belonging to Di(k)

calculate p;(k)(lga,Ni(k')’N(k)) and p;(k‘)(lga,Ni(k‘),N(k))
according to (21) and (22), respectively
endfor
endfor

In order to determine regions D;(k) we can use methods known in procedures
of generating fuzzy rules from numerical data, e.g. based on cluster analysis,
graph theory or decomposition of CPDF's ([2]).
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5 Conclusions

During the past decade the fusion of various sources of knowledge was firmly
established as a practical and effective solution for difficult pattern recognition
tasks ([1], [7], [8]). This idea is established using classifier combination approach,
which in the literature is known under many names: hybrid methods, decision
combinations, classifier fusion, mixture of experts, modular systems, to name
only a few ([9]).

Most of the research on classifier ensambles is concerned with generating
ensambles by using a single learning model. Different classifiers are received by
manipulating the training set, or the input features, and next their decisions are
combined in some way (typically by voting) to classify new patterns. Another
approach is to generate classifiers by applying different learning algorithms to a
single data set ([17]).

The present paper is devoted to the methods for combining heterogeneous
sets of learning data: set of training examples and the set of expert rules with un-
precisely formulated weights. Adopting the probabilistic model of classification,
we discuss two different concepts of pattern recognition algorithms in which the
both sets of data are treated as a source of information about the probability
distribution of features and classes. In the first approach two classifiers trained
on homogeneous data set are generated and next their decisions are combined
using local weighted voting combination rules. In the second method however,
one set of data is transformed into the second one. This procedure of unification
of information allows to generate only one classifier trained on homogeneous set
of data.
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Abstract. This paper introduces a novel approach to the specification of
hard combinatorial problems as pseudo-Boolean constraints. It is shown
(i) how this set of constraints defines an energy landscape representing
the space state of solutions of the target problem, and (ii) how easy
is to combine different problems into new ones mostly via the union
of the corresponding constraints. Graph colouring and Traveling Sales-
person Problem (TSP) were chosen as the basic problems from which
new combinations were investigated. Higher-order Hopfield networks of
stochastic neurons were adopted as search engines in order to solve the
mapped problems.

Keywords: Higher-order Networks; Graph Colouring; Pseudo-Boolean
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1 Introduction

The ability to learn associative behaviour through examples is a desirable fea-
ture in an adaptive system. Nevertheless, it would not be practical to acquire,
through examples, certain pieces of knowledge that had already been learnt by
other systems. Besides, sometimes it is easier to describe a problem via its con-
straints to an artificial neural network (ANN) such that the set of its global
energy minima corresponds to the set of solutions to the problem in question.
For example, an explanation of how the Traveling Salesperson Problem (TSP)
can be defined as a set of mathematical constraints that are solvable by an ANN
can be found in [6] and [5].

Alternatively, constraints may be essentially logical, constituting a kind of
description or specification of a suitable solution for a problem being modeled.
A problem that apparently does not involve optimizing a cost function is that of
finding a model for a logical sentence. In propositional logic, that would consist

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 308-317, 2005.
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of the assertion of truth-values to the propositional symbols that appear in the
formula in question, in such a way that the formula as a whole becomes true.
That mapping of truth-values to propositions constitutes, for propositional for-
mulae, an interpretation of it [9]. A formula that has no models is said to be
unsatisfiable or inconsistent. Some problems may be better described as a com-
bination of logical and mathematical constraints. A subset of this combination
could be seen as a sum of weighted products of boolean variables, pseudo-Boolean
constraints [2].

This paper introduces a novel approach to the specification of hard combi-
natorial problems as pseudo-Boolean constraints defining an energy landscape
representing the space state of solutions of the target problem. It is shown how
easy is to map and combine different problems into new ones mostly via the
union of the corresponding constraints. Graph colouring and Traveling Salesper-
son Problem (TSP) were chosen as the basic problems from which new combina-
tions were investigated. Among other possible computational intelligence models
that could have been used, (e.g., genetic algorithms, artificial immune systems,
etc) this work adopted higher-order Hopfield networks of stochastic neurons in
order to solve all the mapped problems.

