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Preface

The 1st International Symposium on “Brain, Vision & Artificial Intelligence”
(BVAI, Naples, Italy, October 19–21, 2005) was a multidisciplinary symposium
aimed at gathering scientists involved in study of the Brain, Vision and Intelli-
gence, from both the natural and artificial points of view. The underlying idea
was that to advance in each of the above research topics, integration with and
attention to others is necessary. The overall rationale of the BVAI symposium
was based on a multidisciplinary approach of biophysics and neurobiology, visual
and cognitive sciences and cybernetics, dealing with the interactions of natural
and artificial systems.

BVAI was conceived and organized by a group of researchers — active in
the BVAI topics — of the Institute of Cybernetics “E. Caianiello” of the Italian
National Research Council, Pozzuoli, Naples (ICIB-CNR), with the support of
the Italian Institute for Philosophical Studies (IISF), and the help of the Macro-
scopic Quantum Coherence and Computing Association (MQC2). BVAI was
sponsored by the EBSA (European Biophysics’ Societies’ Association) which in
particular provided travel grants for deserving young participants from outside
Italy. The symposium was held under the auspices of the AI*IA (Italian Associ-
ation of Artificial Intelligence), GIRPR (Italian Group of Researchers in Pattern
Recognition), SIBPA (Italian Society of Pure and Applied Biophysics) and SINS
(Italian Society for Neurosciences). BVAI addressed the following main topics
and subtopics:

Brain Basics: neuroanatomy and physiology; development, plasticity and learn-
ing; synaptic, neuronic and neural network modelling.
Natural Vision: visual neurosciences; mechanisms and model systems, visual
perception, visual cognition.
Artificial Vision: shape perception, shape analysis and recognition, shape un-
derstanding.
Artificial Intelligence: hybrid intelligent systems, agents, cognitive models.

The scientific program included the participation of six invited speakers,
selected among international leading scientists in the above mentioned fields:
Igor Aleksander, Imperial College, UK; Dana Ballard, University of Rochester,
USA; Cristiano Castelfranchi, Institute of Cognitive Sciences and Technologies
— CNR, Italy; Péter Érdi, Kalamazoo College, USA; Kevan A.C. Martin, Insti-
tute of Neuroinformatics, ETH/UNIZ, Switzerland; and Enrica Strettoi, Insti-
tute of Neurosciences — CNR, Italy. Furthermore, the program included about
50 contributions from worldwide participants, presented in plenary sessions. The
peer-reviewing process for the papers was performed by the members of the
Scientific Committee of the symposium, including distinguished persons of the
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scientific community, together with a number of additional reviewers, appointed
by the Scientific Commitee members. The accepted contributions were selected
among more than 80 papers submitted to BVAI.

We believe that the papers in this volume and the discussions during the
symposium will provide new insights and constructive thoughts. In particular
we are confident that young researchers will usefully benefit in their work from
their attendance at the symposium and from reading these contributions. We
hope that we made BVAI an enjoyable event both from the scientific point of
view and through the social activities that are also a way to provide new research
stimuli in a more relaxed atmosphere.

We would like to thank the contributors who responded to the Call for Pa-
pers in a very positive way, the invited speakers, the members of the Scientific
Commitee as well as the additional reviewers and, of course, all the partici-
pants. A grateful acknowledgement is due to EBSA, to the Regione Campania,
to IISF, and to ICIB-CNR for their financial contribution that helped us to make
BVAI successful. Finally, we would warmly aknowledge the symposium’s Steer-
ing Committee and the Scientific Secretariat members: without their advice and
constant support, BVAI could not have been realized. A special thanks goes to
the symposium’s Local Committee and Secretariat members for their precious
work.

August 2005 Massimo De Gregorio and Vito Di Maio
Maria Frucci and Carlo Musio



Organization

BVAI was organized by ICIB-CNR, with the support of IISF, and the help of
MQC2.

Conference Chairs

General Chairs Massimo De Gregorio and Vito Di Maio
ICIB-CNR, Pozzuoli (Naples), Italy

Program Chairs Maria Frucci and Carlo Musio
ICIB-CNR, Pozzuoli (Naples), Italy

Steering Committee

Vittorio Guglielmotti (ICIB-CNR)
Francesco Mele (ICIB-CNR)

Gabriella Sanniti di Baja (ICIB-CNR)
Francesco Ventriglia (ICIB-CNR)

Scientific Committee

Internal Members

Antonio Calabrese (ICIB-CNR)
Veeramani Maharajan (ICIB-CNR)
Giuliana Ramella (ICIB-CNR)

External Members

Carlo Arcelli (Italy)
Marina Bentivoglio (Italy)
Gunilla Borgefors (Sweden)
Roman Borisyuk (UK)
Alfred Bruckstein (Israel)
Horst Bunke (Switzerland)
Ernesto Burattini (Italy)
Terry Caelli (Canada)
Leo Chalupa (USA)
Santi Chillemi (Italy)

Luigi P. Cordella (Italy)
Adriana Fiorentini (Italy)
Marco Gori (Italy)
Benjamin B. Kimia (USA)
Petr Lansky (Czech Republic)
Gyula Lazar (Hungary)
Michele Migliore (Italy)
Takako Nishi (Japan)
Nicolai Petkov (The Netherlands)
Shunsuke Sato (Japan)



VIII Organization

Peter Shiller (USA)
Carles Sierra (Spain)
Kostas Stathis (UK)
Cloe Taddei-Ferretti (Italy)
Settimo Termini (Italy)
Francesca Toni (UK)
Giuseppe Trautteur (Italy)

Henry Tuckwell (USA)
Shimon Ullman (Israel)
Leslie G. Ungerleider (USA)
Alessandro E.P. Villa (France)
Vincent Walsh (UK)
Barbara Webb (UK)

Additional Referees

H.C. Aras (USA)
E. Armengol (Spain)
M. Barbi (Italy)
A. Bell (USA)
G. Boccignone (Italy)
M.C. Chang (USA)
P. Coraggio (Italy)
A. d’Avila Garcez (UK)
K. de Raedt

(The Netherlands)
C. De Stefano (Italy)
A. Del Bimbo (Italy)
A. Di Garbo (Italy)
V. Di Maio (Italy)
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Towards a Dynamic Neuropharmacology:
Integrating Network and Receptor Levels

Péter Érdi1 and János Tóth2,�

1 Center for Complex Systems Studies, Kalamazoo College, Kalamazoo, MI 49006, USA
and Department of Biophysics, Research Institute for Particle and Nuclear Physics of the

Hungarian Academy of Sciences
perdi@kzoo.edu

2 Department of Analysis, Institute of Mathematics, Faculty of Sciences,
Budapest University of Technology and Economics,

Egry J. u. 1., H-1111 Budapest, Hungary
jtoth@math.bme.hu

Abstract. Computational modeling by integrating compartmental neural tech-
nique and detailed kinetic description of pharmacological modulation of trans-
mitter - receptor interaction is offered as a method to test the electrophysiological
and behavioral effects of putative drugs. Even more, an inverse method is sug-
gested as a method for controlling a neural system to realize a prescribed tem-
poral pattern. Generation and pharamcological modulation of theta rhytm related
to anxiety is analyzed. Integrative modeling might help to find positive allosteric
modulators of GABAA α1 subunits as potential candidates for being selective
anxyolitics.

Systems Biology is an emergent movement to combine system level description
with microscopic details. It might be interpreted as the renaissance of cybernetics [3]
and of system theory [4], materialized in the works of Robert Rosen [5]. (For an ex-
cellent review on applying the system theoretical tradition to the new systems biology
see [6]).

To have a system-level understanding of biological systems [1,2] we should get
information from five key features:

– function,
– architecture,
– dynamics,
– control,
– design.

� Thanks to Global Partnership to sponsor JT’s visit to Kalamazoo College. We benefited
fromDiscussions with Jean-Pierre Rospars (JT), and Ildiko Aradi (PE). Thanks for the mo-
tivation and experimental data to Mihály Hajos (Department of Neuroscience, Pfizer, Gro-
ton) and to Tamás Kiss, Gergõ Orbán and Balázs Ujfalussy, who made the lion share of the
model building and testing both in Kalamazoo and Budapest/Csillebérc. Partial support of the
National Scientific Research Council (Hungary) (Nos. T037491, T047132) are also acknowl-
edged by JT. PE thanks the Henry R. Luce Foundation the general support.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 P. Érdi and J. Tóth

Function. From proteins via genes, cells and cellular networks to the function of our
body and mind.

Architecture. From network of gene interactions via cellular networks to the modular
architecture of the brain.

Dynamics. Dynamical system theory offers a conceptual and mathematical frame-
work to describe spatiotemporal patterns of concentrations of biochemical com-
ponents, cellular activity, global dynamical activities (such as measured by elec-
troencephalogram, EEG). Bifurcation analysis and sensitivity analysis reveal the
qualitative and quantitative changes in the behavior of the system.

Control. There are internal control mechanisms which maintain the function of the
system, while external control (such as chemical, electrical or mechanical pertur-
bation) of an impaired system may help to recover its function.

Design. There are strategies to modify the system architecture and dynamics to get
a desired behavior at functional level. A desired function may be related to some
"optimal temporal pattern".

While Systems Biology is now generally understood in a somewhat restricted way
for proteins and genes, its conceptual and mathematical framework could be extended
to neuroscience, as well. Trivially, there is a direct interaction between molecular and
mental levels: chemical drugs influence mood and state of consciousness. "Almost all
computational models of the mind and brain ignore details about neurotransmitters,
hormones, and other molecules." [7].

In this paper we show how to realize the program of Systems Biology in the context
of a new, dynamic neuropharmacology. Also, we offer a methodology to integrate con-
ventional neural models with detailed description of neurochemical synaptic transmis-
sion in order to develop a new strategy for drug discovery. The procedure is illustrated
on the problem of finding selective anxiolytics.

First, we briefly review the functional aspects of our system to be investigated,
namely the neuropsychology of anxiety. The septohippocampal system is known to be
involved in anxiety. Second, the architecture of the real and the model skeleton network
of the septohippocampal system are discussed. Third, since there seems to be a positive
correlation between the theta rhythm (i.e. the dynamics of the system), and the level of
anxiety, the mechanism of theta rhythm generation is reviewed. Fourth, we review the
available data on GABAA receptor kinetics to be integrated to the septohippocampal
network.

Finally, we conceptually formulate the inverse problem to have a method for design.
Having sufficient data for building a detailed kinetic model, we should be able to give
advice to drug designers pointing out which subprocess should be modulated to obtain a
desired behavior. The specific goal we are focusing on now is to design anxiolytic drugs
acting on the α2 subunit of GABAA receptors without effecting α1 subunits related to
sedative and hypnotic effects.

1 Function: Anxiety vs Mood Regulation

"Anxiety is a complex combination of the feeling of fear, apprehension and worry often
accompanied by physical sensations such as palpitations, chest pain and/or shortness of
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breath. It may exist as a primary brain disorder or may be associated with other medical
problems including other psychiatric disorders.

A chronically recurring case of anxiety that has a serious affect on your life may
be clinically diagnosed as an anxiety disorder. The most common are Generalized anx-
iety disorder, Panic disorder, Social anxiety disorder, phobias, Obsessive-compulsive
disorder, and posttraumatic stress disorder..." [11]

While the historically used mood regulators acting on the barbiturate or benzodi-
azepine sites of GABA receptors, these drugs have both anxiolytic and hypnotic ac-
tivity. They enhance the action of GABA via an action at separate binding sites of the
GABAA receptor.

(Both barbiturates and benzodiazepines shift the GABA concentration-response
curve to the left, but barbiturates also increase the maximum response. They act on
different states, consequently they have different kinetic effects: average open time of
the channel, but not the channel opening frequency is increased significantly by barbi-
turates. As opposed to benzodiazepines, barbiturate receptors do not contain γ subunits
(see later). One more difference is that at high concentration GABA receptor channels
can directly be opened by barbiturates. For a summary see [45]. Anxiolytic activity was
not a particular disadvantage when these drugs were used as hypnotics, hypnosis was
a definite disadvantage when they were used as anxiolytics. Recent discoveries made
possible the separation between hypnotic and anxyolitic activity and selective hypnotic
agents (e.g. zolpidem) are already on the market. Selective anxiolytics are on the pre-
clinical and/or in clinical trial stage.

2 Architecture: The Septohippocampal Skeleton Network

It was demonstrated (see e.g. the seminal book of Gray and McNaughton [12] that the
septohippocampal system is strongly involved in anxiety and related disorders.

In a joint pharmacological and computational work [13,14] effects of the injection
of the positive and negative GABAA allosteric modulators diazepam and FG-7142, re-
spectively, were studied. To investigate the dynamical and functional effects of different
pharmacological agents by computational tools a skeleton model of the septohippocam-
pal system was established.

The skeleton network model (Fig. 1) of the hippocampal CA1 region and the septal
GABAergic cells consisted of five cell populations. The hippocampal CA1 pyramidal
cells model was a multicompartmental model modified from [17] and supplemented
with hyperpolatization activated current Ih based on [18]. Besides Ih the cell model con-
tained sodium (INa), delayed rectifier potassium (IK), A-type potassium (IK(A)), mus-
carinic potassium (IK(M)), C-type potassium (IK(C)), low threshold calcium (ICa) and
calcium concentration dependent potassium (IK(AHP)) currents. Active and leakage cur-
rents were described using the Hodgkin – Huxley formalism. For online supplementary
materials, see: http://geza.kzoo.edu/theta/theta.html.

In the hippocampal CA1 region basket neurons and two types of horizontal neurons
were taken into account. Basket neurons formed the fast spiking neuron population of
the pyramidal layer, containing INa and IK currents. These model neurons were previ-
ously used in [20,21] to account for the population of fast, regularly spiking neurons.
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pyr

i (b)

MS−GABA

i (O−LM) i (S)

Fig. 1. Left: Computer model of the hippocampal CA1 circuitry. Neuron populations hypothe-
sised to be responsible for the generation of theta oscillation are shown (pyr – pyramidal cells;
i(O-LM) – horizontal cells projecting to the distal dentrites of pyramidal cells in the lacuno-
sum moleculare layer; i(b) – basket interneurons; i(S) – septally projecting hippocampal hori-
zontal interneurons; MS-GABA – septal GABAergic cells, triangles denote excitatory, dots in-
hibitory synapses). Connections originating and ending at the same population denote recurrent
innervation.

The two types of horizontal neurons represented those interneuron populations
whose somata resided at the oriens/alveus border [19]. These neurons were described
by the same set of equations as their observed physiological properties are similar and
contained sodium, potassium, a high-threshold calcium and hyperpolarization-activated
currents [29]. The basket and O-LM neurons were able to generate repetitive action
potentials autonomously, and O-LM neurons showed adaptation and low-frequency au-
tonomous firing in the theta band.

Medial septal GABAergic neurons were previously described using single com-
partment models by Wang [19]. This cell type evokes action potentials repeatedly in
clusters. Between any two clusters the cell exhibits subthreshold oscillation but no ac-
tion potentials due to a slowly inactivating potassium current, which was added to this
model neuron besides the Hodgkin – Huxley type sodium and potassium currents.

Connections within and among cell populations were created faithfully following
the hippocampal structure. The main excitatory input to horizontal neurons is pro-
vided by the pyramidal cells via AMPA (alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) mediated synapses [22]. Synapses of the septally projecting
horizontal cells [25] and synapses of the O-LM cell population innervating distal apical
dendrites of pyramidal cells [23] are of the GABAA type. O-LM neurons also inner-
vate parvalbumin containing basket neurons [24]. Basket neurons innervate pyramidal
cells at their somatic region and other basket neurons [27] as well. Septal GABAer-
gic cells innervate other septal GABAergic cells and hippocampal interneurons [26,28]
(Figure 1).
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3 Dynamics: Generation of Theta Rhytms

Theta frequency oscillation of the septohippocampal system has been considered as a
prominent activity associated with cognitive function and affective processes. It is well
documented that anxiolytics and hypnotics reduce amplitude of septohippocampal os-
cillatory theta activity, which contributes to their therapeutic effect but causes unwanted
side effects, e.g. cognitive impairment as well [16,15].

This detailed, realistic model was used to examine the generation and control of
theta oscillation in the hippocampal CA1 region. As shown on Figure 2 (A), firing of
neurons of the four populations were not evenly distributed in time, but time intervals
in which firing was significantly reduced were alternated by intervals where enhanced
firing was observed. This synchronized state of neural firing was further confirmed by
the field potential, which exhibited a prominent ≈5 Hz oscillation as reflected in the
power spectrum (Figure 2 (B)).

Simulation results showed that key components in the regulation of the popula-
tion theta frequency are membrane potential oscillation frequency of pyramidal cells,
strength of pyramidal cell–O-LM cell innervation and strength of recurrent basket cell
connections. Membrane potential oscillation of pyramidal cells is determined by their
averages, passive membrane parameters and parameters of the active currents. Aver-
age depolarization in our model results from septal cholinerg innervation. An important
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Fig. 2. Appearance of theta frequency population activity in the firing of cells and the Fourier
spectrum of the field potential. A, firing histograms were calculated by binning firings of all
cells of one of the four populations (pyr – pyramidal cells, i(b) – basket cells, i(O-LM) – oriens-
lacunosum moleculare interneurons, MS-GABA – septal GABAergic cells) into discrete bins.
Resulting graph shows the total activity of the respective population. B, power spectrum of the
field potential. Theta frequency population activity is reflected by temporal modulation of firings
in (A) and the ≈5 Hz peak in the power spectrum (B).
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factor is the presence and maximal conductance of the hyperpolarization activated cur-
rent. If Ih is present it shortens response times of pyramidal cells to hyperpolarizing
current pulses and more importantly decreases its variance: Ih acts as a frequency stabi-
lizer. Synaptic strengths in our description are set by convergence numbers and maximal
synaptic conductances.

An explanation of intrahippocampal theta oscillation generation—based on this
model—includes i, signal propagation in the pyramidal cell → O-LM cell → basket cell
→ pyramidal cell feed-back loop, ii, synchronization of neural activity via the recurrent,
inhibitory GABAA connections within the basket cell network and iii, synchronization
of pyramidal cell firing due to rebound action potential generation. It is that the propa-
gation of a single signal throughout this trisynaptic loop would not require the amount
of time characteristic to the theta oscillation (≈0.2–0.25 sec), thus in the present case
the population oscillation is created not by the propagation of single signals but rather
the propagation of a “synchronized state” in the network. The observed periodic pop-
ulation activity is brought about by alternating synchronization and desynchronization
of cell activities due to the interplay of the above mentioned synchronizing forces and
some desynchronizing forces (such as heterogeneity of cell parameters and diversity of
synaptic connections), as observed in previous works [21,30].

4 Control: Integrating GABA Receptor Kinetics to the Receptor
Model

4.1 Pharmacological Elements

Receptor Structure. GABAA receptors are pentameric structures consisting of multi-
ple subunits. At this moment [31] nineteen subunits have been cloned from mammalian
brain. According to their sequence similarities, they have been grouped into seven fami-
lies: α, β, γ, δ, ε, π and θ. Only a few dozen among the many combinatorial possibilities
exist. The most frequent subtyes two α, two β and one γ subunits. The structural varia-
tions imply functional consequnces [31], among others for the kinetic properties.

Drug-Receptor Interaction. A drug/substance may have affinity for the receptor: it
may have the capacity to maintain contact with or bound to receptor. Potency is the
the absolute number of molecules of drug required to elicit response. Efficacy is the
maximum effect obtainable. Therapeutic index: LD50/ED50; the larger it is the safer
the drug is.

All the substances binding to any part of the GABAA receptor, except GABA, will
be called modulators below.

Agonists: Chemicals to open or to facilitate opening the Cl− channels thereby enhanc-
ing or creating the inhibitory actions. These are also termed as positive allosteric
modulators.

– Endogeneous agonist: the GABA itself.
– Full agonists: of the benzodiazepine family with sedative effects: e.g.

diazepam, zolpidem.
– Partial agonists: e.g. bretazenil.
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Inverse Agonists: Chemicals to close or to inhibit opening the Cl− channels (e.g. )
thereby decreasing the inhibitory actions. These are also termed as negative al-
losteric modulators.

– Full inverse agonist of the benzodiazepine type with anxiogenic effect: e.g.
FG-7142.

– Partial inverse agonists: e.g.
Antagonists: Compounds which bind but have no effect on GABA inhibition. They

have affinity, but no efficacy, e.g. bicuculline.

1. Desenzitization
– prolonged/continuous use of agonist,
– inhibition of degradation or uptake of agonist,
– cell may attempt to bring its response back to normal by decreasing the number

of receptors or binding affinity of receptors.
2. Senzitization

– prolonged/continuous use of receptor blocker,
– inhibition of transmitter synthesis or release,
– cell may attempt to bring its response back to normal by increasing the number

of receptors or binding affinity of receptors.

4.2 The Conventional Tool of Computational Neuroscience

One way to describe synaptic transmission is to use a gating variable similar to the well
known Hodgkin – Huxley formalism:

Isyn = ḡsyns(V − Esyn) (1a)

ds

dt
= αF (Vpre) (1 − s) − βs (1b)

F (Vpre) =
1

1 + exp
(

Vpre − Θsyn

K

) (1c)

with Isyn being the synaptic current, ḡsyn the maximal synaptic conductance, s the
gating variable of the synaptic channel, Esyn the synaptic reversal potential, F (·) is an
activation function, α and β rate functions describing opening and closing of the gate
of the synaptic channel, Θsyn is a threshold.