2 Higher-Order Hopfield Networks

A notable step towards understanding the collective properties of artificial neural
networks (ANNs) was taken by J. Hopfield [4] when he saw an analogy between
the evolution of a spin-glass system towards minimizing its energy function and
the evolution of the activity function of a so-called Hopfield network. For a
function to be called an energy function it is necessary that its value decreases
monotonically until the (or one of the) stable state(s) of the system is reached.
The direct consequence of such interpretation is the proof of convergence to en-
ergy minima of artificial neural networks (ANNs) composed of symmetrically
connected (i. e., w;; = w;;) McCulloch-Pitts’ neurons (i, 7, . ..) acting as energy
minimization (EM) systems. The proof required the observation of a constraint:
that nodes operate asynchronously, i.e., that no two nodes operate at the same
time step. This restriction can be weakened to one where asynchronous oper-
ation is only required for meighbouring nodes, i.e., it is guaranteed that non-
neighbouring nodes can operate at the same time and energy will still decrease
monotonically [1]. Two nodes ¢ and j are said to be neighbours if they are linked
by a connection with weight w;; # 0.

Sometimes it is convenient to express not only the mutual influence between
two neurons, but also the influence of concurrent activation of three or more
neurons. Such connections are known as multiplicative or higher-order and the
number of units pertaining to a connection is called the arity of the connection.
Only one value (positive or negative) is associated to each higher-order connec-
tion and networks containing one or more multiplicative connections are called
higher-order networks. Notice that higher-order connections are still considered
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symmetric, i.e., they take part in the activation function of all nodes involved in
the connection, and have the same weight value.

Unfortunately, a Hopfield network, even of higher-order, is only capable of
finding local minima. In this sense, an improvement consists of incorporating an
stochastic component to the neurons behavior such that the resulting network
could find global minima through a mechanism known as simulated annealing [7].
In this way, consider a random variable d; associated to each binary node v; € V,
V' denoting the set of random variables vy, va,...,v,, n =| V |. The values of
these random variables are taken from a common finite domain D = {0, 1}, so
that v; represents the state of neuron ¢ and each element of D™ is a possible
network state. Each v; € V define a set of neighbours Q(v;) in such a way
that a homogenous neighbourhood is obtained, i.e., for any two v;,v; € V, if
vj € Q(vi), then v; € Q(v;). The result of this incorporation can be described
by the following equations:

p(Ui = 1\vj = dj;Uj € Q(Uz)) = 1+e(—}:,eti)/T

o(—neti)/T

p(vi = 0lv; =dj5v; € Q(vs)) = © —neryyr

Where net, = (3 wi;v;(t)) — 6;, 0; is the threshold of neuron ¢, and T is the
parameter known as temperature (T > 0).

3 Mapping Satisfiability to Energy Minimization

In order to convert satisfiability (SAT) to energy minimization (EM), consider
the following mapping of logical formulae to the set {0,1}:

H(true) =1

H(false) =0

H(-p)=1-H(p)
H(pAq)=H(p) x H(q)
H(pVvq)=H(p)+ H(q) —H(pAq)

If a logical formula is converted to an equivalent in clausal form, the result
being a conjunction ¢ of disjunctions (;, it is possible to associate energy to
H(—¢). Nevertheless, energy calculated in this way would only have two possible
values: one, meaning solution not found (if the network has not reached global
minimum), and zero when a model has been found. Intuitively, it would be better
to have more “clues”, or degrees of “non-satisfiabililty”, on whether the network
is close to a solution or not.

Let ¢ = A;p; where ¢; = V;p;;, and p;; is a literal. Therefore ¢ = V;p;
where ¢; = Aj—p;;. Instead of making E = H(—y), consider E = H*(—p) =
> H(=pi). So, E =37 H(Aj=pij) = >, 1; H(=pi;), where H(p) will be re-
ferred to as p. Informally, E' counts the number of clauses that are not satisfied
by the interpretation represented by the network’s state.
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An issue to point out is that the resulting network of the above mapping may
have higher-order connections, i.e., connections involving more than two neu-
rons. That does not constitute a hindrance as has been demonstrated that, with
higher-order connections, Boltzmann Machines still converge to energy minima
[3]. Remarks on a learning mechanics for this network are made in [6]. Paral-
lel and distributed simulation of network with higher-order connections can be
done by substituting each higher-order connection by a completely-connected
subgraph. Alternatively, [10] converts the higher-order network to a binarily
connected one that preserves the order of energy values of the different network
states. A simple example demonstrates how SAT can be mapped to EM. Let ¢
be the formula, expressed as a conjunction of clauses:

p=(pV-qg)APV-r)A(r).

SAT(p) can be translated to the minimum of the following energy function:

E=H(~(pV—q))+ H(=(pV-r))+ H(-r)
=H(-pNq)+H(=pAr)+ H(-r)
=(l-p)xq+(1-p)xr+(1-r)=qg—pg—pr+1

where H (prop) = prop.

4 Combinatorial Problems as Pseudo-Boolean
Constraints

So far, the problem of mapping SAT to EM, by associating energy to “amount of
non-satisfiability” and minimizing it, has been presented. This, together with the
fact that the language of logic can be used to define a set of constraints, may lead
to a technique for mapping and combining optimization problems into energy
minimization. The mapping of three problems into constraint satisfiability are
introduced next: TSP, Graph Colouring and a third problem resulting from the
combination of the first two problems.

4.1 Mapping TSP

Let G = (V, A) be an undirected graph, where V is the graph’s vertex set, A the
set of G’s edges, being each edge an unordered pair of G’s vertices. Associating
each vertex ¢ € V to a city and each edge (i,7) € A to a path between i
and j, if |V| = n > 3 and dist;; is the cost associated to the edge (i,7) € A
where {i,j} € V, then, the Travelling Salesperson Problem (TSP) consists on
determining the minimum cost Hamiltonian cycle of G. In order to enable the
tour to end at an initial city a, a twin name o’ is given so that it will be clamped
as the least city of the tour (with all traveling costs repeated), in the same way
that a is clamped as the first city of the tour. In this way, a problem with m cities
has to use an augmented n X n matrix, where n = m + 1, so that all conditions
may be applied to a round tour.
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Mapping to Constraint Satisfiability. The network is composed by an n xn
matrix of binary neurons v;;, where ¢ represents a city in V' and j represents
the position of i in the tour. The repetition of propositional clauses, which differ
only by the value of indices, is represented in a compact form by the symbol of
universal quantification. However, it should be stressed that the use of universal
quantifiers to compress the representation of the propositional constraints does
not mean that the language of logic used to describe such constraints has become
first order logic. The network’s behavior is specified by the following constraints:

Integrity Constraints:

(i) All n cities must take part in the tour:
VLVJH S ) S n, 1 S] S n: \/j(vij). SO, let Y1 = /\1(\/J(”U”))

(ii) Two cities cannot occupy the same position in the tour:
Vi, Vi, Vi'|ll <i<mn,1<j<n,1<i <mni#i:=(vij Avyj).
SO, let Y2 = /\7; /\1/757; /\j_'(vij N vi’j)-

(iii) A city cannot occupy more than one position in the tour:
Vi, Vi, Vi'll <i<n,1<j<n1<j <n,j#j :=(vij Avij).
So, let w3 = A; Nj /\j/;éj—\(vij A ’l)ij/).

Optimality Constraints:

(iv) The cost between two consecutive cities in the tour:
Vi, Vi, Vi'l1 <i<n,1 <j<n—1,1<1i <n,i#i":disti(vij Avij41))
So, let w4 = V; Vir£i \/j<ndistiil (’l)ij AN Ui/(j+1)).

Constraints (ii) and (iii) are Winner-Takes-All (WTA) constraints. They can
be used to justify the conversion of disjunctions in the middle of constraints to
a conjunction of disjuncts. All the constraints above are associated to a penalty
strength that is expressed through multiplicative constants. The highest mul-
tiplicative constant, represented by [, is applied to the WTA constraints. The
other integrity constraints (type (i)) are weighetd by «. The lowest penalty
strength is given to optimality constraints (type (iv)), which are weighted by
constant 1. So,

dist = max{dist;;}
a = ((n®—2n%+n)x*dist) +h
B =((n*+1)*a)+h

Mapping SAT into EM. We will use the method described in [10] to map log-
ical propositional formulae into the set {0,1}. The H operator will be employed
in all three problems approached by this work. The energy equation relative
to the integrity constraints is presented next followed by the detailing of its
components:
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E; = aHjyp,(—p1) + BH* (mp2) + BH* (—ps3)
As o1 = Ni(Vj(vij)), ~p1 = Vi(Aj(—wiz)).