Figure 3. illustrates the general form of effects of GABAA receptor modulators.

4.3 An Intermediate Level Strategy: The Pharmacokinetic - Pharmacodynamic
Approach

A theoretical framework with intermediate complexity based on pharmacokinetics -
pharmacodynamics (PK/PD) was suggested to model the effects of GABA modulators
on EEG in a series of papers [32,33]. Pharmacokinetics generally is supposed to de-
scribe drug disposition and biophase equilibration, diffusion included. In the applied
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Fig. 3. Modelling the effects of allosteric GABAA receptor modulators. In a simple description
of synaptic transfer the strength of synapses was modulated via the ḡsyn parameter in eq. (1a)
in a dose dependent manner. Inset: modelled inhibitory postsynaptic potentials before (smaller
amplitude) and after (larger amplitude) administration of positive GABAA allosteric modulator.

framework pharmacodynamics might consist of two stages: one for drug-receptor in-
teraction, and another one for the signal transduction processes or stimulus-response
relationship. The stimulus - response function is empirically determined, and intention-
ally neglects the architecture of the system under investigation. While this approach
proved to be an efficient method, we believe that the architecture of the neural circuits
should be taken into account explicitly to get a better understanding of the underlying
neural mechanisms.

4.4 Kinetic Modeling of α1 and an α2 Modulators: A Plan

From Pharmacodynamics to Detailed Kinetic Scheme. A more effective, but cer-
tainly most expensive, modelling tool to evaluate the pharmacological effects of the dif-
ferent modulators, or even to give help for offering new putative molecules for drug dis-
covery, is the inclusion of more detailed kinetic studies of GABA receptor
modulation.

Suppose the dose response curve of GABAA is given and we also have the dose
response curve of a modulator or a drug-modulator pair. Then, one can draw a few
qualitative consequences.

It is important to fix, if the effect is measured as a function of drug concentration
which is usually a hyperbola (naturally, without any inflexion point), or, as a function
of the logarithm of the concentration in which case again a saturation curve is obtained
but with an inflexion point at ED50.

The effect of different modulators is as follows. If the effect is that the saturation
point (the limit of the dose response curve atinfinite modulator concentration) is smaller
then without the modulator, then the modulator is a partial agonist. If the modulator has
no effect (although it binds to the same binding site or to a site which hinders the
endogenous agonist to act), i.e. the dose effect curve is constant zero, then we have
an antagonist. If the effect of the modulator is a monotonously decreasing curve then
we have an inverse agonist. One may also have a dose response curve shifted to the
right (left); the modified system (modulator, or modulator + endogeneous agonist) has
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a smaller (larger) potency, i.e. a larger (smaller) number of drug molecules are required
to elicit the same response. If the modified system’s curve goes parallel with the original
but below it (i.e. not only its limit is smaller), then the efficacy is decreased.

Kinetic Schemes. Jones and Westbrook [8] established a model for describing the
rapid desensitization of the GABAA receptors. More specific kinetic models should be
studied to describe the effects of the different (full and partial) agonists and antagonists.
Baker et al. [34] explained the functional difference between the effects of protophol
(which has hypnotic effect) and of midazolam (a sedative - amnestic drug) based on a
detailed kinetic model.

L2Df

df rf

L2O

Α Β

C
2kon

koff
L1C

kon

2koff
L2C

ds

rs
L2Ds

Fig. 4. Basic scheme of GABAA receptor kinetics. C, L1C, L2C denote closed states with zero,
one and two bound ligands respectively. L2O is the open state, while L2Df , L2Ds are the de-
senzitized states. Modulators may effect different steps of these complex chemical reaction.

The main difference is that protophol modifies the desenziation processes, more
dramatically the slow desenzitation steps and the modified kinetic parameters. These
differences imply distinct behavior of the network (synchronization, frequency of os-
cillation) and therefore also in function.

4.5 Models of Anxioselective Actions: Search for Data

Recently it became clear that α subunits exhibit a remarkable functional specificity.
Genetic manipulations helped to show that α1 subunits are responsible for mediating
sedative effects, while α2 subunits mediates anxiolytic effects [10]. Preliminary exper-
imental data and modelling studies for the the effects of the preferential GABAA α1

and α2 positive allosteric modulator, zolpidem and L838, 417 for the septohippocampal
theta activity have been reported [9].

In this study we examined the effects of the α1 and α2 subtype-selective benzodi-
azepine site ligand zolpidem and L838, 417 on the septohippocampal system. In elec-
trophysiological experiments extracellular single unit recordings were performed from
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medial septum/diagonal band of Broca with simultaneous hippocampal (CA1) elec-
troencephalogram (EEG) recordings from anesthetized rats. Both of the drugs elimi-
nated the hippocampal theta oscillation, and turned the firing pattern of medial septal
cells from periodic to aperiodic, but only the zolpidem reduced the firing rate of the
these neurons. In parallel to these experimental observations, a computational model
has been constructed to clearly understand the effect of these drugs on the medial sep-
tal pacemaker cells. We showed that the aperiodic firing of hippocampo-septal neurons
can reduce the periodicity of the medial-septal cells, as we have seen in the case of
the L838, 417. The reduction of firing rates in the case of zolpidem is attributed to the
increase of the synaptic conductances and the constant inhibition of these cells. We
modelled these drug effects by modifying (i) the synaptic maximal conductances of the
GABA synapses. (ii) the constant excitatory drive of the median septal cells and (iii) the
hippocampal input. The incorporation of a more detailed synaptic model is in progress.

Zolpidem increases by concentration-dependent manner the duration and amplitude
of the postsynaptic current, most likely by enhancing the affinity of the receptors for
GABA [35]. It significantly increased the amplitude and frequency of the postsynap-
tic current, but these effects were diminished or absent in neurons from α1 knock-out
mice [36].

There seem to be compounds, which might have comparable binding affinity but
different efficacies at the various subtypes, thereby preferentially exerting its effects at
subtypes thought to be associated with anxiety. L838, 417 seems to be an an example
for efficacy selective compounds [37], but kinetic or even pharmacodynamic data could
not be found (at least not very easily) in the public domain.

4.6 Modulation of Synaptic and Extra-Synaptic GABAA Receptors

There are different mechanisms for postsynaptic modulation. It might be a long-term
change in the number of receptors, a change in the affinity of a ligand, or a change on
ionic conductances [38]. Recently it was emphasized that in addition to the conven-
tional ("phasic") synaptic transmission the extrasynaptic "tonic" GABAergic cell-cell
communication also has a significant functional role [39,40,31]. GABA can activate
receptors on presynaptic terminals or at neighboring synapses (’spillover’). The phasic
and tonic inhibitions are spatially and temporally discrete, and continuous, respectively.
(For a review on non-synaptic communication see [46].) The two distinct mechanisms
of the GABAA -receptor mediated inhibition implies different functional roles. Also,
most likely different receptor subtypes mediate the two types of inhibition, and might
be modulated by different kinetic schemes. Future works will show the similarities and
differences among the different kinetic schemes behind the modulatory mechanisms of
the phasic and tonic inhibition.

4.7 Direct Problem: To Simulate Modulatory Effects

Kinetic modeling of synaptic transmission has a flexibility in the level of detailed de-
scription from chemical kinetic to simplified representation [41]. The development of
new pharmacological, electrophysiological and computational techniques make possi-
ble to investigate the modulatory effects of putative drugs for synaptic currents, and
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consequently for local field potentials and even behavioral states. Putative drugs with
given kinetic properties can be tested in silico before (instead of?) real chemical and
biological studies.

5 Design (Inverse Problem): From System Identification to
Optimal Temporal Patterns

We have shown that in a moderately complex conductance-based model of the hip-
pocampal CA1 region theta rhythm generation can be observed and major interactions
between cell populations and within cells responsible for the phenomena can be iden-
tified. These results qualify the model for consideration as a useful tool in the hands
of pharmacologists, physiologists and computational neuroscientists to complete their
repertoire of available tools in the search for efficient and specific drugs.

Desired pattern

Septo−hippocampal
system Modelled pattern

matching
pattern

θ

Nontrivial
increased cognitive function
anxiety!e.g.

non−matching
pattern

Comparision

Further testing

Modification of model parameters and
modification of pharmacology

Fig. 5. Computational neuropharmacology—an idealized method for drug discovery. See text for
a description.

Figure 5 is an oversimplified scheme offered for finding finding a modulator to set
optimal septohippocampal EEG pattern.

In order to decrease anxiety first a desired EEG pattern shold be defined. Anxyoli-
tics should reduce the amplitude the theta amplitude (but preserving the cognitive per-
formance and avoiding sedative hypnotic side effects). Computational analysis should
offer a best kinetic scheme and rate constant to modulate te fixed network to minimize
the deviation from the desired "optimal pattern". (Network architecture is supposed to
be fixed. By neglecting this assumption we should turn from neuropharmacology to
neurosurgery...) Most likely there are more than one possibilities to reach the goal, and
model discrimination and parameter estimation techniques may help to narrowing the
alternatives.

As it is known from chemical kinetics [43,47] sensitivity analysis shows that in a
kinetic scheme there are "more and less important" components and reactions. It helps
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to answer the question, whether how to modify the structure of a given drug to change
the reaction rate constants in the desired direction—and leaving everything else intact.

6 Discussion, Further Research

The aim of the present paper is to offer conceptual and mathematical frameworks to
integrate network and receptor level descriptions for investigating the effects of poten-
tial drugs for the global electrical patterns of a neural center, and and for the behavioral
states (mood, consciousness etc.). Once we have understood (i) the basic mechanisms
of rhythm generation, (ii) the elementary steps of the modulatory process, we shall a
be able to give advice to drug designers pointing out which subprocess and how to be
modulated to reach a given goal.

Specifically, we briefly reviewed some aspects of GABAA receptor kinetics, and
the effects of (full and partial) agonists, antagonists and inverse antagonists to septo-
hippocampal theta rhytms. The specific goal we are focusing is to design anxiolytic
drugs with as small as possible side effects. While is is known that positive allosteric
modulators acting on GABAA α1 subunits are potential candidates for being selective
anxyiolitics, integrative computational modeling would help to find the appropriate ki-
netic properties of potential drugs.
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Abstract. The evolution of the structure of the neocortex is one of the
most important events in the chain that led to the human brain. The pa-
leontological evidence shows that the human brain expanded two-fold in
size over three million years, while modern chimpanzees still have brains
about the size of the earliest hominids. The brains of chimpanzees and
modern humans have a similar anatomy, so the vast difference in their
size (400ml vs 1400ml) is due to an expansion of the cerebral cortex,
rather than the development of entirely novel brain structures. Here we
explore in what way the neocortical circuits are common to all mam-
malian species. We define a canonical structure that can be identified in
all cortical areas and in all land-based mammalian species where data
are available. This structure has recurrent excitatory and inhibitory loops
formed by local neurons as a feature of its design. Quantitative studies
from our laboratory show that the input from the sensory periphery
forms less than one percent of the total input to the primary visual
cortex in the cat. Thus the major synaptic input to a cortical neuron
comes from its neighbors. We provide a conceptual model that offers
an operational view of how the canonical circuit of the neocortex might
operate.

1 Out of Africa

We all come from Africa, although some of us perhaps more recently than others.
It is in Africa where we find the chain of evidence that shows how we inherited
such a large brain. Three million years ago, Australopithecines walked upright in
Africa. These early members of the hominid branch had small bodies, and brains
about the size of modern chimpanzee (400ml). One and a half million years later,
the fossil record shows that the brain size of Homo erectus was about 800ml,
which already shows a remarkably fast expansion in brain size. Modern humans,
however, have an even larger brain sizes (1400ml), although curiously, modern
brains are smaller than their immediate ancestors - early modern Homo sapiens
and Homo neanderthalis (1550ml). When normalized for body weight, we find
that the size of the hominid brain has nearly doubled in a brief three million years
(see [1]). The usual question that arises is, why? What drove evolution so fast,
since evidently, the hominid line branched from the line that led to modern apes
very recently (within the last 10 million years)? A rather less frequently asked
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question is, how do you make a brain expand so much in so few generations,
yet have it still work so well? Not only has it continued to work well, but it has
added capacities that make human brains seem qualitatively different from all
other primates. It is competent to a degree that is simply not seen in our cousins
the apes, yet gene mapping suggest that modern apes and humans have 95% of
their DNA in common ([2]). It is evident that the way in which we use our brains
is radically different from apes. This is evident in humans’ unique ability to use
language and manipulate symbols, and is also clearly evident in the invention
and use of tools.

For most of this time of brain expansion, the ancestors of modern humans
made stone tools, the earliest of which were found in the Oldovai gorge in Tanza-
nia and date from about 2.5 million years. These Oldowan tools were essentially
of two types: a crude chopper or scraper, and sharp flakes that were produced
by making the chopper. They offer an intriguing view of their maker’s intelli-
gence and how the homids of the time were thinking and behaving. But, after
the invention of these first stone tools, there was a period of stasis: the same
basic tools were used for over a million years unchanged. Only with the emer-
gence of Homo erectus about 1.7 million years ago, did a new tool technology
develop, called ’Acheulian’ after the site St. Acheul in France where they were
first discovered. Homo erectus started making larger tools than those of the
Oldowan’s, like a pick, a cleaver, and most characteristically, a tear-drop shaped
hand axe. Once these Acheulian tools had been invented, there was again one
million years of stasis and it was only in the last 250,000 years that new tools
were invented by the archaic Homo sapiens. Thus, there is no strict correlation
between the size of the brain and the development of more varieties of tools.
Rather, it seems that as their brain size increased hominids discovered new ways
of using it. These new ways of using the brain may also have driven the evolution
of the morphology of the hand, which in turn allowed more sophisticated tools to
be made.

But this is speculation. What is more certain is that the endocranial casts
taken from the fossil skulls show that the increase in the size of the brain was
mainly due to an increase in the size of the cerebral cortex. The question to
ponder is how in 150,000 generations or so, over the 3 million years, can the
size of the brain be doubled? If the neuron density in the early brains was the
same as modern humans, then the 400ml brain would contain about three billion
neurons compared to the eleven billion in human brains. Over 3 million years,
8 billion new neurons have to be added to achieve current human brain sizes. If
we take a generation to be 20 years, this means that every generation would have
to have add, on average, 60,000 cells to their brain. Since each cubic mm of the
neocortex contains about 50,000 to 100,000 neurons, this addition makes a tiny
addition to the total volume. How would such an increment in neuron numbers
be achieved? Since it takes only 33 divisions to generate eight billion neurons
from a single neuroblast, double this number of neurons can be generated if each
neuroblast just went through one more division before differentiating. Thus an
increment of even 60 000 neurons requires that only a few neuroblast continue
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in the cell cycle during neurogenesis. It is worth noting in passing that human
neurogenesis occurs over about three months and so on average the human brain
adds 1400 new neurons per second, and about one and a half million synapses
per second during this phase. In the face of this plenitude and speed, it seems
more a problem to not make too many neurons (although many neurons do die)
than to make exactly the required number.

In the event, the raw size of the brain is not the issue, since we see that
it correlates poorly with the invention of new tools. What is more critical is
how the new neurons are wired together. Here there is a potential generation
gap, for 3 million years seems too short to accept that all the new neurons have
been required because novel circuits have evolved. We seem to share all the
same neural structures as non-human primates. What seems to be the major
difference is one of quantity ([3] pp. 390). We don’t seem to have a differently
designed brain from our cousin primates, but one that is three times bigger than
it should be for a primate of our weight. It seems more likely therefore that since
most of the new neurons added over the past 3 million years have been used
in the construction of more cerebral cortex, the additional cortical circuits were
modeled on the existing designs.

The appalling thought is then that the success of hominid evolution is due to
chance mutations that led to the construction of more pieces of the same evolu-
tionary successful and well-tested circuit. The additional new pieces would form
new or expanded cortical areas, and would be connected into the older pieces
according to prevailing rules of connectivity. In this sense they were following
exactly the same pattern that was seen during the evolution of mammals. From
its modest beginnings in the first mammals, the cerebral cortex became larger
and more and more differentiated, in the sense that it could carry out a wider
range of functions. Similar trends are evident in modern mammals, where in
rodents the cerebral cortex that forms a volume of about 40% of their brain,
whereas in monkeys its forms about 70%, and in humans it forms about 85% of
the entire brain. Thus, while the reasons for the rapid expansion of the hominid
brain remain a mystery, most of the new neurons were most likely built into
circuits whose design had already proved their worth during the evolution of the
mammalian brain.

2 Cortical Foundation

The question is of course, what is so special about the cerebral cortical circuits?
In particular, what is so special about the circuits of the neocortex, which form
the greater part of the cerebral cortex? The comparative anatomy of these cir-
cuits still remains sketchy and the detailed anatomy of any has until recently
been unknown. However, an important insight into the organization of these
circuits was provided by experiments that recorded the intracellular response
of the cortical neurons to an electrical pulse stimulus applied to the incoming
fibers (Fig. 1). These experiments ([4,5,6]) were performed in cat primary visual
cortex in vivo. The response for neurons through the depth of the cortex was,
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Fig. 1. Configuration of the experiment [6] that generated the data described in Fig. 2.

Two pairs of fixed stimulating electrodes (sthal, swm) were placed in the thalamus (thal,

grey ellipse), and in the white matter (wm, vertical lines) immediately beneath the grey

matter (gm, hatched) respectively. Individual cortical neurons were impaled by a mobile

glass microelectrode (rec, black). This electrode recorded the intracellular voltage of

the neuron, and its response to stimulation of cortical afferents, whose somata lie in

the thalamus, and whose axons ascend to gm via wm.

at first glance, stereotypical. The pulse elicited at short latency (1-2ms) a depo-
larization of short duration (5ms), followed by a long lasting hyperpolarization
(200ms duration) (Fig. 2). This pattern of excitation followed by inhibition has
been detected in all other cortical areas where this experiment has been done
([7,8,9,10] ).

Although these physiological results agreed with those of a number of pre-
vious studies, what made this study different from pervious ones was that the
neurons were not only recorded intracellularly, but they were labeled with a
dye (horseradish peroxidase) during the recording. This meant that the type of
neuron could be determined and that the position of the neuron in the cortical
layers was known exactly. This information turned out to be critical for what
followed, for a closer look revealed that the time taken to reach to maximum
hyperpolarization was far longer for neurons lying in the superficial layers of the
cortex (layers 2 and 3) than those of the deeper layers (layers 5 and 6). Our
interpretation of these results is that the initial excitatory response of all corti-
cal neurons is rapidly quenched by inhibition, but that the inhibition is stronger
in the deep layers. This explained the much shorter time-course of the initial
depolarization in the deep layer neurons.

These combined physiological and anatomical data provided the essential ob-
servations for the first version of a model of the cortical circuitry that attempted
to capture this functionality. Its diagrammatic form is shown in Fig. 3. The cir-
cuit captured the laminar differences in the responses of the excitatory neurons
through the depth of the cortex. It also captured a key computation feature of
the cortical circuit - its recurrence. This feature is reflected in all three groups of
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Fig. 2. Results derived from the experimental configuration described in Fig. 1 ([6]).

The four intracellular recordings at left are typical of those obtained following subcor-

tical stimulation (whose time of application is indicated by stimulus artefact). Traces

a,b were recorded from histologically identified pyramidal neurons in the superficial

layers of cortex, whereas c,d were recorded from deep pyramidal cells. In all cases the

response is dominated by an approximately 300ms period of hyperpolarizing inhibi-

tion. The latency to maximum hyperpolarization is correlated with the depth of the

neuron in the cortex (right sub-figure). The latency to this maximum is longer in the

superficial pyramids than in the deep ones. A single inhibitory neuron recorded in layer

4 (open circle) exhibited a hyperpolarizing response that was qualitatively similar to

the pyramidal neurons of the superficial layers. In superficial pyramids the inhibition

is preceded by a phase of excitation (arrowed) lasting some 20ms. This phase often

contains a few sub-peaks (b, enlarged inset), suggesting that the stimulation evokes

superimposed waves of excitation. In some neurons (at all depths) there may be a late

phase of excitation (arrowed in d). The source of this event is unknown.

neurons depicted in the model: the superficial and deep layer excitatory neurons,
and the class of inhibitory neurons. Clearly this model is a radical simplification
of the complexity of the real cortical neurons. Nevertheless, even in its simplicity
it provided the key step from the abstract recurrent networks explored by Hop-
field and others, to a biologically-based model of a cortical recurrent network. As
the first such network based on in vivo functional data, its value was in providing
a bench-mark model for the local circuit. It provided a canonical cortical cir-
cuit for theoretical explorations of a wide number of issues, including orientation
tuning, direction tuning, working memory, chaos, etc. ([5,11,12,13,14,15]).