H*(mp1) = 3000 H(Aj(mvig)) = 300 Ty H(—vyg) = 3005 TT=, (1 = vyy)

However, due to WTA constraints, the actual mapping of =1 is

Hiyra(mer) =320 300 (1 —vi)
As g = Vi Virgs Vi (v Aj virg),

H*(mp2) = 300, ZZ=1,¢'¢¢ Z?=1 H(vij Nowg) =350, ZZ:l,i’;ﬁi Z?=1 Vij Vit j
As —p3 = Vi Vi Vjrg (v Aj vigr),

H*(mp3) = 300 2o 2o jrmn oy H(Wig Avigr) = 3000 3001 20y jrog VigVige

Next, the term of the energy equation relative to the tour’s cost (optimality
constraints) is introduced: E, = Y H*(p4).

* -1 ;.
H*(pa) = 32021 Doirmyirpi 2y distiv H(vij Av(ji1)) =
1.
= D et Dot 2o g diStir ViV (1)

The complete energy equation becomes: £ = F; + F,.

4.2 Graph Colouring Mapping

Let G = (V, A) be an undirected graph, where V is the graph’s vertex set, A the
set of G’s edges, being each edge an unordered pair of G’s vertices. The Graph
Colouring Problem consists in determining the minimum assignment of colours
(positive integers) to the vertices such that each vertex has only one colour and
no two neighbouring vertices have the same colour.

Mapping to Constraint Satisfiability. The network is mainly composed by
a matrix Viepiour having n X n binary neurons wve;, and a matrix Cyjoqyr having
1 x n binary neurons ci, where ¢ is a vertex in V' and k represents the colour
associated to vertex 7. Addicionally, a matrix neigh;; is used to indicate the
neighbouring relationship between vertices:

Integrity Constraints:
(v) Every vertex must have one colour assigned to it:
Vi, V|l <i<n,1 <k <n:V(ve). So, let o5 = Aj(Viveir).

(vi) Two neighbouring vertices cannot have the same colour:
Vi Vil Vel <i<n1<# <n1<k<ni#i:

—(neighi;i ) V =(ve A vep).

So, let g = Ai Niri Aig(—(neighiy ) V = (veir A veig)).
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(vii) A vertex cannot have more than one colour:
Vi, Vi, Vir ]l < <n,1 <k <n, 1 <Kk <n,k#k :~(vei Nveig).
So, let 7 = Ai Ak Az (Ve A vei).

(viii) If a colour k is assigned to a vertex in matrix Vioiour, then the corre-
sponding unit in matrix Cyjey,» must be activated:
Vi, VEk|1 <i<n,1 <k <n:-wep Vg So, let oz = Ay A (Fock V cg).

Optimality Constraints:

(ix) The number of activated elements in matrix Copour:
VEI1 <k <n:cg. So, let g = Vici.

Similarly to the case of TSP, multiplicative constants o and (3 are used to
indicate the penalty strength:

{a:(n*l)—I—h
B=(n>+n?+1)*xa)+h

Mapping SAT into EM. Let’s generate the energy equation relative to the
integrity constraints: E; = S[H*(—7)]+ a[Hiyra(mps) + H* (mpe) + H* (—ps)].
Since E, = Y  H*(yg), then

E=FE+E,= ﬂ[Z?:l ZZ:l ZZ’:l,k’;ék UCik”UCik/] + Q[Z?ZI ZZ:I(]‘ — UCik)} +
a3, ZZ:I,i’;éi Dk veavepgneighiy | +a3y ST vew(I—cr)]+ 30 ck

4.3 Map Colouring-TSP Mapping

A combination of two different problems is tackled here: Map Colouring and
TSP. This hybrid problem is based on a set of cities, which are organised in
contiguous regions. The TSP restrictions are maintained and the neighbourhood
among adjacent regions is represented by different colours. The cost functions of
the original problems, i.e., number of colours and tour cost, are part of the new
cost function to be minimized. Interesting solutions would be tradeoffs between
solutions of the two problems and this could be obtained by minimizing the
change of colours between consecutive cities in the tour.

Let M = (V, Ay, A3) be an undirected multigraph, where V' is the graph’s
vertex set, being each vertex i € V associated to a city. A; is the set of M’s
edges so that an edge (7,j) € A; exists iff ¢ and j belong to different adjacent
regions. As is the set of M’s edges associated to all possible direct paths between
any pair of cities ¢ and j. Each edge (i,j) € Az has an associated distance cost
dist;;. The resulting Map Colouring-Travelling Salesperson Problem (MC-TSP)
consists of determining (i) a tour and (ii) a colour assignment to the different
regions (by assigning colours to the visited cities).
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Mapping to Constraint Satisfiability. The resulting network is composed
by the matrices devised for (a) Graph Colouring and (b) TSP:

(a) A matrix V.piour having nxn binary neurons ve;, and a matrix Cyjoyr having
1 X n binary neurons cy, where ¢ is a vertex in V' and k represents the colour
associated to vertex . Addicionally, an n x n matrix neigh is used to indicate
the neighbouring relationship between vertices;

(b) An n x n matrix of binary neurons v;;,
where 7 represents a city in V' and j represents the position of i in the tour.