One important point to establish was to what extent the canonical circuit
from sensory cortex was generalizable. To explore this, we have undertaken an
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Fig. 3. The ’canonical microcircuit’ is the minimal circuit necessary to explain exper-

imental results reported in [4,5], as exemplified in Fig. 2. The circuit is composed of

two populations of recurrently connected excitatory neurons; one superficial (pyrami-

dal neurons of layer 2/3 and spiny stellate neurons of layer 4); and one deep (pyramidal

neurons of layer 5 and 6). A third population of inhibitory neurons exerts a stronger

effect on the deep excitatory population than the superficial one.

extensive search of the comparative literature to understand the nature of the
anatomical evidence for similar excitatory circuits in other cortical areas and
other species ([16]) These common feature concern not only the connections be-
tween local circuits, but also the connections to circuits in other areas. Although
there are nominally 6 cortical layers, little is known of the connections of layers
1 and 2, and here they are essentially subsumed under layer three. Layer 4, the
major thalamorecipient layer, shows the most variation. Area 17 of the old world
monkey is now divided into 4 sublayers, but one of these (layer 4B) is not a tha-
lamorecipient layer and should probably be considered a subdivision of layer 3.
In the motor cortex, layer 4 is residual, and the thalamic afferents terminate
mainly in the lower part of layer 3. However, if debates about what are actually
the homologous layers in different areas and different species is set aside for the
moment, the basic pattern of interlaminar and interareal connections is as shown
in Fig. 4.

There are a number of common features in addition to the thalamic projec-
tion to layer 4 that can be noted. One is that the output from a local circuit to
subcortical structures, such as the thalamus or superior colliculus, arises princi-
pally from the deep layers in all areas. The layer 6 pyramidal neurons provide
a feedback to the thalamic relay nuclei, whereas the layer 5 pyramidal neurons
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Fig. 4. Graph of the dominant interactions between significant excitatory cell types in

neocortex, and their sub-cortical relations ([16]). The nodes of the graph are organized

approximately spatially; vertical corresponds to the layers of cortex, and horizontal to

its lateral extent. Directed edges (arrows) indicate the direction of excitatory action.

Thick edges indicate the relations between excitatory neurons in a local patch of neo-

cortex, which are essentially those described originally by Gilbert and Wiesel [17,18]

for visual cortex. Thin edges indicate excitatory connections to and from subcortical

structures, and inter-areal connections. Each node is labeled for its cell type. For cor-

tical cells, Lx refers to the layer in which its soma is located. P indicates that it is an

excitatory neuron (generally of pyramidal morphology). Thal denotes the thalamus,

and Sub other subcortical structures, such as the basal ganglia.

project to the pulvinar and motor structures, such as the spinal cord and supe-
rior colliculus. A stereotypical projection pattern is also seen for the interareal
connections (see e.g. [19]). The rule of thumb for the interareal networks is that
projections resembling those of the thalamocortical projections, i.e. terminating
principally in the middle layers of cortex, originate from layer 3 and layer 6
neurons and are called ’feedforward’ projections. Interareal projections that ter-
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minate outside layer 4 are called ’feedback’ projections. The same neurons whose
axons form the local circuits also form the long distance connections between
areas. Thus, the local network is embedded in a large scale cortical network.
However, the contribution of excitatory synapses by a given cortical area to
another is exceedingly small, amounting to less than one percent of the total
excitatory synapses in an area. An estimate of the number of synapses found
for any given projection has been extremely difficult to come by and there are
very few direct measurements. We have recently made the first complete inven-
tory of all the synapses contributed by the neurons that form the local circuit
in the cat’s primary visual cortex ([20]). To make this estimate, neurons were
recorded intracellularly in vivo, and filled with horseradish peroxidase, which
labels the entire dendritic and axonal tree. The single neurons were then recon-
structed in 3-D, (Fig. 5) and the laminar position of every synaptic bouton and
every segment of of dendrite was mapped. We then applied a simple rule (’Peters
rule’) that the different classes of neurons connect with each other in proportion
to which they contribute dendrites or synapses to a given volume of neuropil.
Applying this simple rule to all the classes of neurons that had been recov-
ered in the intracellular recordings, we derived a series of synaptic maps for the

Fig. 5. Coronal view of reconstructed cells representing the different cell-types present

in the visual cortex of the cat ([20]). Axons are shown in black, dendrites in grey.

Boutons are ignored for visibility. Cell-types are indicated at the top. Abbreviations:

’b2/3’, ’b4’, ’b5’ basket cells in layer 2/3, 4 and 5; ’db2/3’ double bouquet cell in layer

2/3; ’p2/3’, ’p4’, ’p5’, ’p6’ pyramidal cells in layer 2/3, 4, 5 and 6. ’ss4’ spiny stellate

cells in layer 4. Spiny stellate cells and pyramidal cells in layer 5 and 6 were further

distinguished by the preferred layer of the axonal innervation (’ss4(L4)’ (not shown),

’ss4(L2/3)’, ’p5(L2/3)’, ’p5(L5/6)’, ’p6(L4)’ and ’p6(L5/6)’). ’X/Y’ thalamic afferents

of type X and Y. Horizontal lines indicate the approximate cortical layers L1, L2/3

(layer 2 and 3 were merged), L4, L5, L6. Also indicated is the white matter (’wm’).

Scale bar is 300μm.
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Fig. 6. Number of synapses involved in the connections between excitatory neurons

between layers, including the X-type and Y-type afferents from the dLGN ([20]). A-D:

Each arrow is labeled with a number indicating the proportion of all 15 ·1010excitatory

synapses in area 17 that are formed between only excitatory neurons. The proportion

of all asymmetric unassigned synapses that the excitatory neurons in each layer receive

is 0.01% (layer 1), 5% (layer 2/3), 3% (layer 4), 4% (layer 5), and 16% (layer 6). These

synapses are presumably formed by the afferents originating outside area 17.

various classes. Figure 6 shows for example the map for the connections between
the major classes of excitatory neurons, where the numbers given express the
percentage of the total population of excitatory synapses found in area 17, as
assessed by quantitative methods ([21]). This map of excitatory connections re-
veals that even within the local circuits, there are multiple sources of excitation,
and that most of them involve only a few percent of the synapses. Considered
numerically, most connections are ’weak’, as indicated by the thin connecting
lines in Fig. 6. However, there are notable exceptions, particularly within layers,
as indicated by the bold connecting lines.

The excitatory cells in layer 4 consist of two major classes, the spiny stellate
cells and the star pyramidal cells. The data show that the thalamus, which
provides the major drive to the visual cortex, provides only 0.6% of the synapses
made with these layer 4 excitatory cells. This estimate seems extraordinarily low,
expecially given the textbook model that the pattern of thalamic input provides
the major excitatory drive to layer 4, which, it should be re-emphasized, is the
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major thalamorecipient layer. However, this estimate of such a small fraction of
thalamocortical synapses is supported by direct experimental studies (e.g. [22]).
These estimates and experimental data indicate that the major excitatory input
to layer 4 comes from local neurons. The principal local excitatory inputs to layer
4 neurons are from other layer 4 cells themselves, and of course the strongest
connection between any of the cortical layers is between the layer 6 pyramidal
cells and neurons in layer 4.

The (numerically) strongest connections are formed between the layer 2/3
pyramidal neurons. Fully 22% of the excitatory synapses are made between these
neurons. The inhibitory neurons similarly form a plexus of convergent input to
each other and to the excitatory cells of cortex (described in more detail below).
Thus, the anatomical weight of connections is already sufficient to provide the
skeleton for a rich polyneuronal circuit of excitatory neurons consisting of many
weak connections and a few strong connections.

Fig. 7. Schematic showing the proposed distinction between the effects of ’horizontal’

and ’vertical’ smooth cells [16]. Parvalbumin positive ’horizontal’ smooth cells make

multiple synaptic contacts on the crucial dendritic output path (apical dendrite, soma,

and initial segment) of a representative superficial pyramidal neuron. The trajectories

of calbindin / calretinin positive double bouquet axons pass vertically through the

dendritic fields, making contact with some of them at various locations ranging from

proximal to distal.
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3 Differential Inhibition

The inhibitory neurons have smooth dendrites, use the neurotransmitter gamma
amino butyric acid (GABA) and are found in all layers, where they form about
20% of the neurons and about 15% of the synapses. Unlike the pyramidal cells,
their dendritic trees are local and usually confined to one layer. Their axonal trees
are also local, and even the basket cells which have the most laterally extensive
axons, spread far less laterally than the axons of spiny stellate and pyramidal
neurons. However, lateral inhibition can be effected di-synaptically, via the long
lateral collaterals of the spiny stellate or pyramidal cells, which have smooth
neurons as a small fraction (20%) of their targets. Other smooth cell types,
particularly the double bouquet cells, have axons that extend vertically through
several layers in a columnar fashion.

Amongst the excitatory cells, all but the layer 6 pyramidal cells form their
synapses mainly with dendritic spines. The smooth neurons, by contrast, form
synapses with all parts of the neuron, including the cell soma, the initial seg-
ment of the axon, the dendritic shaft and dendritic spines (Fig. 7). However,
this targeting is not indiscriminate, for the basket cells and chandelier cells tar-
get the proximal regions of pyramidal neurons (soma, proximal dendrites and
axon initial segment), whereas the double bouquet cells target the distal den-
drites. These two classes of smooth neurons can be distinguished on the basis
of their expression of calcium-binding proteins. The basket cells and chandelier
cells express parvalbumin, while the double bouquet cells express calbindin or
calretinin. The reasons for this different expression of calcium-binding proteins
is unknown, but the differences in the site of action of the inhibition may have
important computational consequences.

The dendrites are the only sites of excitatory input to a cortical neuron and
are the means whereby synaptic integration occurs, both locally on single den-
drites and collectively at the soma. The double bouquet cells, whose inhibitory
synapses form on the distal dendrites, can therefore act to reduce the excitatory
current that flows down individual dendrites towards the soma. The soma and
the axon hillock are the sites at which the action potential is initiated, and so
the basket and chandelier cells can act to reduce the net spike output of the
neuron. This dual control allows for separable fine tuning of both inputs and
outputs.

The role of inhibition is critical for our thinking about the range of operations
of the cortical circuits. Since, qualitatively the rules of connection seem common
to all areas so far studied, the claim for canonical circuits, rather than a series
of very different specialized circuits, seems reasonable. We have thus extended
the notion of the canonical circuit towards a generic computational circuit that
is strongly biologically based (Fig. 8) ([16]). In this circuit, the pyramidal cells
of layers 2 and 3 are the major site of integration of the inputs arising from
subcortical (e.g. thalamic) streams and from other cortical areas. Thus they can
combine information arriving from the sensory periphery as well as processed
information arriving from the recurrent circuits within the same area and from
other cortical areas. The goal of this superficial sub-circuit is to resolve salient
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Fig. 8. Simple model of cortical processing incorporating the principal features of cor-

tical circuits ([16]). A patch of superficial pyramidal neurons receive feedforward input

from sub-cortical, inter-areal, and intra-areal excitatory sources. They also receive re-

current input from other local superficial and deep pyramidal cells. These inputs are

processed by dendrites of the superficial pyramidal neurons (upper gray rectangles,

Layer 2/3) whose signal transfer properties are adjusted dynamically by the pattern

of ’vertical’ smooth cell inputs (oblique dark gray arrows). The outputs of the super-

ficial pyramids participate in a selection network (e.g. soft winner-take-all), mediated

by the ’horizontal’ smooth cells (upper horizontal dark gray line). These outputs of

the superficial pyramids adjust the pattern of vertical smooth cell activation. In this

way, the superficial layer neurons within and between patches, and within and between

areas, co-operate to resolve a consistent interpretation. The layer 5 pyramids (lower

gray rectangles) have a similar soft selection configuration (lower dark gray line) to

process local superficial signals and decide on the output to motor structures.

features of the input. The vertically-oriented arcades of the double bouquet cell
axons act to adjust dynamically the signal transfer properties of the distal den-
drites, while a selection network, mediated by the inhibitory basket cells, allows
a co-operative computation between the pyramidal cells to resolve the features
through a soft winner-take-all (WTA) mechanism. In this way, the superficial
circuit may thought to explore alternative interpretations of current data against
a priori knowledge stored in its connections. The prevailing best hypothesis is
held in the deep sub-circuit, where again a co-operative selection obtains con-
sistent motor output to be signaled by the layer 5 pyramidal cells to subcortical
motor nuclei.

The concept of canonical cortical circuits is a powerful one, in that it provides
not only an explanation for the laminar structure of the cortex but also offers
universal functions for these canonical circuits in the different cortical areas.
Thus, while each cortical area has a unique set of connections to subcortical and
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cortical structures, nevertheless the fundamental way it acts on its inputs may
be common to all areas.
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Abstract. Fast and reliable unsupervised spike sorting is necessary for
electrophysiological applications that require critical time operations
(e.g., recordings during human neurosurgery) or management of large
amount of data (e.g., recordings from large microelectrode arrays in be-
having animals). We present an algorithm that can recognize the wave-
form of neural traces corresponding to extracellular action potentials.
Spike shapes are expressed in a phase space spanned by the first and
second derivatives of the raw signal trace. The performance of the algo-
rithm is tested against artificially generated noisy data sets. We present
the main features of the algorithm aimed to on-line real-time operations.

1 Introduction

The study of brain functions has been mainly performed by electrophysiologi-
cal means in the past decades. There is an increasing interest in using multi-
site microelectrode recordings thanks to the miniaturization of the hardware.
The study of cognitive functions by arrays of microelectrodes introduced in the
brain of behaving animals [7] and clinical applications such as human neuro-
surgeries embedding a chronic electrode for deep brain stimulation [2] require
a quick analysis of the biological signals. Following appropriate signal filtering
the extracellular recordings correspond to the compound activity of the neurons
located near the microelectrode tip. Under stationary recording conditions, it
can be assumed that a neuron generates action potentials–spikes– with similar
dynamics of the membrane potential. Then, the extracellularly recorded wave-
forms of the spikes generated by one same neuron are assumed to be nearly
identical, as they depend on the type of the neuron and some environmental pa-
rameters such as the location of the neuron with respect to the microelectrode,
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the density of the neuropil, etc.. This means also that different waveforms should
be assumed to correspond to action potentials generated by different neurons.
Spikes which are similar in shape to each other should be clusterized into an
homogeneous group such that the group is assumed to include all spikes gener-
ated by one same neuron. The principal idea of spike sorting consists to detect
as many groups as possible on the basis of the signal waveform analysis. The
first step in most spike sorting techniques is the detection of waveforms that
correspond to spikes in the raw signal. The classification of detected spikes into
specific clusters requires the characterization of the shape of each spike. To this
aim several procedures have been used, such as principal component analysis
[8], independent component analysis [6], wavelet transform[4], and probabilistic
model[5]. The classification directly corresponds to spike sorting in most algo-
rithms, implying that these methods are well suited for off-line analysis. Critical
time constraints, like those imposed by human neurosurgery aimed to select the
optimal target for implanting chronic electrodes, push towards the development
of on-line spike sorting techniques. Template-based spike sorting algorithms are
adequate to the on-line task. However, most of the commercially available tech-
niques of this kind require manual operation by experienced user for selection
of templates, which reduce the advantages of this approach. In the present pa-
per we present a template-based spike sorting algorithm which can recognize
spikes and find templates automatically after unsupervised learning. Represen-
tative “signature” signals are defined as the spikes which are the nearest to the
center of gravity of the respective clusters. Clusterization is performed with an
improved heuristic version of a technique where distances between spikes are
defined in the phase space spanned by the first and second derivatives of the raw
signals [1].

2 Methods

2.1 Architecture of the Application

We developed a software application to implement and test our algorithm. The
application is composed of two parts, i.e., the computation engine and the user
interface. The computation engine was written in ANSI C, and the graphical user
interface was built with multi-platform compatibility on Labview 7.1 (National
Instruments Corp., Austin, TX, USA). We also developed a command-line user
interface written in ANSI C, which can be included for off-line batch processing.
Mac OSX (10.3.6) on G5 Power Mac (Dual 2.5 GHz PowerPC G5 with 2.5 GB
DDR SDRAM) and an A/D data acquisition board (NI-PCI-6250, by National
Instruments) were used to develop the application.

2.2 Unsupervised Spike Recognition Algorithm

Detection of Events. The detection of the neuronal spikes in the raw signal is
the first step of the algorithm. At this stage the term “spike” is ambiguous be-
cause it assumes that the algorithm can recognize what a “spike” means. In fact
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the algorithm cuts out segments of the raw signal which satisfy several criteria.
The set of these segments should contain all potential spikes but some segments
could be noisy traces that satisfy the criteria by chance. Let us call such poten-
tial spikes events. The first and second derivatives of the raw signal were used
to detect the events. Since the method of computing derivatives has a filtering
effect [1], the derivatives are less affected by noise, in particular with respect to
lower frequency components that may be generated by muscles twitch or cardiac
artifacts. The first and second derivatives express the underlying nonlinear dy-
namics of the membrane potential of neurons, which are generally described in
theoretical neuron models which can reproduce neuronal discharges successfully.
The trajectory of a spike in the phase space contains richer information about
its dynamics than its waveform. Let us define a threshold as m ± kσ where m
and σ represent the mean and square root of the variance of the first derivatives,
respectively. k is a coefficient set by the the user. Whenever the first derivative
of the raw signal crosses either the upper or lower threshold, then the threshold
crossing is considered as an occurrence of an event.

Templates Selection. A segment of raw signal which represents a typical shape
of an extracellularly recorded neuronal spike is referred to as a “template” in
this manuscript. The spikes generated by one particular neuron are supposed to
be characterized by shapes similar to the template of that neuron. In addition,
the spikes of the same neuron are assumed to form an homogeneous cluster in
a phase space, given a measure of dissimilarity between two spikes. Then, the
number of clusters should correspond to the number of different neurons near the
tip of the microelectrode that generate an action potential whose extracellular
trace is large enough to be discriminated from the background noise.

A learning procedure based on an iterative computation is implemented to
form clusters of detected events and to select the templates, defined as the
events nearest to the center of gravity of their corresponding clusters. At the
first round, an arbitrary event is taken as a provisional template. Provisional
templates are assumed to converge towards “optimal” and stable templates
after the following iterative procedure. The distances between the i-th event
to all provisional templates are computed, such that if the i-th event fell in-
side a super sphere with a certain radius centered on a provisional template,
the i-th event is assigned to the cluster represented by that provisional tem-
plate. This test is sequentially performed for all events. Notice that in the case
an event lies at the intersection of several super spheres, then that event is
counted as a member of all those clusters. Conversely, in the case an event
lies outside any previously described super spheres, then the event is itself
considered as a new provisional template. At the end of a round of the it-
eration, each event nearest to the center of mass of its corresponding cluster
is considered as the renewed provisional template to be used for distance cal-
culation at the next round of the iteration. The radius of the super spheres
is estimated from the distribution of the distances between all-to-all events.
The first local peak of this histogram is fitted by a Gamma probability density
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function. Then, the distance corresponding to the peak of the fitted Gamma
p.d.f. is used as the default radius, which is kept fixed throughout the iterative
procedure.

Templates Optimization. The procedure of templates selection described so
far did not include any a priori knowledge information about the waveforms of
bioelectrical signals. Events with strange profiles satisfying the above described
procedure could be included as potential templates until the end of the proce-
dure, leading to the degradation of the overall performance of the algorithm.
Furthermore, since the procedure allows an event to be a member of more than
one cluster, several templates could be defined from clusters with overlapping
events. One way to solve this problem consists to merge those clusters that rep-
resent closely related populations of signal traces. Such overall post-processing,
called template optimization procedure, includes the three following steps. (1)
The elimination of spurious templates consists to discard the waveforms without
a clear positive peak or with a peak appearing at the extremes of the event. (2)
The two nearest templates, i.e. those characterized by the minimal distance, are
merged if their distance is less than the default radius. Thus, the two clusters as-
sociated to these templates are merged and a new template is determined by the
event closest to the center of gravity of the newly formed cluster after merging.
This procedure is repeated until all templates are separated by a distance larger
than the default radius. (3) In the third step, the specific radius is calculated for
each template based on the statistics of the events in the cluster. The specific
radius is then used for spike sorting.

2.3 Spike Sorting

The above two processes, i.e., templates selection and templates optimization,
can be performed off-line. Spike sorting is the task applied to the data stream.
It consists to associate a newly detected event with one of the templates. If the
source of the data stream is the data acquisition board, the task can be per-
formed as on-line real-time operation because spike sorting can be achieved very
quickly. The distances between any new event to all templates are evaluated. In
the case the shortest distance is smaller than the specific radius of the template
that gives the minimal distance, then the new event is assigned to that tem-
plate. Otherwise, the new event is discarded and thrown into a ’noise’ cluster
formed by those events not assigned to any template. According to this proce-
dure an event can be sorted only into one cluster and double detection artifacts
are avoided.

2.4 Measure of the Dissimilarity

The dissimilarity between two events xk(t) (k = 1, 2) was defined as the distance
dx1,x2 in the phase space spanned by time, and by the first and second deriva-
tives of the raw signal. Let x

(1)
k (t) and x

(2)
k (t) represent the first and second
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derivatives of xk(t) (k = 1, 2), respectively. The first and second derivatives were
normalized before calculation of the distance (denoted as x̃

(1)
k (t) and x̃

(2)
k (t)).