Integrity Constraints:

The set of integrity constraints is the union of TSP’s integrity constraints (i),
(ii), (iii) and graph colouring’s integrity constraints (v), (vi), (vii), (viii).

Optimality Constraints:

The set of optimality constraints is the union of TSP’s and Graph Colour-
ing’s optimality constraints (iv), (ix) and constraints of type (x) below:

(x) The change of colours between consecutive cities in the tour:

Vi, Vi, Vi', VE,VE 1 <i<n,1 <j<(n—-1),1<¢<n,1<k<n 1<k <
ny i #i' k # K (Vi A vir(j41) A Ve Avcig).

So, let w10 = Vi Vjcn Virsi Vi \/k/¢k(vij A Vir(j41) N VCike N VCir et ).

Multiplicative constants v and § are added to the multiplicative constants of
TSP and Graph Colouring in order to indicate the new penalty strengths:

dist = max{dist;;}

((
=((n®—nt—n34+n?+1)xa)+h

((

((

n+1)x0)+h
2n3 —n?2+n+1)xy)+h

2 @R

Mapping SAT into EM. The energy equation relative to the integrity and
optimality constraints are:

E; = §[H*(—p2) + H*(—p3) + H*(—=p7)] + Y [Hiyra(me1) + Hiyppa(—ps) +
H*(_\Lp(;) +H*(_\(p8)], and

Eo = BIH" (po)] + a[H"(¢10)] + H" (p4)-

Finally, E = E; + E,. Notice that E, above corresponds to a possible way
of combining the two original problems. In this case, minimizing the number
of colours has been prioritized over the other two components of E,, namely
p10 and 4. Similarly, 19 has been prioritized over 4. Different priority orders
could be explored originating the specification of new problems. In fact, the
possibility of combining a multitude of problems,is quite an interesting feature
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- t

Fig. 1. Samples of the energy (E) behaviour and global minima found in (a) TSP, after
560 steps (¢); (b) Graph Colouring, after 9967 steps (¢), and (¢) Map Colouring—TSP,
after 38277 steps (t). Geometrical cooling (0.99) was used in (a), (b) and (c).

of our modeling, since real practical problems requiring optimization treatment
are often not reducible to a single combinatorial problem. Figure 1 illustrates
experimental results from the mapping of the three problems over simple six
nodes graphs into stochastic high-order networks.

5 Conclusion

Although there are already language proposals oriented to the specification of
problems via sets of constraints, e.g., Z notation [11], the possibility of combin-
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ing different sets of such constraints in order to specify a new target problem
is the main contribution of this work. Moreover, our approach profits from the
intermediate definition of an energy function, which can be minimized by any
available solver, not only higher-order Hopfield networks of stochastic neurons,
as considered in this work. The development of a compiler which translates con-
straints into high-order networks and the mapping of molecular modeling via
pseudo-boolean constraints are ongoing work. Among the most interesting in-
vestigations for future work, we intend to develop an integration of first-order
logic inferencing [8] with pseudo-boolean constraints as an alternative and nat-
ural way of processing constraint logic programming.
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Abstract. This paper presents a robust and non-iterative algorithm for
the least-square fitting of ellipses to scattered data. In this work, we
undertake a critical analysis of a previous reported work [1] and we pro-
pose a novel approach that preserves the advantages while overcomes the
major limitations and drawbacks. The modest increase of the computa-
tional burden introduced by this method is justified by the achievement
of an excellent numerical stability. Furthermore the method is simple
and accurate and can be implemented with fixed time of computation.
These characteristics coupled to its robustness and specificity makes the
algorithm well-suited for applications requiring real-time machine vision.