Let us consider W (t) a user-defined piecewise-linear bell-shaped weight function
ranging from 0 to 1, corresponding to the knowledged weight of the ’phase’ of
an extracellular spike (e.g., steepness of the depolarization, repolarization, after-
potential hyperpolarization, etc.) in the sense of the neurophysiology. Let kt be
a phase shift factor. The distance was defined by the following equation

dx1,x2 =

√√√√ T∑
t=0

{
(x̃(1)

1 (t) − x̃
(1)
2 (t + kt))2 + (x̃(2)

1 (t) − x̃
(2)
2 (t + kt))2

}
W (t) (1)

We considered three measures of the distance, referred to as ’normal distance’,
’minimal distance’, and ’aligned distance’. In the case of normal distance, kt ≡ 0.
In the case of minimal distance (as defined in [1]) kt in Eq. 1 is an integer value
in [-2, 2] which gives the minimal value of√

(x̃(1)
1 (t) − x̃

(1)
2 (t + kt))2 + (x̃(2)

1 (t) − x̃
(2)
2 (t + kt))2, kt ∈ [−2, 2] (2)

for each t. In the case of aligned distance, kt in Eq. 1 corresponds to a constant
value, that is a phase shift factor calculated for t at the peak of raw signal of x1(t).

3 Results

3.1 Application of Unsupervised Spike Recognition

In the application with graphical user interface (GUI) the users can select the
operation mode according to the type of data stream, i.e., off-line mode for the
analysis of WAV formatted files that contain the raw signal, and on-line mode

Fig. 1. Main window of the application with graphical user interface. There are several

buttons to control the application at the top of the window. The waveform shows

the raw signal. The small chart, just below the waveform, indicates the time series

corresponding to the occurrences of detected events.
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(a) (b)

Fig. 2. (a) Status view of spike sorting. Three charts display the sorted events, grouped

in different clusters. Below of each chart, the histogram of distances is displayed. (b)

A window shows all events which were not classified as members of any clusters.

for the analysis of a signal recorded with the data acquisition board. Users can
easily shift from one mode to the other without restarting the application. In
each operation mode, the application provides three utilities: a signal viewer
showing only the event detection, the template learning utility including the
template-to-all error distributions and the spike sorting utility. The application
with GUI can be operated by users intuitively. The main window of the ap-
plication (Fig. 1) shows the waveform of the raw signal. During spikes sorting,
the application provides a window to display all spikes which were sorted into
clusters. Those events are superimposed on templates (Fig. 2a). In this window,
the users can vary and tune the value of the template-specific radius for each
template individually. An additional window displays the events which are not
sorted to any clusters (Fig. 2b). The application can be used through a command
line interface that provides the possibility to work in batch mode and process
large amounts of data in a semi-automatic way. In this mode the application
loads a configuration file that contains all required parameters and the path to
access and load the WAV formatted files. The data is processed at first to find
templates following the unsupervised learning procedure. Then, the application
rewinds the data file and starts sorting spikes from the begin of the file. The
output of the application is a formatted file called “spike data file” that contains
the multivariate time series corresponding to the the timing of spike occurrences
according to the inter-spike-intervals. This file can be processed for time series
analysis, e.g. for the study of patterns of neuronal activity in clinically recorded
data. The templates found during one run of the application might be of interest
for spike sorting on other data sets. The users can save the templates as XML
formatted files (one template per file), according to the experimental condition
or date, and build libraries of templates.

3.2 Performance Test

The performance of the unsupervised spike sorting (USS) was tested with ar-
tificially generated data. The base test set, noiseless, included three types of
templates (T1, T2 and T3) distributed randomly in time at a mean rate of
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Table 1. Dependency of unsupervised spike sorting performance on the threshold for

the event detection. Sorting errors were shown in percentage with respect to the event

number involved in the test data set. σ represents the deviation of the data. Type III

error never occurred and was not shown in the table. The template-specific radius was

fixed at 99%. The aligned distance was used for the measure of dissimilarity of events.

T1, T2 and T3 represent templates type 1, 2 and 3 of the test data set.

Low Noise High Noise
Threshold 1.9σ 2σ 2.3σ 1.9σ 2σ 2.3σ

T1 0.1 0.1 0.1 3.1 3.1 4.2
Type I error T2 0.5 0.1 0.3 0.4 0.4 0.4

T3 1.0 1.0 1.1 1.4 3.7 5.2
All 0.5 0.4 0.5 1.6 2.4 3.3

T1 0.2 0.2 0.2 0.1 0.1 0.1
Type II error T2 0.0 0.0 0.0 0.0 0.0 0.0

T3 0.0 0.0 0.0 0.0 0.0 0.0
All 0.1 0.1 0.1 0.1 0.1 0.1

Total unsorted events 4660 4296 3663 5164 4474 3530

7.5 spikes/s for each template. The total duration of the data was 3 min. From
this set we generated two more test sets by adding two different levels of noise,
i.e. high noise (SNR=2.51 dB) and low noise (SNR=3.55 dB) [3]. The evaluation
was based on three potential sorting mistakes. Type I error were due either to
undetected events or to detected events that were not classified into the tem-
plates clusters. Type II error corresponded to noisy traces wrongly classified
into one of the templates. Type III error corresponded to a misclassification, i.e.
spikes belonging to a given template that were sorted in a wrong cluster. Table 1
shows the dependency of USS performance on the threshold for event detection.
In the test set with low noise, both Type I and Type II errors occurred very
seldom (0.5% and 0.1%, respectively). With higher levels of noise we observed
that larger thresholds led to an increase in Type I errors (up to 5.2% for tem-
plate T3) but Type II error remained as lows as 0.1%. Notice that we observed
no Type III errors in the test set used here. The noise distribution also affects
the measure of dissimilarity between events because this measure was based on
the shape of signal trace of the events. The calculation of dissimilarity between
events played an important role in the template learning since the radii used
to form clusters were calculated according to the distribution of the distances
between events. Since the test data was generated by adding noise uniformly
to the original noiseless data set, all three types of templates in the test data
were supposed to be equally distorted by noise. If the algorithm is sufficiently
robust against noise, it is expected that the distribution of the distances become
smoothly broader according to probability theory and the radii estimation be-
come larger than that for noiseless test data. In this latter case there is a high
peak with zero width at distance zero in the histogram of distance distribution,
since all events assigned to the same cluster are identical, i.e., the distance be-
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Fig. 3. Dependency of the distance distribution on the definition of the dissimilar-

ity. (a) Signal traces of templates. The top, middle and bottom panels correspond to

templates T1, T2 and T3, respectively. Panels (b), (c) and (d) show the histogram

of distances calculated by the normal distance, minimal distance and aligned distance

methods, respectively.

tween them is zero. Figure 3 shows that USS could discriminate correctly the
templates T1, T2 and T3 of the test data with high level of noise and allows to
compare the methods for computing the template-to-all distances. Notice three
small peaks between 0 to 1 in the top panel of Fig. 3b, i.e. histogram calculated
following normal distance. The events corresponding to these three peaks were
very similar in waveform to each other meaning that events originally belonging
to the same template in the noiseless test data were perturbed by the noise and
split into three sets. This perturbation affects the estimation of the radius and
provokes an unstable evaluation of dissimilarity between events. The same ten-
dency could be seen in the bottom panel in Fig. 3b. In case the error distribution
were calculated by minimal distance and aligned distance, a sharp peak appeared
near to the left end of each panel (Fig. 3c and 3d) which suggested that these
methods are more robust for the error estimation.

3.3 Example of Clinical Data

The unsupervised spike sorting was applied to the analysis of electrophysiolog-
ical data recorded from patients with Parkinson’s disease, during the surgical
operation aimed to implant a microelectrode for chronic deep brain stimulation
of STN in the University Hospital of Grenoble[2]. The event detection threshold
was fixed at 2σ. The aligned distance was used for the measure of dissimilar-
ity of events, and the template-specific radius was set at 99%. Figure 4 shows
templates after learning and optimization.
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Fig. 4. Three clusters identified from an electrophysiological recording in the human

subthalamic nucleus. The raw signal trace is shown in Fig. 1. Each panel in the upper

row shows the statistical distribution of the distances from the template to all other

events (the solid curve), and its fit by a Gamma p.d.f. (dotted curve) used to calculate

the template-specific threshold indicated by a vertical tick. The raw signal profiles of

the representative neural spikes of each cluster are shown in the lower row.

4 Discussion

We have presented a new algorithm for unsupervised spike sorting (USS) and
demonstrated its performance with test data that included two levels of noise.
The formation of clusters during the learning procedure is clearly separated
from the spike sorting in the present algorithm. This architecture is important
for the development of a real-time on-line oriented application. The template
learning is a computationally intensive task because it requires to calculate the
dissimilarity between all-to-all events. The user can define the duration of the
learning interval. In the test case this duration was set equal to 30 seconds and
1395 events were detected. This means that at least 1395×1394/2 = 972315 times
calculations of the dissimilarity are required. The sorting of a newly detected
event does not require much calculation power (e.g., the distances between the
new event and, at most, six templates), and suits the requirements of on-line
real-time applications.

The USS method achieved good performance levels by combining a good
detection quality, avoiding detection of spurious events, and quality of classifi-
cation, avoiding misclassification of detected events. Even if additional events
which are not neural signals were detected, this would not cause serious trou-
ble if those events can be eliminated by the classification procedure. Spurious
events require more computation resource for processing, but this is a liminal
problem with ever-growing processing power. However, if events which are neu-
ral signals are not detected, this immediately pulls down the performance of the
spike sorter, because it increases the Type I error. In the case shown in Table
1, the highest error was observed for T3 in data with high noise and with large
threshold. This is due to the shape of the signal trace of T3 (c.f. Fig. 3a bottom
panel), characterized by a small elevation of the membrane potential in the phase
of depolarization, leading to small increasing of the value of the first derivative.
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In such case the crossing of the upper threshold might not occur and provoke
the undetection of the event. If we consider the lower threshold crossing, events
belonging to T3 satisfy the criterion of the event detection (data not shown).
The feature of selecting upper threshold crossing, lower threshold crossing, or
both of them, was already implemented in the proposed USS application. It was
shown that minimal and aligned distances as the definition of the dissimilarity
between events could provide good result with robustness against noise. From
the viewpoint of the required computation resources, the calculation with the
minimal distance took about 1.5 times longer processing time than the one with
the aligned distance. Since we aimed at developing real-time on-line USS ap-
plication the dissimilarity defined by the aligned distance was preferred as it
provided good performance and faster computation.
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Abstract. We study the dynamics of neural activity in networks of interactive 
neural populations with periodic forcing. Two extreme cases of connection ar-
chitectures are considered: (1) regular and homogeneous grid with local con-
nections and (2) sparse random coupling. In the network of the first type, a 
propagating wave has been found for excitatory-to-excitatory local connections. 
It was shown that in the network with random excitatory and inhibitory connec-
tions about 60% of neural populations work in the oscillatory regime and some 
of these oscillations are synchronous. We discuss the regime of partial synchro-
nization in the context of the cortical microcircuit. 

1   Introduction 

Rhythms, waves and synchronization of neural activity have been observed in differ-
ent brain structures for many years (e.g. [7, 10]). Oscillations and/or synchronization 
accompany sensory processing such as visual recognition, auditory processing, and 
odor detection (e.g. [1, 8, 11]). Behavioral data also show oscillations (e.g. [2]). The 
state of awareness, for example, can be related to wave patterns (e.g. [15]).  

Current theories and models of information processing in the brain include those 
that postulate that neurodynamics of interactive populations, rhythms, and synchroni-
zation of neural activity play a fundamental role (e.g. [12, 18]). The principle of syn-
chronization of neural activity is also used as a basic hypothesis when modeling the 
associative memory (e.g. [4]); feature binding (e.g. [3]) and attention (e.g. [5]). 

In this paper we study the relationship between the connection architecture and 
neural dynamics of a network, a correspondence between the coupling structure of 
neural elements and the functional behavior of the network. We consider two different 
cases of connection architecture: 

(1) Homogeneous local connections on a grid. In this case we have found several 
interesting dynamical regimes: wave propagation, bump-like activity, persistent activ-
ity caused by a short stimulus presentation. 

(2) Sparse random coupling. In this case we have found that about 60% of neu-
ral populations work in an oscillatory regime of irregular (chaotic) oscillations 
and the other approximately 40% of neural populations demonstrate stable sta-
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tionary neural activity. Forcing by a periodic input signal results in a regime of 
partial synchronization: some oscillators are synchronized (phase locked) with 
the input signal and other oscillators either demonstrate stationary activity or anti-
phase oscillations.  

We hypothesize that the regime of partial synchronization is extremely important 
for the modeling of microcircuits, which are the main building blocks of information 
processing in the brain. Let us consider a neural population of excitatory and inhibi-
tory neurons with a specific coupling architecture, connection strengths, inputs, etc. 
Such a neural population which performs a specific function is often called a micro-
circuit (cortical microcircuit, functional microcircuit, local microcircuit, cortical col-
umn, etc). A microcircuit (MC) is defined by its internal connection architecture and 
the external input which delivers an input signal to the MC. The MC can demonstrate 
different dynamical responses (specific neural activities) to the presentation of a spe-
cific set of input signals which the MC learns during the developmental stage. For 
example, the MC of the visual cortex, that is responsible for identification of a verti-
cal bar, will show a high neural activity on presentation of input signals correspond-
ing to a vertical bar or a bar with almost vertical orientation and the response rate of 
this MC will be significantly lower on presentation of an input signal related to an-
other bar orientation. We suppose that according to a stimulus driven learning proc-
ess, the MC adjusts its parameters to demonstrate a regime of partial synchroniza-
tion to presentation of an appropriate set of stimuli. In the regime of partial synchro-
nization some sub-population of neurons works coherently and the MC shows a sig-
nificant increase in population firing rate. The number of coherently spiking neurons 
in the regime of partial synchronization should be large enough to provide a firing 
rate which can be identified at the next level of information processing. The detailed 
mechanism of adjustment of the coupling architecture, connection strengths, connec-
tion delays, and other parameters is still unclear. It is known that two processes are 
important: (1) the genetically defined processes of “local rules” which controls axon 
growth and synapse formation by markers, labels, etc; (2) a random component of 
developmental process which allows probabilistic choice of particular direction of 
axon growth and synapse formation. Of course, both processes are input driven. The 
resulting structure which appears during the development period depends on the in-
terplay of these two processes and it is important to understand the relation between 
deterministic and stochastic components.  

In fact in this paper we consider two extreme cases of connection architecture: 
highly organized regular and homogeneous local connections and random sparse 
connections and we study the dynamics of neural activity under periodic stimulation. 
We believe that the connection architecture of the MC includes both a sub-net with 
local connections and subnet with random connections. Interplay of these two sub-
networks defines the resulting dynamics of neural activity. Models of interactive 
neural populations with different connection architectures represent an important 
paradigm in the description of the dynamics and synchronisation of neural activity 
(e.g. [9, 14]). These models shed some light on our understanding of neural mecha-
nisms of information processing in the nervous system.  
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2   Model Description 

We consider the Wilson-Cowan model of interactive neural populations [16]. In par-
ticular, this model of a neural oscillator contains both an excitatory neural population 

)(tEn  and an inhibitory neural population )(tIn . Let us suggest that identical oscilla-
tors are arranged in a 2D grid with local connections between neighboring oscillators 
of the first and second order. The dynamics of the network is described by the  
equations: 
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Here 4321 ,,, cccc  are the coupling strengths between populations of the nth oscillator; 

Pn is the external input to excitatory population; },{),,;()( iepbxSxS pppp ∈= θ  is the 

monotonically increasing sigmoid-type function given by the formula: 
))exp(1/(1)))(exp(1/(1)( ppppp bxbxS θθ +−−−+= ; )(/1 +∞= pp Sk . Parameter val-

ues are: ,3,15,12,16 4321 ==== cccc ,2,7.3,3.1,4 ==== iiee bb θθ 5.1=nP  and 
the choice of these values corresponds to the oscillatory regime of a single neural 
oscillator studied in [6]. In this regime, a single neural oscillator has one attractor in 
two-dimensional phase space, which is a stable limit cycle.  

Coupling between oscillators is described by the terms Vn and Wn which define the 
type of connections. For example, for excitatory-to-excitatory connections these 
terms are: 
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Here 1

nN  is a set of first order neighboring nodes of the nth excitatory population (this 

set includes the eight closest nodes of the grid); 2

nN  is a set of second order neighbor-
ing nodes of the nth  excitatory population (this set includes the sixteen nodes of the 
grid which are next to the closest ones); β  and α  are the strengths of homogeneous 
connections of the first and second order respectively. 

We consider the boundary conditions on the opposite sides of the grid to be identi-
cal and the resulting surface is a torus.  

3   Wave Propagation in a Network of Locally Coupled Neural 
Oscillators 

Spatio-temporal patterns of neural activity were studied for both a 1D network with 
local connections (a chain of oscillators) and a 2D network on the toroidal surface. It 
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Fig. 1. 2D wave propagation. There is a constant source of oscillatory activity- a square region 
at the centre contains oscillators in the oscillatory mode. All other oscillators are in the regime 
of low stationary activity. Six moments of wave propagation on the torus (opposite sides of the 
grid are considered to be identical) are shown. The last frame shows a complex and irregular 
pattern of spatial activity. 

was shown that the regime of propagating waves exists in the case of excitatory to  excita-
tory connections. In the case of other connection types (excitatory to inhibitory, inhibitory 
to excitatory and inhibitory to inhibitory) the regime of propagating waves was not found.  

Fig. 1 shows wave propagation over a 2D grid on the torus surface. Each oscillator 
receives excitatory local connections from excitatory populations of oscillators allo-
cated in the first and second order nodes (equations 1 and 2). External input to each 
oscillator is chosen to produce a low stationary activity (En = 0) in independently 
working oscillators (Pn = 0.8) and this means that the total grid is a passive medium 
with a low stationary activity. To initiate the wave propagation we change the exter-
nal input value (Pn = 1.5) of oscillators allocated in a square region in the centre of the 
grid. This value of external input corresponds to the oscillatory regime but due to 
excitatory-to-excitatory connections the total excitation received by an oscillator of 
this group is large enough to keep this oscillator in a stationary state of high activity. 
Thus, the square region in the centre of the grid is considered as a source of propagat-
ing waves. It is interesting to note that inside of a propagating wave, neural activity 
has a complex and fast changing structure (e.g. see left-bottom frame in Fig. 1). On 
the boundary, the wave interacts with itself and this result in a complex spatial pattern 
of neural activity. Fig. 1 shows activities of excitatory populations at 6 sequential time 
steps. A video clip of the propagating wave is available from the following webpage: 
http://www.tech.plym.ac.uk/soc/staff/roman/home2.htm. 

The wave’s speed and distance of propagation depends on strengths of local con-
nections ( βα , ). For example, in the case of weak coupling, the wave propagates a 

short distance only, the wave’s amplitude decays, and the wave disappears. In the 
case of medium values of connection strengths, the speed of wave propagation can be  
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Fig. 2. 2D waves propagation and interaction. There are two identical sources of propagating 
waves. Wave interaction results in a complex pattern of spatial activity. Different frames show 
spatial activity patterns of excitatory populations at sequential times. 

very slow and a bump-like structure of neural activity exists for a long time. This kind 
of persistent activity is traditionally considered as a model of short-term memory. 

Wave propagation is stimulus-dependent and it has been found that short time 
stimulation can also result in the appearance of a permanent source of propagating 
waves. Let us suppose that similar to the stimulation procedure described above, the 
external input to the oscillators allocated in the central square region of the grid have 
been changed to Pn = 1.5 for a short time only and after that they have been returned 
to Pn = 0.8, which corresponds to a low stationary activity of a single oscillator. Thus, 
a short-term stimulation has been applied to a passive medium and it results in the 
emergence of persistent spatio-temporal mode of propagating waves.  

Fig. 2 shows interaction of two propagating waves. As in Fig. 1, we consider the 
2D grid on the torus with local connections of excitatory-to-excitatory type and the 
same parameter values. The only difference is that in this case we have two perma-
nent sources of propagating waves. The waves demonstrate non-linear interaction 
resulting in the appearance of a complex spatial pattern of neural activity. Fig. 2 
shows activities of excitatory populations progressing with time. Two propagating 
waves interact and generate a ring-like structure (see right-top frame in Fig.2) which 
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surrounds both sources of propagating waves. This combined source of propagating 
waves can be considered as a new source of propagation of a larger wave. The wave 
reaches the boundaries of the grid and interacts with itself giving rise to a complex 
spatio-temporal pattern. A video clip of propagating and interacting waves is avail-
able from the following webpage: http://www.tech.plym.ac.uk/soc/staff/roman/ 
home2.htm. 

4   Oscillations in a Network with Random Connections  

4.1   Model Description 

Here we consider a neural network of interactive Wilson-Cowan neural populations 
)(txn  with all-to-all connections and random values of connection strength, external 

input, and parameters of the sigmoid function: 
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Here n

jα  is the connection strength from population j to population n, values of these 

parameters are random and uniformly distributed in the interval [-20,20]; Pn is the 
external input to the nth population, values are random and uniformly distributed in 
the interval [0,2]; )(/1 +∞= Sk ; ),;()( nnbxSxS θ=  is the monotonically increasing 

sigmoid-type function which has already been used in Equation (1); values of nb  are 

random and uniformly distributed in the interval [1,7]; values of nθ  are random and 

uniformly distributed in the interval [2,10], N=300. 
Connection strength values are distributed in a range which includes both positive 

and negative values, therefore the influences of the nth neural population to other 
populations are either excitatory or inhibitory. We do not prescribe specific connec-
tions which can result in oscillatory activity; instead we expect that oscillations will 
emerge as a result of the interplay between excitation and inhibition.  

4.2   Distribution of the Fraction of Oscillating Populations 

Simulation of neural activity of a network with random parameters shows that each 
neural population has either stationary neural dynamics or irregular oscillations. Fig. 3 
(left frame) shows typical dynamics of neural populations in the network with random 
parameters. The right frame in Fig. 3 shows the dynamics of the network with random 
and sparse connections. In this case 97% of randomly selected connections have been 
deleted (the connection strength has been made equal to zero). It is interesting to note 
that increased sparseness results in a more regular oscillatory pattern. 

Let μ  be the fraction of populations with an oscillatory dynamical regime (regular 

or irregular) in a network with all-to-all connections and random parameters. This 
characteristic μ  is a random variable because any repetition of simulation generates a  
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Fig. 3. Examples of neural activity dynamics in the network with random parameters (left 
frame). The right frame shows dynamics in the network with sparse random parameters. 

Fig. 4. The distribution of the fraction of oscillating populations in the network with randomly 
selected connections, input parameter values, and parameters of the sigmoid function 

new value of μ . The histogram of the μ -distribution is shown in Fig. 4. The mean 

of random variable is 0.6 and it means that about 60% of neural populations demon-
strate the oscillatory regime and the other populations (about 40%) show stationary 
activity. 

4.3   Partial Synchronization by Periodic Input 

Here we consider the model of interactive populations with all-to-all connections and 
randomly chosen parameters (equation 3). Connection strengths n

jα  are random and 

uniformly distributed in the interval [-2,2]; Pn are random and uniformly distributed in 
the interval [0,0.5] for all oscillators except ten oscillators (shown in the central part 
in Fig. 5) which have the periodic input )40/**2sin(*10)( ttP π= ; nb  are random 

and uniformly distributed in the interval [1,7]; values of nθ  are random and uniformly 

distributed in the interval [2,10], N=200.  
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Fig. 5. Regime of partial synchronization with periodic input signal in a neural network with 
very sparse random connections. Periodic forcing was applied to ten neural populations (in the 
centre of the frame) and some populations work in phase with the periodic signal. There are 
anti-phase and quiescent populations.  

We study the dynamics of this network with random connections and a strong pe-
riodic forcing with period 40 ms. We have found that the dynamics of any population 
belongs to one of the following 4 classes: (1) regular periodic oscillations in-phase 
with the periodic input signal; (2) regular periodic anti-phase oscillations; (3) irregular 
chaotic dynamics without any visible period; (4) steady state activity. Neural popula-
tions which demonstrate in-phase oscillations are in the regime of partial synchroniza-
tion. We have found that decreasing the number of connections (or increasing sparse-
ness) results in decreasing the number of irregular oscillations. Fig. 5 shows dynamics 
of 100 neural populations with random connections, periodic forcing, and 90% of 
connection strengths equal to zero. In this case of very sparse connections, the regime 
of partial synchronization is easily visible. It is interesting to note that repetition of the 
same simulation with different initial conditions and other parameters fixed demon-
strates another pattern of partial synchronization.  

5   Discussion  

The study of spatio-temporal patterns of neural activity is a fundamental problem of 
theoretical neuroscience. For example, it is important to investigate how the spatio-
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temporal activity depends on coupling parameters and external stimulation. Such 
study can be considered as an initial step in the investigation of neural network learn-
ing procedures which adjust parameter values in such a way that the resulting pattern 
of spatio-temporal activity corresponds to a desirable pattern. Here we have studied 
the dynamical behavior of average activity of neural populations. This type of model's 
activity is related to EEG experimental recordings as well as to local field potential 
experiments.  

To study spatio-temporal patterns we use an approach of discrete interactive neural 
populations allocated in the grid nodes (compare with other approaches based on 
intergro-differential equation model [13, 17]). Advantages of our approach are: (1) 
easy to implement; (2) requires a low computational power; (3) flexible in adjustment 
of connection types (connections between excitatory and inhibitory populations). Our 
study of wave propagation shows that a wave propagates in the system of interactive 
oscillators in the case of excitatory-to-excitatory connections. Similar simulations 
with other connection types show that the wave’s amplitude rapidly decays (compare 
with [14]). 

Simulations of neural networks with random connections show that even in the 
case of random and sparse connections, the oscillatory regime is typical for many 
neural populations. The regime of partial synchronization has been found in networks 
with random and sparse connections and periodic forcing. We consider this result to 
be a first step in modelling of the MC development. Further process of self-
organization of connection architecture and parameter calibration by stimulus driven 
learning will result in the appearance of the regime of partial synchronization of a 
significant amount of neural populations as a MC’s response to the presentation of a 
specific stimulus. These results will be discussed in another publication.  
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Abstract. Fast Spiking GABAergic interneurons, also coupled through gap 
junctions too, receive excitatory synaptic inputs from pyramidal cells and a 
relevant problem is to understand how their outputs depend on the timing of 
their inputs. In recent experiments it was shown that Fast Spiking interneurons 
respond with high temporal precision to synaptic inputs and are very sensitive 
to their synchrony level. In this paper this topic is investigated theoretically by 
using biophysical modelling of a pair of coupled Fast Spiking interneurons. In 
particular it is shown that, in agreement with the experimental findings, Fast 
Spiking interneurons transmit presynaptic signals with high temporal precision. 
Moreover, they are capable of reading and transferring high frequency inputs 
while preserving their relative timing. Lastly, a pair of Fast Spiking interneu-
rons, coupled by both inhibitory and electrical synapses, behaves as a coinci-
dence detector. 

1   Introduction 

Experimental findings suggest that networks of inhibitory interneurons contribute to 
brain rhythms by synchronizing their firing activities and that of the principal cells [1, 
2]. Moreover, it was found that they are interconnected also by electrical synapses and 
play a key role in the emergence of network oscillations [3-14, 22]. Here, by starting 
from the experimental results reported in [4] and by using a biophysical modelling of 
each Fast Spiking (FS) interneuron we study the spike transmission properties of 
these cells.  

2   Methods 

FS interneurons are not capable of generating repetitive firing of arbitrary low fre-
quency [15]; thereby they have type II excitability property [16]. Experiments carried 
on FS cells reveal that they have high firing rates (up to ~ 200 Hz), average resting 
membrane potential of –72 mV and input resistance ∼ 89 MΩ ; their action potential 
has a mean half-width ∼ 0.35 ms, average amplitude ∼ 61 mV and after-
hyperpolarization amplitude ∼ 25 mV [3-5, 17, 22].  
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2.1   Model Description  

Our HH-like biophysical model of an FS interneuron, well accounting for the features 
quoted above, is defined by the following equations: 

CdV/dt = IE - gNa m
3h(V-VNa) – gK n(V-VK) – gL (V-VL),                                            (1a) 

dx/dt = (x∞ - x) / τx, x∞ = αx / (αx + βx), τx = 1 / (αx + βx), (x = m, h, n),                   (1b) 

where C = 1μF/cm2 and IE is the external stimulation current. The maximal specific 
conductances and the reversal potentials are respectively: gNa = 85 mS/cm2, gK = 70 
mS/cm2, gL = 0.15 mS/cm2 and VNa = 60 mV, VK = -95 mV, VL = - 72 mV. The kinetic 
of the Na+ current was modeled by using recordings from hippocampal FS interneu-
rons [18]: m∞(V) = 1/{1+exp[-(V+Vm)/km]}, h∞(V) = 1/{1+exp[(V+Vh)/kh]}, τm(V) = 
0.03+1/{3exp[(V+Vm)/13]+ 3exp[-(V+Vm)/17]}, τh(V) = 0.5+1/{0.026exp[-(V+Vm)/8]+ 
0.026exp[(V+Vm)/7]}, with Vm= 25.1 mV, Vh= 58.3 mV, km= 11.5 mV, kh= 6.7 mV. 
The kinetics of the fast-delayed rectifier component of potassium current was taken 
from [19]: αn = [-0.019(V-4.2)]/{exp[-(V-4.2)/6.4]-1}, βn = 0.016exp(-V/vAHP). The 
value of parameter vAHP was modified to get an after-hyperpolarization amplitude of 
the action potential of ∼ 25 mV: the adopted value was vAHP = 13 mV. In this model 
the onset of periodic firing occurs through a subcritical Hopf bifurcation for IE ≈ 1.42 
μA/cm2 with a well defined frequency (∼ 14 Hz), according to type II excitability 
property (data not shown) [16]. 

2.2   Synaptic Coupling Modeling 

The electrical and chemical synapses are modeled as follows. The inhibitory postsy-
naptic current at time t > tN is defined by ISy(t) = gSy sT(t) (VPost(t)- VRev) = gSy j s(t - tj) 
(VPost(t) - VRev), where gSy is the specific maximal conductance of the synapse (in 
mS/cm2 unit), s(t) = [exp(-t/τDecay) - exp(-t/τRise)]/ Max{t}[exp(-t/τDecay) - exp(-t/τRise)], tj  

(j =1, 2,…,N) are the times at which the presynaptic neuron generated spikes, τDecay 
and τRise are the decay and rise time constants of the inhibitory postsynaptic current. 
The electrical synapse is modeled as IEl = gEl (VPre - VPost), where gEl is the maximal 
conductance of the gap junction (in mS/cm2 unit). In the following the adopted con-
ductance values for the inhibitory and electrical synapses are (for both cells), respec-
tively, gSy = 0.1 mS/cm2 and gEl = 0.02 mS/cm2.  

2.3   Synaptic Background Activity Modeling 

To reproduce the in vivo conditions the synaptic background activity was modeled 
according to [20]. The total noisy synaptic current is the sum of two currents, one 
excitatory and the other inhibitory, described as follows: 

ISyn(t) = ge (V(t)- Ve)+ gi (V(t)- Vi),                                                                        (2a) 

dge,i(t)/dt = -(ge,i(t) - ge0,i0)/τe,i +De,i
1/2 We,i,                                                            (2b) 

where ge0,i0 are average conductances, τe,i are time constants, De,i are noise diffusion 
coefficients, σe,i

2 = 0.5De,iτe,I and We,i denotes Gaussian white noise of unit standard 
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deviation and zero mean. The values of the other parameters are: Ve = 0 mV, Vi = -75 
mV, ge0 = 0.0121 mS/cm2, gi0 = 0.0573 mS/cm2, σe = 0.025 mS/cm2, σi = 2.5σe, τe = 
10.49 ms, τi = 2.728 ms [20].  

3   Results 

Let us first study how excitatory synaptic inputs affect the firing rate of the FS cell 
model in the presence of synaptic background bombardment. The excitatory postsy-
naptic current (EPSC), which depolarizes the FS interneuron (see panel a of figure 1), 
is modeled as follows: IEPSC(t) = gEPSC[exp(-t/τDecay) - exp(-t/τRise)]/Max{t}[exp(-t/τDecay) 
- exp(-t/τRise)]. The parameter values, τRise = 0.4 ms and τDecay = 2 ms, are chosen to 
mimic the experimental time course of the EPSC from a pyramidal cell to an FS cell 
[4]. To increase the discharge rate arising from the synaptic background activity, the 
FS cell is injected with constant depolarizing current to get a firing frequency of ∼ 22 
Hz in absence of EPSC (see panel b of figure 1). As expected, the presence of EPSCs 
lead to increasing the discharge rate of the postsynaptic cell and this can be seen by 
inspecting the panels c) and d) of figure 1. The spike histogram exhibits a sharp peak 
located just to the right of the peak of the EPSC (panel e). The estimated latency be-
tween the peak of the EPSC and that occurring in the histogram is ∼ 2 ms and is of the 
same order of magnitude as the experimental one of ∼ 1.7 ms [4]. Each spike histo-
gram reported in this paper was obtained as follows: the times of occurrence of spikes 
tJ

Fir (j=1,2,..,N), falling in a given time window were recorded for all trials (NTrials), 
then the histogram of the tJ

Fir values was built by using a bin size of 0.2 ms (with N up 
to 33000). The impact of the EPSC on the postsynaptic firing rate was quantified by 
the temporal precision of spike transmission according to [4]. With this aim in mind 
we fitted the shape of the peak of the spike histogram by a Gaussian function and the 
spike precision was defined as twice the standard deviation of this distribution. Such a 
measure is shown in panel f) of figure 1 against the amplitude of the EPSC showing 
that the precision of spike transmission improves as gEPSC increases (the estimated 
average value of spike precision was ∼ 1.02 ms ± 0.3 ms). These findings agree with 
the corresponding experimental results [4]. In conclusion these results imply that FS 
cells are capable of representing the pattern of the presynaptic spikes with high fidel-
ity as suggested in [4].  

Now, to investigate the response to high frequency inputs, the cell is injected with 
two EPSCs separated by a time delay of 4 ms, and the results are displayed in the left 
panel of figure 2. The spike histogram exhibits two distinct peaks and this means that 
the cell model is able to transmit high frequency signals (up to 250 Hz) while preserv-
ing the presynaptic timing. The height of the second peak is smaller than that of the 
first one, and this phenomenon is a direct manifestation of paired-pulse depression (in 
agreement with experimental results). By increasing the time delay between the two 
pulses the difference between the two heights decreases (data not shown). As shown 
in [4] the velocity of membrane depolarization can affect the probability that one cell 
generates a spike. To reproduce this phenomenon, the FS cell model was injected with 
two EPSCs having different rise time constants and the results are shown in the right 
panel of figure 2. The peak corresponding to the slow rise EPSC is lower and larger 
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Fig. 1. Transmission properties of excitatory presynaptic inputs by the FS cell model. a) Time 
course of the EPSC; b) spike firing of the FS interneuron model in the presence of synaptic 
background activity; c) spike histogram for a cell receiving an EPSC pulse at time t = 200 ms 
with NTrials = 250; d) superposition of the time courses of the cell membrane potentials ob-
tained in several trials; e) latency between the EPSC peak (thick line) and that of the histogram; 
f) spike precision against the EPSC amplitude. For panels (a-e) it is gEPSC = 10 μA/ cm2. 
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Fig. 2. Spike histograms of the FS cell output. Left: τRise = 0.4 ms, τDecay = 2 ms, the time delay 
between the two EPSC pulses is 4 ms. Right: the time delay between the pulses is 400 ms, but 
they have different rise time constants. For the first pulse (at t = 200 ms) the parameters values 
of the EPSC are τRise = 0.4 ms, τDecay = 6 ms, for the other one (at t = 600 ms ) they are τRise = 
5.8 ms, τDecay = 6 ms. For both panels it is gEPSC = 12 μA/ cm2 and NTrials = 1500. 

than the other. This means that the spike precision depends on the rising kinetics of 
the presynaptic pulse: the faster the rising phase of the pulse the higher the temporal 
precision of spike transmission. 

Also, in order to investigate how the decay time constant of the EPSC affects the 
transmission properties of the presynaptic inputs, the cell model is injected with 
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EPSCs which have different values of τDecay and for each value of this parameter the 
number of trials was NTrials = 1500. When the decay time constant of the EPSC pulse 
is 2 ms the spike histogram exhibits a single peak; as τDecay increases, other peaks of 
lower amplitude appear (data not shown). This phenomenon arises due to the depolar-
izing effect of the EPSC, which now covers a larger time window. For each τDecay the 
time separation between these peaks is of the same magnitude and their appearance 
can be explained as follows. Once the cell has fired a spike there is a time interval TOff 
(the recovery phase) where, in spite of the depolarizing effect of the EPSC, the prob-
ability that a new spike is generated is low. Obviously the value of TOff depends on the 
kinetics of the ionic currents defining the model, and its value provides an estimation 
of the time separation between the peaks observed in these numerical experiments. 
Moreover, as τDecay increases, the corresponding TOff value slightly decreases (data not 
shown). Therefore these results show, in agreement with the experimental results, that 
the kinetics of the EPSC strongly affects the transmission of the information con-
tained in the presynaptic signals. 

Within the context of neural information coding an interesting problem is to under-
stand how the output of a population of coupled FS cells depends on the synchrony 
level of the inputs they receive. In fact, as experiments suggest, the synchronization of 
the discharges of a population of neurons could be relevant for cognitive tasks [21]. 
Moreover FS cells, receiving strong inputs from thalamus, could be implicated in the 
transfer of the sensory information to the cortex [22]. Thus, it is important to check 
whether FS cells behave as coincidence detectors. Recently this issue was addressed 
experimentally and it was shown that a pair of FS interneurons, coupled through in-
hibitory and electrical synapses, is sensitive to the relative timing of their inputs [4]. 

In particular, a time separation between the inputs of the order of 1 msec promotes 
a synchronous generation of action potentials in both cells, whereas for larger separa-
tions (~ 5 msec) the firing of one of them is strongly reduced [4]. Therefore, a pair of 
FS cells is capable of distinguishing synchronous from asynchronous inputs, i.e. be-
haves as a coincidence detector. Here the problem is approached by investigating the 
capability of a pair of FS cell models, connected by a single inhibitory synapse plus 
the electrical one (i.e. the same network architecture as that investigated experimen-
tally [4]), to detect synchronous excitatory inputs. In this case, in keeping with the 
experiments, the simulations are carried out in absence of background synaptic activ-
ity. To reproduce the membrane potential fluctuations occurring in in vitro conditions, 
each cell model is injected with a Gaussian random current of small amplitude (σ = 
0.3 μA/cm2). The two EPSC pulses are of the same amplitude, but separated by a time 
delay Δt, with cell 1 receiving the first EPSC pulse. According to the experiment 
performed in [4] only cell 2 is inhibited and the results are shown in figure 3 for sev-
eral Δt values. Let us first consider the case in which, in absence of any coupling, 
each EPSC pulse elicits a spike with probability 1. When the time delay, Δt, between 
the two pulses is lower than ∼ 2 msec both cells discharge with high probability, 
whereas for Δt values ∼ 5 msec the firing probability of cell 2 is close to zero. This 
effect is mainly due to the inhibition that cell 2 receives from cell 1. In fact, as the 
time delay between the pulses is further increased (Δt = 18 msec), the magnitude of 
the inhibitory input received by cell 2 is reduced and its firing rate is restored. 
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The overall results shown in figure 3 imply that if the inputs to the two cells occur 
synchronously (Δt < 2 msec ) both cells generate action potentials. When the time 
interval between the pulses increases (Δt > 2 msec ) the firing rate of cell 2 becomes 
smaller and smaller until cell 1 alone is discharging.  
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Fig. 3. Spike histograms of two identical FS cell coupled by inhibitory and electrical synapses 
in the presence of a time delay between the EPSC pulses. For all panels it is gSy = 0.1mS/cm2, 
gEl = 0.02  mS/cm2, gEPSC = 7 μA/ cm2, IE = 0.5 μA/cm2, σ = 0.3 μA/cm2 and NTrials = 500. The 
rise and the decay time constants of the EPSC pulses are, τRise = 0.4 ms, τDecay = 2. ms, respec-
tively, while the corresponding quantities for the inhibitory synapse are τRise = 0.25 ms, τDecay = 
2.6 ms.  

This means that the network of coupled FS cells behaves as a coincidence detector 
when the firing probability of each cell is 1 in absence of coupling. To better under-
stand these findings the firing probabilities of both cells are displayed in figure 4 
against the time delay and in several coupling conditions. The firing probability of 
each cell is defined as p = NS / NTrials, where NS is the total number of spikes generated 
by the cell during the trials. From the middle panel it follows that in absence of inhibi-
tory coupling both cells discharge with probability one, independently of the value of 
the time delay between the pulses. In this case our system does not behave as a coin-
cidence detector. However, the data displayed in the right panel of figure 4 clearly 
show that it is the presence of inhibitory coupling that confers the capability of behav-
ing as a coincidence detector to the network of coupled FS cells. However, as we will 
see, this explanation of the behaviour of the network does not hold in general. In par-
ticular, we investigate how the network of coupled FS cells behaves in more realistic 
conditions: i.e. when, in the absence of coupling, the firing probability of each cell is 
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lower than 1. With this aim in mind the amplitude of the EPSC is decreased until the 
firing probability of each cell, in absence of coupling, becomes ∼ 0.77. The corre-
sponding firing probabilities are displayed in figure 5 against the time delay between 
the two EPSC pulses. From the left panels it follows that the network behaves as a 
coincidence detector: both cells fire when the time delay between the two EPSC 
pulses is a few milliseconds (1-3 ms). As Δt is further increased (3 msec < Δt < 6-7 
msec) the firing rate of cell 1 decreases drastically and for longer time delays the 
firing rate of both cells is strongly depressed. This behaviour, as can be deduced from 
the results reported in figure 5, is determined by the presence of the electrical cou-
pling. A qualitative explanation of this behaviour is the following: when the electrical 
coupling between the two cells is on the depolarization amplitude of cell 1 reduces. 
This occurs because the presence of the electrical coupling lowers its input resistance. 
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Fig. 4. Firing probabilities of a pair of identical FS cells receiving EPSC pulses of amplitude 
gEPSC = 7 μA/ cm2 separated by a variable time delay. Parameter values are the same as those 
used for figure 3. The values of the inhibitory and electrical coupling conductances are reported 
at the top of each panel. For all panels the open circles represent the firing probability of cell 1, 
the solid squares that of cell 2, and NTrials = 500. 
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Fig. 5. Firing probabilities of a pair of identical FS cells receiving EPSC pulses of amplitude 
gEPSC = 5.5 μA/ cm2 separated by a variable time delay. The remaining parameter values as in 
figure 4. The values of the inhibitory and electrical coupling conductances are reported in the 
top of each panel. For all panels the open circles represent the firing probabilities of cell 1, 
while the solid squares those of cell 2, and NTrials = 500. 
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Fig. 6. Time course of the membrane potentials and of the electrical coupling currents of a pair 
of identical FS cells coupled by inhibitory and electrical synapses, with gSy = 0.1mS/cm2, gEl = 
0.02 mS/cm2, gEPSC = 5.5 μA/ cm2, Δt = 25 msec. Gray lines: cell 1; black lines: cell 2. 