1 Introduction

One of the basic tasks in pattern recognition and computer vision is the fitting of
geometric primitives to a set of data points that are supposed to pertain to the
same token [2]. The compact representation obtained after fitting (i.e. estimating
the parameters of the geometric model) plays a fundamental role in decreasing
the computational burden to be charged on higher levels of processing when
scene-interpretation or object-tracking might be performed. A wide recognized
geometric primitive is the ellipse which owes its popularity to the property of
being the perspective projection of a circle. Elliptic patterns are commonly found
both in natural and in manmade environments, hence, applications requiring the
fitting of elliptic primitives are wide-spread over several fields such as astronomy,
physics, biology, medical imaging, industrial inspection, robotics etc.

Over recent decades, the increasing demand for machine vision resulted in
many different methods that were proposed for solving fitting problems. Broadly
speaking, these methods follow two major approaches: the clustering/voting
(CV) techniques and the least square (LS) techniques. The former approach
makes use of different algorithms such as RANSAC, Hough transform and fuzzy
clustering whereas the latter approach is based on optimization criteria in which
different objective functions are minimized with respect to a specific set of data
points [3]. The choice among these two approaches is usually performed by eval-
uating the trade-off between the computational burden and the robustness that
is required by the application. In fact the CV techniques are extremely robust
but their visiting characteristics are time-demanding and memory-consuming

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 318-327, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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notably if the adopted geometric model is other than the straight-line. In those
cases, the computational load may become overwhelming for applications requir-
ing real-time performances, such as object-tracking or visual-servoing, which are
frequently investigated in mobile-robotics [4][5]. Moreover, the classical Hough
Transform suffers from limitations of the sensitivity that are due to the possi-
ble presence of spurious and blurred peaks in the accumulators [6]. Compared
with the CV approach, usually the approach based on LS techniques is less
resource-demanding even if the latter algorithms work on a single primitive at
time. Furthermore, the LS techniques have a low breakdown point; this means
that they perform poorly in presence of severe non-Gaussian outliers although
some variants (such as the Theil-Sen approach, the least median of squares, the
Hilbert curve and the minimum volume estimator) are reported to improve the
robustness of the results especially on specific conic sections [7]. Despite these
limitations the LS techniques are often preferred for applications requiring real-
time machine vision especially when the geometric primitive is a conic. There
are two main reasons for this: first, the already mentioned computational costs.
As an example, consider the problem of using a traditional Hough transform
for the identification of an ellipse. In this case each pixel of the image can gen-
erate a surface in a five-dimensional space then the parameters are recovered
by searching the intersections of all the generated surfaces. With increasing lev-
els of resolution this process tends to require high computational performances
and huge amounts of memory for the accumulator [6]. Although many efforts
were made to reduce the computational cost, the Hough transform algorithms
seem still excessively resource consuming for real time machine vision [8]. The
second objection to be considered is that the iterative algorithms do not have
fixed time of computation therefore they are not suited for real time applica-
tions. Unfortunately, the latter consideration affects both the CV and some of
the LS techniques that are often iterative. In short: if an ellipse fitting is required
one has to rely on generic conic fitting or, otherwise, on iterative methods that
tend to push the estimation toward ellipticity by iterating, hence spoiling the
opportunity to use them in a real-time application.

An interesting breakthrough in this field was the one proposed in [1]. In that
paper the authors indicated a strategy to overcome the limitations of previous
methods that were either iterative or not ellipse-specific. As illustrated by the
authors, the method offers several remarkable advantages. First, by incorporat-
ing the ellipticity constraint into the normalization factor, the algorithm yields
to unique elliptical solutions even in presence of noisy-data thereby improving
one of the most notable limitations of the LS techniques (i.e. the low breakdown
point). Furthermore, the low eccentricity bias, the invariance to an affine trans-
formation and the non-iterative characteristic represent three relevant properties
introduced by this method. On the other hand, the proposed approach suffers
from some important drawbacks which are not described in the paper. Despite
the claimed robustness, in some circumstance the method turns out to be nu-
merically instable and produces non optimal or completely wrong results such
as infinite or complex solutions.
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In this paper we analyze the original approach, we characterize its draw-
backs and we purpose an improved method that seems to solve the numerical
instabilities with a reasonable growth of the computational load. The paper is
organized as follows: in Section 2 we describe the original approach and we dis-
cuss the situations where it fails or produces non-optimal results, in Section 3
we purpose our improved method. Finally, in Section 4, we present and discuss
a comparative evaluation and the experimental results.

2 Original Approach and Limitations

2.1 Analytical Background

A central conic can be expressed by an implicit second order polynomial such as:

F(x,y) =ax? + by +cy* +de+ey+ f=0 (1)

or, in vectoria