In other words when the current through the gap junction flows from cell 1 to cell 2 
(V1 > V2 ) the membrane potential of cell 1 is less depolarized for the presence of an 
outward current, while that of cell 2 is more depolarized. This explain why the firing 
probability of cell 2 is higher than that of cell 1 for 3 msec < Δt < 27 msec (see left 
and middle panels of figure 5). Thus, the firing probability of cell 1 is smaller than 
that in absence of electrical coupling (see the left and right panels of figure 5). As an 
example, figure 6 shows the time course of the membrane potential and the electrical 
coupling current for both cells in the case Δt = 25 msec and for NTrials = 1. It can be 
seen that during the depolarization phase of both cells (see the left panel) their corre-
sponding electrical coupling currents are outward (right panel) as predicted. For Δt 
values higher than 27 msec each cell strongly depresses the firing activity of the other 
cell and, as before, this occurs for the presence of the electrical coupling (see the left 
and middle panels of figure 5).  

4   Conclusions 

In this paper, by using a biophysical model of an FS interneuron, the capability of 
these interneurons of reading and transmitting their presynaptic inputs were investi-
gated by simulations. Initially we studied how EPSC pulses from a pyramidal cell to 
an FS one affect its firing properties in the in vivo conditions. To do that the model 
cell was injected with a noisy current generated with the algorithm proposed in [20] 
and then we showed that, in agreement with the experimental results, an FS cell is 
capable of representing with high fidelity the pattern of the presynaptic spikes (see 
figures 1, 2, 3). In particular it was shown that both the rise and decay time constants 
of the EPSC affect the transmission properties of the presynaptic inputs. Moreover we 
found that high frequency presynaptic signals are encoded with high fidelity.  

Next we investigated whether a small network of coupled FS cells is capable of 
distinguishing synchronous from asynchronous inputs by using the same network 
architecture as experimentally investigated in [4]. We found that the output of this 
network is sensitive to the relative timing of the inputs. In particular, when the time 
 



Signal Transmission and Synchrony Detection in a Network of Inhibitory Interneurons 57 

 

separation between the inputs is less than 1-2 msec, the probability that both cells 
generate action potentials is high, while for larger separations (~ 5 msec) the firing of 
one of them is strongly reduced. These simulation results suggest, in keeping with the 
experimental results in [4], that a network of coupled FS cell models operates as a 
coincidence detector. 
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Abstract. We studied the emergence of cell assemblies out of locally
connected random networks of integrate-and-fire units distributed on a
2D lattice stimulated with a spatiotemporal pattern in presence of in-
dependent random background noise. Networks were composed of 80%
excitatory and 20% inhibitory units with initially balanced synaptic
weights. Excitatory–excitatory synapses were modified according to a
spike-timing-dependent synaptic plasticity (stdp) rule associated with
synaptic pruning. We show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell as-
semblies characterized by an internal pattern of converging projections
and a feed-forward topology not observed with an equivalent random
stimulation.

1 Introduction

Massive synaptic pruning following over-growth is a general feature of mam-
malian brain maturation [11]. Pruning starts near time of birth and is com-
pleted by time of sexual maturation. Trigger signals able to induce synaptic
pruning could be related to dynamic functions that depend on the timing of
action potentials. Spike-timing-dependent synaptic plasticity (stdp) is a change
in the synaptic strength based on the ordering of pre- and postsynaptic spikes.
This mechanism has been proposed to explain the origin of long-term poten-
tiation (ltp), i.e. a mechanism for reinforcement of synapses repeatedly acti-
vated shortly before the occurrence of a postsynaptic spike [8,2]. stdp has also
been proposed to explain long-term depression (ltd), which corresponds to the
weakening of synapses strength whenever the presynaptic cell is repeatedly ac-
tivated shortly after the occurrence of a postsynaptic spike [7]. The relation

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 59–68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



60 J. Iglesias et al.

between synaptic efficacy and synaptic pruning [3,9], suggests that the weak
synapses may be modified and removed through competitive “learning” rules.
Competitive synaptic modification rules maintain the average neuronal input
to a postsynaptic neuron, but provoke selective synaptic pruning in the sense
that converging synapses are competing for control of the timing of postsynaptic
action potentials [12,13].

This article studies the emergence of cell assemblies out of a locally con-
nected random network of integrate-and-fire units distributed on a 2D lattice.
The originality of our study stands on the size of the network, between 8,100
and 12,100 units, the duration of the experiment, 500,000 time units (one time
unit corresponding to the duration of a spike), and the application of an original
bio-inspired stdp modification rule compatible with hardware implementation
[4]. In this study the synaptic modification rule was applied only to the exc–exc
connections. This plasticity rule might produce the strengthening of the connec-
tions among neurons that belong to cell assemblies characterized by recurrent
patterns of firing. Conversely, those connections that are not recurrently acti-
vated might decrease in efficacy and eventually be eliminated. The main goal of
our study is to determine whether or not, and under which conditions, such cell
assemblies may emerge from a large neural network receiving background noise
and content-related input organized in both temporal and spatial dimensions.

2 Model

The complete neural network model is described in details in [5]. Some aspects
that were not discussed in that reference are presented here, along with a sketch
description of the model. Integrate-and-fire units (80% excitatory and 20% in-
hibitory) were laid down on a squared 2D lattice according to a space-filling
quasi-random Sobol distribution. Network sizes of [90 × 90], [100 × 100], and
[110 × 110] were simulated. Sparse connections between the two populations of
units were randomly generated according to a two-dimensional Gaussian density
function such that excitatory projections were dense in a local neighbourhood,
but low probability long-range excitatory projections were allowed [5]. Edge ef-
fects induced by the borders were limited by folding the network as a torus.

All units of the network were simulated by leaky integrate-and-fire neu-
romimes. The state of the unit (spiking/not spiking) was a function of the
membrane potential and a threshold. After spiking, the membrane potential
was reset, and the unit entered an absolute refractory period set to 3 ms for
excitatory units, and 2 ms for inhibitory units. Each unit received a background
excitatory input (corresponding to a depolarization of 60 mV) that followed an
independent and uncorrelated Poisson process of mean λ = 5 spikes/s.

It is assumed a priori that modifiable synapses are characterized by discrete
activation levels that could be interpreted as a combination of two factors: the
number of synaptic boutons between the pre- and postsynaptic units and the
changes in synaptic conductance as a result of Ca2+ influx through the nmda

receptors. In the current study we attributed a fixed activation level (meaning
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no synaptic modification) Aji(t) = 1, to exc–inh, inh–exc, and inh–inh synapses
while activation levels were allowed to take one of Aji(t) = {0, 1, 2, 4} for exc–exc
synapses, Aji(t) = 0 meaning that the projection was permanently pruned out
(see [5] for more details).

3 Stimulus Protocol

Each simulation was running for 5 · 105 discrete time steps (1 ms per time step),
corresponding to about 8.5 minutes. After a stabilization period of 1 s with-
out any external input, a stimulus was presented every 2 seconds. Overall this
represented 250 presentations of the stimulus along one simulation run. Three
stimulus durations were used: 50 ms followed by 1,950 ms without any external
input, 100 ms followed by 1,900 ms without any external input, 200 ms followed
by 1,800 ms without any external input. The stimulus was composed of vertical
bars uniformly distributed over the 2D lattice surface, each bar being 1 column
wide. The number of bars composing the stimulus was a function of the simu-
lated network sizes: 9 bars for [90×90] networks, 10 bars for [100×100] networks,
and 11 bars for [110×110] networks, such that the bars were always distant of 10
columns one from another and spanning all over the available surface. At each
time step during stimulus presentation, the bars were simultaneously moved one
column to the right, such that each bar slipped over the entire surface of the
network.

The stimulus was applied only to a fraction of the population formed by
excitatory units; these units are called input units. The number of input units
used for the simulations was a ratio (i.e. 3, 5, 7, or 10%) of the initial number
of excitatory units. For a [100 × 100] network, 10% of input units corresponds
to 800 input units, i.e. 10% of the 80% excitatory units of the 10,000 units.
The stimulus applied on a particular input unit provoked a depolarization on
its membrane with amplitudes equal to 0 (i.e. no stimulation), 30, 40, 50, and
60 mV, depending on the protocol. Notice that the stimulus amplitude was
selected in the beginning and did not vary during the simulations.

The three following presentation protocols were applied: (i) ’No stimulation’ :
this condition corresponds to a stimulation of zero amplitude which is necessary
to check computing artefacts that might be associated to the programming rou-
tines used to “stimulate” the units; (ii) ’Random stimulation’ : at each stimulus
presentation, the input units were randomly chosen, such that the input units
changed at any new stimulus presentation; (iii) ’Fixed stimulation’ : the input
units were selected in the beginning of the simulation run and remained the
same at any new stimulus presentation. The total amount of applied stimulation
is equal in both random and fixed protocols.

To summarize the stimulation procedure, let us consider the following exam-
ple. For each of the input units, randomly selected among the 10% of excitatory
units, of a [100 × 100] network stimulated with a 100 ms stimulus, one stimulus
presentation resulted in a sequence of 10 external inputs equally distributed in
time every 10 ms. At the network level, each stimulus presentation corresponded
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to a spatiotemporal sequence characterized by 10 groups of 80 synchronously
excited units stimulated 10 times during 10 ms.

4 Computer Implementation

The simulator was a custom C program that relies on the gnu Scientific Library
(gsl) for random number generation and quasi-random Sobol distribution im-
plementations. With our current implementation and setup at the University
of Lausanne, a 10,000 units network simulation for a duration of 500 seconds
lasted approximatively 3 hours, depending on the network global activity. We
performed simulations with both fixed and random input stimulations, using
the same model parameters and pseudo-random number generator seed, and
compared the cell assemblies that emerged. Network activity was recorded as
a multivariate time series akin of multisite multiple spike train recordings at a
resolution of 1 ms. The firing pattern of each unit could be characterized by first-
and second-order time domain analyses using the programs and tools accessible
from the OpenAdap.Net1 project.

The complete status of the network was dumped when the simulations were
stopped, providing information on the strength of the connections after the stdp-
driven synaptic plasticity and pruning. A set of custom scripts were used to
extract emerged cell assemblies from the dumped status. The extracted weighted
and oriented graphs were further analyzed by means of a tool built on top of
the Java Universal Network/Graph Framework (jung

2). Some typical graph
measurements were computed, including the number of incoming projections
(kin, in-degree) and outgoing projections (kout, out-degree) for each vertex of
the graph.

5 Results

The pool of excitatory units whose incoming and/or outgoing excitatory pro-
jections were not entirely pruned and that were not directly depolarized by the
external stimulus was identified at time t= 500 seconds (from the beginning of
the simulation). Among the units of this pool a subset of units is selected on the
basis of their connection pattern to– and from the pool itself. The units with
at least three strong incoming (kin ≥ 3) and three strong outgoing projections
(kout ≥ 3) within the pool are dubbed strongly interconnected units (SI -units).

The activity of all the SI -units was affected by the fixed stimulation presen-
tation. Fig. 1 shows the response of two SI -units to an external stimulus lasting
200 ms, during the fixed stimulus presentation. About 22% of the SI -units were
strongly inhibited during the stimulus presentation (e.g. Fig. 1a), despite the fact
that the stimulus was delivered only to excitatory units. This effect is due to
the activity of the local inhibitory units that receive excitatory projections from
1 http://www.openadap.net/
2 http://jung.sourceforge.net/
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Fig. 1. Response of two strongly interconnected sample units to 50 presentations of the
fixed stimulation between time t = 450 and t = 500 seconds from the simulation start.
Network size: [100 × 100]; background activity: 5 spikes/s; stimulus duration: 200 ms;
stimulus intensity: 60 mV; ratio of input units: 10%; fixed stimulation protocol. (a,
b): peri-event densities (psth) for the last 50 presentations of the stimulus; smoothed
with a Gaussian kernel, bin=5ms. Dashed line corresponds to the mean firing rate;
dotted lines represent the 99% confidence limits assuming a Poissonian distribution.
Time zero corresponds to the stimulus onset; (c, d): corresponding raster plots.

the input units. The peristimulus histogram of the other SI -units showed that
the firing rate strongly increased during the stimulus presentation (e.g. Fig. 1b)
with a “primary-like” response pattern, despite the fact that none of the units
belonging to this pool was directly stimulated.

The effect of the different stimulation protocol was complex. The overall
number of SI -units found in absence of stimulation was similar to the number of
SI -units found with random stimulation (n ≈ 400, 6% of excitatory units not di-
rectly stimulated). In the fixed stimulation protocol, the number of SI -units was
much smaller (about 2%), but depended on the stimulus-induced depolarization
amplitude (Fig. 2). Conversely, in the random stimulation protocol condition,
we did not observe a significant change of the number of SI -units in response to
stimulus intensity.

During the process of pruning only the modifiable connections that kept a
sufficient level of activity driven by the stdp rule could “survive”. Then, the first
step for searching an oriented topology after 500 seconds consisted to detect the
excitatory neighbourhood of the SI -units. This neighbourhood corresponds to
the set of those excitatory units that send a projection to the SI -units, receive
a projection from the SI -units, or both send and receive projections. Thus,
this neighbourhood may also include input units, i.e. the units that are directly
receiving the stimulus. The ratio between the number of input units belonging
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Fig. 2. Example of the location of strongly interconnected units as a function of the
amplitude of the stimulus-induced depolarization. Network size: [100 × 100]; stimulus
duration: 200 ms; input units: 10% of the excitatory units; fixed stimulation protocol.

to the neighbourhood and the number of SI -units defines the index of connected

units (icu). The larger the icu, the larger the influence of the input units on
the SI -units.

The value for the icu was computed for different network dimensions, stim-
ulus durations and ratio of input units during the fixed stimulation protocol
(Fig. 3). With a ratio of input units equal to 3%, we observed that the value
of icu was almost zero and independent of the other parameters, because the
amount of stimulus delivered to the network was not sufficiently large to let
appear a noticeable stimulus-driven pruning. Such pruning appeared with 5% of
input units and became clearly visible with 7 and 10% of input units. It is worth
to note that a stimulus lasting 200 ms provoked an effect similar to a stimulus
lasting 50 ms. The “network size” effect is not so interesting by itself, as it is
consistent with the fact that the smaller the network, the larger is the impact of
a certain ratio of the input units. Besides, the application of a parameter scal-
ing factor introduced in [5] almost suppressed the size effect (compare Fig. 3a
and b).

The evolution of kin and kout for the SI -units and their neighbourhood was
studied as a function of the simulation duration for a [100 × 100] network. The
state of the network was analysed at t = 50, t = 200 and t = 500 seconds
(Fig. 4). In the beginning of a simulation, an average excitatory unit receives and
sends projections to about 190 other excitatory units, i.e. kin = kout ≈ 190 (see
Fig. 4a). The variability comes from the projection two-dimensional Gaussian
density function (see Model description). As no new connections are established
during the simulation, kin and kout can only decrease under the pressure of the
pruning process. Some units tend to loose their incoming connections first, others
tend to loose their outgoing connections first. The existence of other processes
combining different speeds for the loss of input and output connections results
in the smear of points visible in Fig. 4b-d.

We observed that as soon as t = 50 seconds, corresponding to 25 stimulus
presentations with the fixed stimulation protocol (Fig. 4d), the evolution of the
SI -neighbour units kin and kout was different from the other two protocols.
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Fig. 3. The index of connected units (icu), i.e. the ratio between the number of input
units and the number of SI -units, as a function of the ratio of input units, stimulus
duration, and network dimensions. Labels of stimulus duration: ◦: 50 ms; ×: 100 ms;
•: 200 ms. (a): simulations performed with unscaled parameter values for all network
sizes; (b): like (a) except for the size-specific scaled variables defined in [5]. Stimulus
intensity: 60 mV; fixed stimulation protocol.

Plots for t = 200 and t = 500 seconds show that most units have kout �
kin, which indicates that the pruning modified the topology of the connections
and favored the emergence of a converging pattern. The comparison of these
degrees between t = 200 and t = 500 s (Fig. 4e-g vs. Fig. 4h-j) shows that
the tendency to loose outward projections continued during the last part of
the simulation. In particular, notice that a large part of the neighbourhood
population lost all its input connections (kin = 0); these units ’survived’ only
because the background noise maintained some of their outward connections
timely tuned with the discharges of their targets.

Figure 4 shows that the distribution patterns, for the random stimulation

protocol (Fig. 4c,f,i) and in absence of stimulation (Fig. 4b,e,h) are very similar.
A random stimulus could not drive any significant effect, which was somehow
expected, but it was necessary as a control experiment to detect any bias intro-
duced in the simulation program. In the fixed stimulation protocol (Fig. 4g,j),
we observed n = 415 units with 30 ≤ kin ≤ 130 at t = 200 s that are main-
tained at t = 500 s. There are only 26 units with these properties in the other
two conditions. This population is composed of 407 input units belonging to
the neighbourhood. These input units maintained a large kin, because of the
synchronization of their activity during the stimuli presentations. The vast ma-
jority of the input units ( > 85%) were presynaptic with respect to the SI -units,
thus confirming that the topology organized towards a feed-forward converging
pattern of connections.

In the fixed stimulation protocol, the number of incoming and outgoing pro-
jections of the SI -units was kin ≈ 180 and 3 ≤ kout ≤ 20. It is important to
notice that the distribution of the kin of the SI -units did not change in time.
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In fact, the SI -units were characterized by an input pattern very close to that
they had since the very beginning of the simulation. Different random seeds gen-
erated different populations of SI -units but the number of these units did not
vary much as a function of the random seed.

6 Discussion

The main result has been to show that the application, in presence of back-
ground noise, of a recurrent pattern of stimulation let appear cell assemblies
of excitatory units when associated to stdp-driven pruning. The vast majority
of the connections that are modifiable by the spike-timing dependent plasticity
rule were eliminated during the first thousands time steps of the simulation run
[5]. Among the remaining active synapses, almost all were characterized by the
highest possible activation level, in accordance with previous results [12].

We observed that the unsupervised pruning mechanisms tended to organize
a feed-forward cell assembly of strongly interconnected units on top of the input
units selected by the pruning process. Inhibitory responses observed in the pool
of the SI -units are due to a balanced network reaction to the overall increased
firing rate by increasing the activity within the pool of inhibitory units. The con-
nectivity pattern of SI -units, initially set at random, appeared to match some
requirements for maintaining almost all the input connections. The interpreta-
tion is that the cell assembly formed by the SI -units was initially determined by
chance and when the pruning process started to select the active connections,
these were maintained because of their connectivity pattern, thus letting emerge
a particular circuit that was embedded in the network at time t = 0. However,
the emergence of the diverging projections was much more difficult to observe
than the convergence.

The self-organization of spiking neurons into cell assemblies was recently de-
scribed in a study featuring large simulated networks connected by stdp-driven
projections [6]. They studied the spatiotemporal structure of emerging firing
patterns, finding that if axonal conduction delays and stdp were incorporated
in the model, neurons in the network spontaneously self-organized into neu-
ronal groups, even in absence of correlated input. The study [6] emphasizes the
importance of axonal conduction delays that we did not initially consider in
our model.

The choice of our neuromimetic model was justified by its compatibility
with a novel hardware architecture [14]. Instead of leaky integrate-and-fire neu-
romimes, the use of biophysical models of neuromimes based on the Hodgkin-
Huxley framework with multistate neurons and the associated multidimensional
synapses [10] could bring better insight into the biological rationale of the emer-
gence of cell assemblies by synaptic pruning.
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Abstract. We propose a new method to analyze time series recorded by
single neuronal units in order to identify possible differences in the time
evolution of the considered neuron. The effect of different dynamics is
artificially concentrated in the boundary shape by means of the inverse
first passage time method applied to the stochastic leaky integrate and
fire model. In particular, the evolution in the dynamics is recognized by
means of a suitable time window fragmentation on the observed data
and the repeated use of the inverse first passage time algorithm. The
comparison of the boundary shapes in the different time windows detects
this evolution. A simulation example of the method and its biological
implications are discussed.

1 Introduction

Time series recorded from neuronal units are generally studied via statistical
methods, with correlograms and higher order descriptions, or with the help of
mathematical models. In these last instances the typical approach describes the
spiking activity as a renewal process and attributes all the recorded data to a sin-
gle dynamics. For example, in the stochastic leaky integrate and fire (LIF) model
the classic assumptions require that, after each spike, the membrane potential
is reset to its resting value while its underthreshold dynamics are described via
the same diffusion process during the entire observational time. The Ornstein-
Uhlenbeck (OU) process is largely used for this purpose [1,4,7,8,9,18,19] but also
diffusion processes with time dependent drift term appear in the literature [16].
The interspike time intervals (ISI) are then described via the first passage time
(FPT) of the process through a boundary, possibly time depending, and the
comparison of the theoretical and experimental distributions is used to validate
the model or to explain the observed dynamics [14,15]. A second application
of the models in this context has been recently proposed in [13] where the in-
verse first passage time (IFPT) method is applied to determine the shape of the
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boundary that generates the observed data when the underthreshold dynamics
are modeled via an OU process.

Generally stochastic models are built to analyze experimental data and use
the same model to describe the totality of the observed data. Indeed all the
data are attributed to a single sample without differentiating between possible
different dynamics. One admits a non stationary behavior, by considering a time
dependent input or a time varying threshold, but all the ISI are considered as
generated by the same dynamics. On the contrary, the use of classical methods
for time series analysis shows, in some experimental instances, a change of the
neuronal dynamics during the observational time [10]. The necessity to recognize
changes in the neuronal dynamics during the observational time clearly arises
when one considers recordings from a neuron that alternates periods of sponta-
neous and stimulated activity. The use of the time series methods can reveal the
existence of different dynamics but loses the interpretation of these dynamics
that can be obtained with the use of mathematical models. Here we propose
a method to analyze recorded ISI on sufficiently large time intervals with the
help of stochastic models and of the IFPT method [20]. The leading idea of this
new method is to determine suitable successive shifting time windows and to
analyze the observed data applying the IFPT method to the moving window.
The underlying diffusion process is not changed during all the analysis in order
to detect differences between the different dynamics by means of discrepancies
in the shapes of the boundary. The repetition of the analysis with different time
windows and with different shifting times for the window can detect the times
when the neuronal dynamics have changed.

This work is devoted to validate the proposed method, hence the results
presented in Sect.4 consider only simulated data while the application of the
method to experimental data will be the topic of a future work.

2 Model and Mathematical Background

Here we sketch the main features of the so called stochastic LIF model while we
refer to the literature [11,18] for its derivation and its biological motivation. In a
LIF model the time evolution of the membrane potential between two consecutive
neuronal firing is described through a stochastic process X = {Xt; t ≥ 0} and
the ISI are identified with the FPT of the process X through a threshold S(t)

T = inf{t > 0|Xt ≥ S(t)}, (1)

whose probability density function is

g (t) =
d

dt
P (T ≤ t). (2)

Different diffusion processes have been used to model the membrane potential
evolution [8], here we focus on the OU process that is one of the most largely used
thanks to its mathematical manageability. Hence, we describe the subthreshold
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time evolution of the membrane potential by means of a stochastic process,
fulfilling the stochastic differential equation{

dXt =
(−Xt

θ + μ
)
dt + σdWt

X0 = 0
(3)

where the constant μ characterizes the neuronal input, θ > 0 reflects the spon-
taneous voltage decay in absence of input and σ > 0 is a constant related with
the variability of the neuron input. A spike is elicited any time that the pro-
cess crosses the boundary S(t), then the process X starts again according to
a renewal process. This assumption is necessary to identify the time series of
successive spike times (T1, ..., TN ) as a sample of size N extracted from a popu-
lation with distribution g(t). Therefore the stochastic LIF model is completely
described when one knows the OU parameters and the boundary shape function
with its parameters. According to this approach one can determine the FPT dis-
tribution using one of the numerical [12] or simulation [5,6] methods proposed
in the literature and this formulation of the problem is called direct first passage
time problem. Alternatively, if the process with its parameters and the FPT
distribution are assigned, one can determine the corresponding threshold shape.
This is the inverse first passage time problem formulation and one of the numer-
ical algorithms [20] for its solution are the basis of the method that we propose
in Sect.3. The IFPT algorithm applied here requires the knowledge of the FPT
distribution that can be approximately obtained from experimental data via the
kernel method or via other numerical approaches.

3 Moving Window Inverse FPT Method

The study of the ISI trains of a neuron by means of the FPT of the OU process
generally considers the observed ISI as a part of a single sample. This assumption
tacitly implies that the dynamics of the neuron do not change during the obser-
vational time. However, also under spontaneous activity, different inputs from
neighborough neurons can activate the observed neuron determining different
dynamics on successive time intervals. This fact becomes extremely relevant
when the data comes from a neuron of a network activated with external input
during the recording interval.

Here we want to determine changes in the neuron dynamics during the ob-
servational period from the simple analysis of the ISI trains recorded from the
neuron, assuming the absence of further information on the inputs and on the
external stimulations during the observational period. We also want to recover
the times when these changes happened and to describe the different dynamics
on the different intervals.

To obtain these features, in analogy with the classical methods of time-
frequency analysis [3], we consider a window of fixed amplitude. The amplitude
can be alternatively defined or by fixing a time interval or by fixing the number
of spikes considered in the sample. We apply the IFPT method and we introduce
a shift of assigned lag. Also the lag can be alternatively defined as a fixed time
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interval or as a fixed number of spikes. Then we repeatedly shift the window
of this assigned lag, performing each time the study with the IFPT method. If
no change in the boundary shapes is observed on successive shifted windows,
we conclude that a unique behavior characterizes the observational time. In this
case no remarkable differences arise between the shape of the boundary com-
puted using the observed data all together or using the set of windows. On the
other hand if the process changes its dynamics inside the observed interval, the
shapes of the boundary corresponding to different windows change. A careful
choice of the shifting lag and of the windows amplitude, or a suitable rescaling
of the window amplitude, suggests the times when the dynamics of the neuron
change. Note that the choice of the window amplitude is constrained by the ne-
cessity to have a sufficiently large sample to apply the IFPT method. However
a large window increases the risk to lose the dynamics change. This fact could
be balanced introducing smaller shifting times. Difficulties can arise when there
are frequent changes in the dynamics and one deals with rare events. It is clear
that a careful choice of windows amplitude and shifting lags requests a detailed
preliminary study on their role but our goal here is principally to describe and to
test the proposed approach. Examples discussed in this paper use lag and win-
dow amplitude defined through the number of spikes. This choice simplifies the
analysis and allows a first check on the reliability of the method. Note that this
choice implies the use of windows characterized by different time amplitudes.

The application of the IFPT method on each window, maintaining the same
diffusion process for all the analyses, compacts all the information on the evo-
lution of the process dynamics into the boundary shape. The advantage of this
choice is the possibility to compare deterministic functions in spite of compar-
ing stochastic processes. However as one has recognized two different boundaries
on successive windows one can reinterpret the result in terms of two different
diffusion processes crossing the same constant boundary. Indeed a space trans-
formation can always send differences in the boundary shape into differences
between the processes [11].

Since the IFPT method requests the use of a smooth approximation of the
FPT probability density function here we approximate it via the kernel method
on the data [2,17]. Since the IFPT method is highly sensible to an error on the
right tail of the FPT density we apply the method on the 90% of the probabilistic
mass.

4 Results

In order to check the reliability of the proposed method we apply it to simulated
data. Different choice can be made for the boundary shape of the simulated
process but for this first investigation we will limit ourselves to the case of a
boundary that assume different constant values. We simulate 3 samples, with
sample size N = 105, from an OU process with θ = 1 ms−1, μ = 0 mVms−1 and
σ2 = 2 mV2ms−1 and boundaries S1 = 2, mV S2 = 2.5 mV and S3 = 2 mV,
respectively. Note that for simplicity we use a standardized process but a simple
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space time transformation makes the considered parameters values biologically
compatible [11]. Since the IFPT algorithm converges after some iterations, the
boundary estimates are not reliable for small time. Hence, we plot the computed
boundaries starting when the method becomes stable.

As a first step in our analysis we apply the IFPT method to the total sample
of size 3·105. Figure 1a shows the resulting histogram and its continuous approx-
imation obtained via the Epanechnikov kernel method [17] while in Fig.1b the
boundary obtained with the IFPT method is plotted. Note that the merging of
all the data determines misleading results on the boundary that appears linearly
increasing. This fact is due to the merging of the three samples as it is shown in
Fig.2 where the histograms and the corresponding boundaries, computed via the
IFPT method, for the three separate samples of size 105 are plotted. This last fig-
ure confirms the reliability of the IFPT method discerning the three boundaries
used in the simulations.
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Fig. 1. a) Normalized histogram and its continuous approximation obtained via the
kernel method (Epanechnikov kernel) of the data. Three samples of size N = 105

generated as the FPT of an OU process with parameters θ = 1 ms−1, μ = 0 mVms−1

and σ2 = 2 mV2ms−1 through the boundaries S1 = 2 mV, S2 = 2.5 mV and S3 = 2
mV respectively, are merged in a single sample. b) The boundary obtained with the
IFPT method.

Figures 3 and 4 illustrate the application of the moving window IFPT
method. We show the different boundaries obtained shifting a window of size
N = 105 of a lag step L = 104. In Fig.3, from the bottom to the top, we illus-
trate the boundaries corresponding to the successive windows obtained with a
shift of lag k · L, k = 0, 1, ..., 10 while in Fig.4 from top to bottom, we illustrate
the boundaries corresponding to the successive windows obtained with a shift
of lag k · L, k = 10, 11, ..., 20. Note that the bottom boundaries in Figs.3 and
4 consider only samples from the process with boundary to S = 2 mV, while
the top boundaries in these figures correspond to the sample from the process
with boundary S = 2.5 mV and are correctly recognized constant. The instances
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Fig. 2. Normalized histograms and its continuous approximation obtained via the ker-
nel method (Epanechnikov kernel) for the three separate samples of size 105 generated
as the FPT of an OU process with parameters θ = 1 ms−1, μ = 0 mVms−1 and σ2 = 2
mV2ms−1 through the boundaries a) S1 = 2 mV, c) S2 = 2.5 mV and e) S3 = 2 mV
and the corresponding boundaries obtained applying the IFPT method b) S1 = 2 mV,
d) S2 = 2.5 mV and f) S3 = 2 mV.

when the sample contains a mixture from two different samples determine lin-
ear boundaries with a slope depending on the weight of each sample in the
mixture.

The changes of the boundary shapes as we shift the window indicate a change
in the observed dynamics. In order to detect the time when this change happens,
the analysis can be repeated with smaller windows sizes and/or smaller shift lag.

Different shapes of the boundary will be tested in a more comprehensive
future work where the method will also consider experimental data. Here we
limit our analysis to the constant boundary instance. Linear boundaries have
been determined in [13] using experimental data. In that paper the nature of
the boundary was used to obtain a classification method for ISI simultaneously
recorded from a set of neurons. The results illustrated in Figs.3 and 4 suggest
that a linear boundary can be determined by a change of the dynamics involving
two different constant boundaries.

The method has been also checked with simulated samples of size N = 1000
obtaining similar results.
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Fig. 3. From bottom to top, boundaries corresponding to successive windows of size
N = 105 obtained with a shift lag k · L, k = 0, 1, ..., 10 with L = 104. The boundary
shape computation is stopped when the 90% of the probability mass of g(t) is reached.
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Fig. 4. From top to bottom, boundaries corresponding to successive windows of size
N = 105 obtained with a shift lag k · L, k = 10, 11, ..., 20 with L = 104. The boundary
shape computation is stopped when the 90% of the probability mass of g(t) is reached.

5 Conclusions

The example discussed here validates the new proposed method in the case of
a sample generated with different constant boundaries. In order to have a more
complete vision of the power of the method other cases should be considered.
In particular, we plan to analyze the case of periodically oscillating boundaries,
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with different periods on disjoint intervals. Furthermore, a planned extensive
theoretical study will help the choice of the window and of the shift lag in the
case of experimental data.
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Abstract. The search of the code underlying the transmission of in-
formation through the different stages of integration of the brain is a
very active investigation field. Here, the possible involvement in the neu-
ral code of global population oscillatory activities has been discussed.
The behaviorally important rhythmic activities of the hippocampal CA3
field have been analyzed to this aim. The genesis and the features of such
activities have been studied by the computer simulation of a model of
the entire CA3. The simulation demonstrated the ability of the network
of inhibitory interneurons to control nicely the transmission of activ-
ity through the pyramidal population. The results suggested that the
hippocampal formation and the CA3 field—in particular—could be or-
ganized in a way to allow the passing of excitatory activities only during
specific and narrow time windows, confined by inhibitory barrages pos-
sibly linked to attentional processes.

1 Introduction

The neural information flows in brain along the multiple stages of the neural
circuitry, starting from the primary (sensorial) cortices, till the Hippocampus
and superior areas and back. The problem of the modalities according which
the information is coded within the neural populations of brain, is very elusive
and yet there are no clear indications about its nature. The most common hy-
potheses about such code, the ”rate code” and the ”temporal code”, received
contrasting evidence and the issue remains controversial. The rate code hypoth-
esis assumes that the neurons, basically noisy, can transmit information only via
the mean rate of spiking. This hypothesis is based on the common observation
that recorded sequences of spike intervals in cortical pyramidal neurons are so
highly irregular to support the existence of important random influences on its
genesis [13,14,15,24]. The more recent temporal-code view, partially based on the
assumption that the rate code proposal produces a too poor code, retains that
the information is conveyed by the precise order of the inter-spike time intervals,
or in a weaker form, it is related to the precise time of the first spike after an
event [1,2,16,17].

The base of a new hypothesis on the rules governing the transmission of infor-
mation in brain is discussed here. This hypothesis considers the global oscillatory

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 78–88, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Coding by Neural Population Oscillations? 79

activities in neural populations as the possible base of a temporal code, very dif-
ferent from that outlined above. Synchronous oscillatory activities constitute
one of the most characteristic aspects of the brain activity and are associated
closely to behavioral states. Rhythmic oscillations in the gamma (20-80 Hz) and
theta (4-15 Hz) ranges are among the most prominent patterns of activity in
Hippocampus [3] and both rhythms are believed to be essential products of the
hippocampal machinery. The theta rhythm is commonly supposed to be pro-
duced in the hippocampus by activity coming from medial septum and entorhi-
nal cortex. Recent experimental and theoretical articles support the hypothesis
that the network of inhibitory interneurons in the Hippocampus generates in-
trinsically the gamma rhythm. Both rhythms are present during the exploratory
activity in awake animals and are related to learning, memory processes and
to cognitive functions [19,4]. Some fast (80-200 Hz) [6] and ultra-fast (200-500
Hz) [10] oscillations have been also recorded in the hippocampus (and cortex)
of several animals and in man.

The CA3 field of the Hippocampus, one of the most significant components
of the limbic system, has been used here as a case study to evaluate the new hy-
pothesis. In particular, the global reactions of CA3 to its inputs and the precise
spatio-temporal behavior of excitatory and inhibitory waves invading the CA3
field have been closely investigated. The results suggested that this field is orga-
nized as an inhibitory filter which allows the passing of excitatory activities only
during narrow time windows. They are strictly confined by inhibitory barrages
possibly linked to attentional processes.

2 The Kinetic Model

Based on a kinetic theory of neural systems, formulated several years ago [20,22],
a set of differential equations was constructed for the description of the activity
of the CA3 neural field. This theory translates the action potentials traveling
within the neural fields along the axonic branches in massless particles. They
move freely within the neural systems until they collide with a neuron. The
collision can result in the absorption of the impulse by the neuron and in this
case the subthreshold excitation of the neuron increases or decreases accord-
ing to the quality, excitatory or inhibitory, of the absorbed impulse. When the
subthreshold excitation reaches the threshold value (here assumed equal to 1
for simplicity) the firing occurs and a stream of new impulses is emitted within
the neural field. After the firing the neurons go in refractoriness state, for a pe-
riod of time τ . The functions fs(r,v, t) and gs′(r, e, t) describe, respectively, the
impulse velocity distribution and the distribution of the subthreshold neuronal
excitation within the neural field. Whereas, ψs′(r) denotes the local density of
neurons. The variables r,v, e and t are associated to the position, the veloc-
ity, the subthreshold excitation and the time, respectively. The index s refers
to the different action potentials traveling within the neural field (CA3 pyrami-
dal short range, CA3 pyramidal long range, CA3 inhibitory fast and CA3 in-
hibitory slow, Enthorinal Cortex pyramidal, Mossy Fibers from Dentate Gyrus,
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Medial Septum (cholinergic or inhibitory)) and the index s′ is associated to
the different families (pyramidal, inhibitory fast and inhibitory slow) of neurons
present in CA3. Moreover, se denotes a generic impulse coming from external
sources and sē denotes a CA3 generated impulse. The time evolution of the
two distribution functions is governed by the following set of coupled differential
equations:

∇tfs(r,v, t) + v · ∇rfs(r,v, t) + fs(r,v, t)(Σs′ψs′(r) | v | σs′s) =

Ss(r,v, t)δ(s − se) + f∗
s (r,v)Ns′ (r, t)δ(s − sē)

+f0
s (v)

∫
A

ξs′s(r, r′) dr′
∫

f
′
(v′)Ns′(r′, t − |r − r′|

v′
) dv′δ(s − sē) (1)

∇tgs′(r, e, t) + μ(er − e)∇egs′(r, e, t) = [gs′(r, e − ε, t) − gs′(r, e, t)]

+Ns′(r, t − τs′ )δ(e − er)

+Ms′(r, t)θ(ε)δ(e − e0) (2)

where the functions δ(.) and θ(.) denote the Dirac and the step functions, respec-
tively; er and e0 are the resting potential and the maximum hyperpolarization
level of the neurons and σs′s is the absorption coefficient, μ is the decay con-
stant of the subthreshold excitation, and A is the surface covered by CA3. The
functions f∗(r,v), f0(v) are linked to the velocity spectra of impulses emit-
ted in different conditions. The function ξs′s(r, r′) is an origin/destination ma-
trix for long-range impulses, and f

′
(v′) denotes the velocity distribution along

these paths. S(r,v, t) is a source term denoting the impulses entered in CA3
from external sources. When this source term is present in equation 1 (for
specific values of the index), the other two source terms on the right mem-
ber (related to CA3 generated impulses) must be considered null. The other
functions present in the above equations have the following expressions and
meanings:

Ns′(r, t) =
∫ 1

1−ε(r,t)

gs′(r, e, t)de (3)

denotes the probable number of neurons in r firing at time t;

∇tMs′(r, t) =
∫ −ε(r,t)

0

gs′(r, e, t)de − Ms′(r, t)θ(ε) (4)

is a differential equation associated to the probable number of neurons in r which
stay in maximum hyperpolarization level at time t;

Is′s(r, t) =
∫

fs(r,v, t)ψs′ (r)σs′s | v | dv
ψs′(r)

(5)
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is the excitation absorbed by the neurons in r at time t (mean number of ab-
sorbed impulses of type s). Denoting by Es(r, t) the mean Post Synaptic Poten-
tial associated to excitatory or inhibitory impulses—a positive function for exci-
tatory impulses, negative for inhibitory ones—the following convolution equation
furnishes the time course of the net excitatory effect on the subtreshold neurons
in r at time t:

εs′(r, t) = Σn
s=1

∫ t

0

Es(r, t) · Is′s(r, t − t′)dt′. (6)

In the above equations, use is made of the conditions that the function gs′(r, e, t) =
0 if e ≤ 0 or if e > 1.

This mathematical model has been utilized to carry out a series of compu-
tational experiments. The space-time course of some macroscopic parameters
(local frequency of spikes, local mean sub-threshold excitation, number of fir-
ing neurons), which have close analogy with the in vivo recorded activity of
the CA3 field (population spike trains, local field potentials), has been ana-
lyzed to obtain information on its ability to simulate oscillating hippocampal
activity.

3 Oscillatory and Spiraling Activity

The genesis of the above mentioned rhythmic oscillations in gamma and theta
ranges has been investigated by computational experiments which simulated the
reaction of the CA3 model to external stimuli. All the results described in this
paper were based on a model having the space dimensions of the entire CA3 field
of the rat. From the Atlas of Rat Brain [12] CA3 has space dimensions of 8mm
long (septo-temporal axis) and 3mm large (transverse axis). Also the neuronal
densities and parameters of connectivity have been computed by values from lit-
erature (see [23], where the values of the impulse velocity spectra, of ξ and of the
absorption coefficients σs′s are also reported). Based on the neuronal density val-
ues about 300.000 pyramidal neurons and 30.000 fast and 30.000 slow inhibitory
neurons constituted the simulated CA3 field. Excitatory stimuli originated from
Entorhinal Cortex both via Dentate Gyrus (through the Mossy Fibers) and by
a direct path have been simulated. Also, in some simulations, inhibitory or exci-
tatory influences from Medial Septum have been studied. Dentate Gyrus input
was assumed to be conveyed by layered mossy fibers distributed along parallel
strips of pyramidal neurons (stratum lucidum), each strip being 3mm long and
50μm large and containing about 6.250 mossy fibers and 87.500 mossy synapses.
The amplitude of the strip (50μm) was dictated by the space step utilized in
the simulation (see the Appendix where the values of other basic parameters are
presented). The Dentate Gyrus input to each strip was constituted by random
volleys, whose arrival times were distributed according to a Poisson distribution,
while the duration and the amplitude were Gaussian distributed. Often the vol-
leys along the different strips were correlated. The CA3 field was also reached
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Fig. 1. Time course of the firing frequencies of the excitatory (smaller values) and
inhibitory (higher values) neuronal populations in CA3. The ordinates denote the per-
centage of firing neurons, with reference to the respective total populations. The time
is in sec.

by Poissonian inputs originating from the direct Entorhinal Cortex path. In ex-
periments in which a concurrent input from Medial Septum was simulated, some
inputs inhibited selectively the inhibitory neural populations of CA3. The most
interesting activities were shown when the inhibition conveyed by the neural
population producing slow inhibitory effects was considered constantly inhibited
by inputs coming from Medial Septum. In these simulations the frequency of
the global activity, both for excitatory and inhibitory neural populations, was
in the range of the theta rhythm. A typical time course is presented in figure
1. A theta rhythm with a frequency of about 10Hz is evident from this figure.
Interestingly the percentage of pyramidal cells involved in the firing activity is
only a small fraction of the total population, about 2% in mean. Small ripples,
at very high frequency, are also shown by the oscillations associated to the firing
of the fast inhibitory neuronal population. The interest of these results is linked
also to an ongoing debate about the drive to the global activity of CA3 field
[18], which motivated some authors to suggest the necessity of gap junctions
among pyramidal axons to sustain such activity. That this is not necessary has
been demonstrated herein. In fact, the excitatory activity flowing along the long
range pyramidal axons (Schaffer collaterals), with a velocity low enough to pro-
duce delays of 10− 20ms, and the slow decay of the Post Synaptic Potentials in
the excitatory synapses on inhibitory neurons (massively charged by the pyrami-
dal population discharge) can sustain the firing of the inhibitory population for
about 50 milliseconds. The excitatory and inhibitory activity had a patterned
displaying on the entire CA3 field. The time course can be described as fol-
lows. At some time, depending on the assumed characteristics of the Poisson
distribution governing the Dentate Gyrus and the Entorhinal Cortex inputs, the
first volleys of impulses began to propagate in one or more strips of CA3. The
absorption of impulses drove some pyramidal neurons to fire action potentials.
This induced firing in other pyramidal and in fast inhibitory neurons (the slow
inhibitory neurons being assumed inhibited). In some milliseconds a patterned,
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Fig. 2. Time course of the density of impulses produced by the whole pyramidal neu-
ronal population in CA3 (about 300.000 neurons). Two, not complete, reverberations
are shown invading the entire CA3. The duration of the displayed activity is 12.5ms.
After 2 more milliseconds all the excitatory activity vanishes. The white is related to
the maximum value of the intensity.

self-organized activity began to appear in the neuronal firing, which stabilized
and propagated throughout the entire CA3 field, involving both the pyramidal
and the inhibitory neurons. The induced firing of fast inhibitory neurons pro-
duced a so high level of inhibition that the pyramidal neurons were reduced
to a silent state. In such a way they remained unable to react to new inputs
originating from the simulated sources. The patterned activity of the inhibitory
neural population remained active for several periods of time, as long as they
had sufficient drive on their excitatory synapses. After some time, the decaying
of the residual excitation on inhibitory neurons reduced gradually their firing.
The decaying of the inhibition permitted the inputs to ignite again some of the
neurons of the pyramidal strips. A new cycle began with a patterned activity
that could be slightly or strongly different form the previous one. In figure 2 the
activity of pyramidal neurons is presented by using the local density of impulses.
[To show with greater precision the time course of the activity, in this figure and
in the subsequent ones, the interval of time among the frames is not constant. In
some parts the time is accelerated, in others it is lagged.] In figure 3, the waves
associated to the propagation of fast inhibitory impulses are presented. The re-
sults presented in these two figures are very attracting, since spiraling activities
are manifested. In fact, while spiral waves are not difficult to find in natural,
not-neural systems [26], in neural systems the evidence is scarce. Only some rare
articles report the observation of spiral waves in neural tissues [7] and [8]. As
asserted by [7], the difficulty arise because, to demonstrate a true spiral wave,
the medium under study must be relatively smooth and isotropic and a ”phase
singularity” should be observed at the center of the activity. This is a distinctive
sign that differentiates spiral waves from other kinds of rotating waves. In a pre-
vious work [21], based on a simpler version of the kinetic theory, some rotating
waves of neural activity, traveling outward from a center, have been found. But
to produce them a very particular stimulation had to be utilized. In the present
case the production of spiraling activity occurs in a very natural way, since it
is due to the interference of two different activities, which spread on the neural
field.



84 F. Ventriglia

Fig. 3. Time course of the density of impulses produced by the whole fast inhibitory
neuronal population in CA3 (about 30.000 neurons). A spiraling activity is shown
invading the lower sector of CA3 field. The starting time is the same of Figure 2. 7ms
of additional activity are shown in the lower row. 9 frames in this row, by starting from
the third, are separated only by 1

8
ms. The spiraling waves stop only after further 44ms

of activity (not shown).

Fig. 4. Time course of the density of impulses produced by pyramidal neurons in CA3.
The total time displayed is 18ms. After the last frame the pyramidal activity vanishes
in about 2ms.

Fig. 5. Time course of the density of impulses produced by inhibitory neurons in CA3.
The total time displayed is 18ms. After the last frame the inhibitory oscillating activity
persists for further 42ms.
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A different kind of activity is shown in figures 4 and 5. It occurred at
times subsequent to those of figures 2–3. Also these figures show activities
related to pyramidal (figure 4) and fast inhibitory (figure 5) neuronal pop-
ulations. In the present case, a single traveling wave is shown by pyramidal
population firing which induces an oscillating activity in the inhibitory neu-
ral population. It, gradually, invades the entire CA3 field. Intriguingly, a back-
wash behavior is shown in the lower right zone of figure 5, where a local nu-
cleus of oscillation interferes with activity coming from the upper zone of the
field.

4 Discussion

From the study by computer simulation of the neural activity of the CA3 field of
Hippocampus, some remarkable features of the neural dynamics have been ob-
served. Under appropriate driving inputs, some activity self-organized within the
pyramidal neuron population and spread to the entire CA3 region. In the wake of
the excitatory activity, stable and well-organized oscillatory activities occurred
within the inhibitory neural population. They presented a sort of complex and
persistent remnant, or trace, of the spatio-temporal behavior of the previous
pyramidal activity. These oscillations continued for periods of time much longer
than the activity in driving pyramidal neurons. During this time, the pyramidal
neurons being very efficiently inhibited could not generate new activities. The
inhibition of the slow inhibitory neurons could modulate the duration of the
inhibitory periods. This was obtained by simulating an input originating from
Medial Septum. In such a way, the frequency of the global pyramidal activity
could range from 1.5Hz to 11Hz (results not shown). Hence, the global activity
of the CA3 field was organized in such a way to present specific time windows
for the generation of excitatory activities, conveyed by pyramidal neurons. These
activities were separated by long periods of inhibition. This suggests that a sort
of temporal coding—with a meaning quite different from the common view—is
associated to the function of the entire CA3, that seems to operate in the follow-
ing way. Among all the inputs from cortical regions arriving to CA3 field, only
those which reach it in appropriate time intervals, that can be also under the
control of activities in behavior-linked sub-cortical nuclei (like Locus Coeruleus
and Median Raphe), are able to trigger global activities and can produce ef-
fects on the brain regions driven by CA3. Other volleys, which arrive either too
late or too early, are not able to filter through the inhibitory barrage, and in
such a way they are neither able to induce global reactions of CA3, nor can
modify the evolving patterned inhibitory activity. Hence, the information they
convey is not allowed to pass to other brain stages. In such a way, a free pe-
riod of time with a duration of 50 − 80ms is reserved to the successful inputs,
during which they can drive activities in cortical regions without interferences
by competing inputs. These activities may result in learning, memory and other
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cognitive effects. A link between the theta rhythm and an attention mechanism
has been hypothesized also by the long experimental activity of Vinogradova [25].
A similar, but weaker hypothesis on the inhibitory activity in Hippocampus has
been proposed in [5]. These authors suggest that oscillating inhibitory networks
may provide temporal windows for single cells to suppress or facilitate their
synaptic inputs in a coordinated manner.

This kind of functioning, which seems to be characteristic of the Hippocam-
pus being produced by its specific organization and by the peculiar connectivity
of the CA3 field, could be also present in cerebral cortex. This hypothesis, how-
ever, can not be extended to all the cortical areas, since the primary cortices show
a different organization [9,11]. The primary visual cortex—for example—seems
to be organized in a large number of more or less identical elementary process-
ing units, the columns, each of which contains the complete machinery for the
analysis of a small part of the visual field with respect to all possible stimulus
features. An incomplete list contains columns specialized for orientation, ocular
dominance, color selectivity, direction of movement, spatial frequency, disparity,
and stimulus on- or offset. Since the primary cortices seem to use a different cod-
ing, a global neural population oscillatory code could be only hypothesized for
cortical structures at higher stages (multimodal and associative cortices). The
difficulty to unveil such a code at those levels could be due to the complexity
of the cerebral cortex and of its activities, which could mask it. Moreover, the
inhibitory barrage could be more smoothly controlled at the cortical level and
more subtle effects could result.
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Appendix

The following values have been utilized by the numerical procedure solving the
kinetic equations: time step: δt = 0.125ms, space step: δx = δy = 50μm.

In this way each grid point was representative of a small square of neural mat-
ter with a side length of 50μm in which 30 excitatory neurons, 3 fast and 3 slow
inhibitory neurons, in mean, were contained and the entire model simulated the
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activity of 60x160 modules. The resting levels ers′ of different neurons were: erp =
0.34 (corresponding to −75mV )—pyramidal neurons, erf = 0.67 (corresponding
to −62.5mV )—fast inhibitory neurons, ers = 0.34 (corresponding to −75mV )—
slow inhibitory neurons. The periods of absolute refractoriness and the synaptic
delays were: τp = 15ms, τf = τs = 1.75ms and t0p = t0f = t0s = 0.5ms,
respectively. The slow-IPSP onset time had value t̄s = 30ms. The long-distance
impulses in the absorption-free zone assumed a constant velocity v′ = 60cm/s.
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Abstract. The problem of the code used by brain to transmit infor-
mation along the different cortical stages is yet unsolved. Two main
hypotheses named the rate code and the temporal code have had more
attention, even though the highly irregular firing of the cortical pyra-
midal neurons seems to be more consistent with the first hypothesis. In
the present article, we present a model of cortical pyramidal neuron in-
tended to be biologically plausible and to give more information on the
neural coding problem. The model takes into account the complete set of
excitatory and inhibitory inputs impinging on a pyramidal neuron and
simulates the output behaviour when all the huge synaptic machinery
is active. Our results show neuronal firing conditions, very similar to
those observed in in vivo experiments on pyramidal cortical neurons. In
particular, the variation coefficient (CV) computed for the Inter-Spike-
Intervals in our computational experiments is very close to the unity and
quite similar to that experimentally observed. The bias toward the rate
code hypothesis is reinforced by these results.

1 Introduction

The problem of how information is coded in brain is perhaps the hardest chal-
lenge of modern neuroscience. The general agreement on this issue is that in-
formation in brain is carried by neuronal spike activity, although the way in
which the information is coded in the series of spikes, generated both directly
by subcortical nuclei and indirectly along the several areas of the brain’s neural
hierarchy, remains controversial. Two main hypothesis face each other in this re-
spect. The first assumes that information can be coded by spike frequency and,
accordingly, it has been defined as rate (or frequency) code. This hypothesis rests
on the fact that the time sequences of spikes produced by cortical (pyramidal)
neurons are so highly irregular to support the idea of a predominant influence of
randomness on their genesis [20,21]. In fact, a Poisson process (a typical example
of stochastic processes) can adequately describe the spike sequences observed in
cortical pyramidal neurons. A rich investigation field, based on stochastic models
of neuronal activity, arose from this finding [8,14,15,18,27,28]. The randomness
of the Inter Spike Intervals (ISIs) implies that information cannot be coded in
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the precise temporal pattern of spikes in the sequence. Neurons are then con-
sidered as integrate-and-fire devices which integrate all the inputs (excitatory
and inhibitory) arriving to neurons from dendritic and somatic synapses. A fine
balancing of excitatory and inhibitory inputs determine the firing probability
of the neuron as well as the ISIs. Hence, only the firing frequency (averaged
on appropriate time intervals) can be considered as the candidate for coding
information [22]. Viceversa, a more recent view assumes that the precise spike
times, or the inter-spike interval patterns, or the times of the first spike (after an
event) are the possible bases of the neural code. This constitutes the temporal
code or coincidence detector hypothesis. The main motivation for this view is the
belief that the transmission of information is based on the synchronous activity
of local populations of neurons and, consequently, the detection of coincidences
among the inputs to a neuron is the most prominent aspect of the neuronal
function [1,2,23].

Several attempts, both computational and experimental, have been carried
on to identify the causes of the high irregularity of the firing patterns. In some
experiments on brain slices, synthetic electrical currents, constructed in a way
to simulate the true synaptic activity, have been applied to somata of pyrami-
dal neurons in order to obtain the irregular ISIs produced by neurons naturally
stimulated by synaptic activity [25]. On the other side, several computational
models, with different level of complexity, have been proposed for the same pur-
pose ([13], among many others). In some models the variability of synaptic input
has been singled out as the cause of the output variability. In others, the main
focus has been given to the structure and the status of the neuron receiving
the stimuli. Comparison both of experimental and computational results, still
gives contradictory interpretations and this could be due to the contrasting ap-
proaches used for modeling and simulation. The lack of a precise definition of
the code machinery induced recently some authors to consider the possibility
that brain uses not a single coding system but a continuum of codification pro-
cedures ranging from rate to temporal [26]. In the present paper, we made an
attempt to study ISIs variability by using a computational model of a pyramidal
neuron having a complete synaptic structure featuring that of an hippocam-
pal neuron. To this aim, we simulated the activity of the entire set of synapses
(inhibitory/excitatory) connected both to dendrites and soma, by using experi-
mental data on glutamatergic and gabaergic synaptic currents and data obtained
in our previous studies on single synaptic activities [29,30].

2 Model

To study the coding properties of the pyramidal firing we constructed a model
of neuron by using anatomical information from pyramidal neurons in CA1 (and
CA3) field of the hippocampus for which a fairly complete description both of
the dendritic structure and of the synaptic distribution is available. A general
description of such a neuron can be made by dividing it in compartments ac-
cording to the anatomical position of the components in the hippocampal fields.
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In this way our neuronal model has a set of modules called respectively: stratum
lacunosum-moleculare, shaft, stratum radiatum, stratum lucidum, soma, stratum
oriens and axon. Each of the above modules has its set of functional (inhibitory
and excitatory) synapses which are arranged according to data from literature.

2.1 Model of Pyramidal Neuron

Information on the the main structure of hippocampal pyramidal neurons ob-
tained from literature divided dendrites of pyramidal neurons in CA1 field of Hip-
pocampus into three main layers: oriens, radiatum, and lacunosum-moleculare.
In the CA3 field, a lucidum layer (formed by the mossy synapses of axon termi-
nals coming from granular neurons of Dentate Gyrus) must be added. Different
authors have carefully computed the length and spatial distribution of these
dendrites and have computed also the number of synapses in each stratum, their
quality (inhibitory or excitatory) as well has the number and quality of synapses
on the soma and the axon [3,7,16,17]. The gross, total numbers for CA1 are:
31000 excitatory synapses and 1700 inhibitory synapses. About their distribu-
tion within the strata, the following values can be obtained: 12000 excitatory
synapses in stratum oriens, where the inhibitory synapses are estimated to be
about 600; 17000 and 700 respectively excitatory and inhibitory in the stra-
tum radiatum; and respectively 2000 excitatory and 300 inhibitory in stratum
lacunosum-moleculare. The article in [16] reports only space densities for the
two classes of synapses for pyramidal neurons in CA3. These values can be uti-
lized to compute the distribution of synapses on a single neuron by using the
result that 88% are excitatory and 12% are inhibitory. Also the percentages
of excitatory synapses in different strata have been computed and so we know
that they are almost 30% in lacunosum-moleculare, 28% in radiatum, 18% in
the lucidum, 1% on soma, and 23% in oriens. Percentage of inhibitory synapses
are: 33% in lacunosum-moleculare, 19% in radiatum, 10% in stratum lucidum,
9% on the soma and 29% in stratum oriens. The distribution of the inhibitory
synapses discloses that about 89% are positioned on dendritic shafts, 9% on
soma, and 2% directly act on the initial segment of the axon (i.e., very close to
the hillock). If we use the total value obtained for the synapses on pyramidal
neurons of CA1, and divide it in 88% excitatory and 12%, from the above per-
centage we can compute the following numbers for a pyramidal neuron of the
CA3 field of the hippocampus. The numbers for the excitatory synapses in dif-
ferent strata are: 9300 in lacunosum-moleculare, 8700 in stratum radiatum, 5500
in the stratum lucidum, 300 on the soma, and 7000 in the stratum oriens. The
inhibitory synapses results to be : 1300 in stratum lacunosum-moleculare, 750 in
stratum radiatum, 400 in the stratum lucidum, 350 on the soma and 1150 in the
stratum oriens.

2.2 Mathematical Description

To compute the Excitatory (and Inhibitory) Post Synaptic Potential (EPSP
and IPSP) produced at the axon hillock by a generic excitatory (and inhibitory)
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synapse located at a specific position on some dendrite (or shaft or soma) we
based ourselves on the method described by Kleppe and Robinson [10]. They
computed the activation time course of the AMPA receptors of a generic exci-
tatory synapse located on a dendrite by analyzing the time course (recorded at
the soma) of the co-localized NMDA receptors. They assumed that the opening
time of single NMDA ionic channels is so short (only about 1μs) that it could
be considered as a step function. Hence, they computed the filter response of the
dendrite to an impulse function (Dirac’s δ) and to a step function. In such a way
they were able to obtain, by the time course of currents recorded at the soma,
that of AMPA phase currents at the synapse. We inverted this procedure and,
by knowing the time course of AMPA currents produced at each synapse, we
computed the time course of currents at the hillock. From our previous compu-
tational experiments on synaptic diffusion and EPSP-AMPA generation [29,30]
and from experimental data in literature [6] we could establish the time course
of AMPA currents produced at excitatory synapses. Similar behaviors were sur-
mised for inhibitory currents. The current time course at the synapses has been
described by the following equation:

I(t) = K

(
exp

[−t

τ2

]
− exp

[−t

τ1

])
(1)

where τ1 is the activation time constant, τ2 is the decay time constant and K is
a scaling constant. The contribution of each inhibitory and excitatory synapse
to the membrane voltage at the hillock was computed by the following equation
which provide the filtered time curse at the soma:
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where L is the distance between the site of the synapse and the point of the axonic
hillock, in units of λ (the space constant of the dendrite), T is the time in units
of τm (the membrane time constant), and k is an appropriate constant related
to the peak amplitude of the AMPA current. From the summed synaptic current
at the soma and by using the following differential equation, we computed the
Post Synaptic Potential (PSP) :

C
d

dt
V (t) + [V (t) − Vr]G − I(t) = 0 (3)

where V (t) is the membrane potential, C is the membrane capacitance, G is
the membrane conductance, and Vr(= −70mV ) is the resting potential. Typical
values for these parameters can be found in [11]. Dividing by G, this equation
translated into:

τm
d

dt
V (t) = −[V (t) − Vr] − I(t)

G
. (4)
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At the last, the following discrete time equation was used to compute the
PSP, V (t), by the synaptic current I(t):

V (t + Δ) = V (t)

[
1 − Δ

τm

]
+

Δ

Gτm
I(t) + VrΔ (5)

where VrΔ is the constant VrΔ
τm

.

3 Simulation

From a geometrical point of view, we considered the pyramidal neuron as com-
posed of the compartments described in the following. A soma of spherical shape
from which depart a shaft and an axon; the starting portion of the shaft forms
the stratum lucidum. With the apex on the starting portion of the shaft, a first
set of dendrites arise and are disposed in a conical volume forming the stratum
radiatum. A second set of dendrites forms the stratum lacunosum-moleculare ar-
ranged in a semi-conical volume positioned on the top of the stratum lucidum.

Fig. 1. A pyramidal neuron. The shape is obtained by plotting the synaptic positions

in 3D. The units are in μm.

On the opposite side of the soma with respect to the shaft, the stratum oriens
is arranged in a conical volume. Synapses, both inhibitory and excitatory, are
arranged randomly according to an uniform distribution on the different den-
dritic structures but respecting the proportion and the number as reported in
[16,17]. An example of the geometry of a pyramidal neuron is shown in Figure 1
as it is obtained by plotting in 3D the synaptic positions. Once synapses have
been positioned, their distances from the hillock have been computed and con-
verted in units of λ. The times of activation of each excitatory and inhibitory
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synapse have been computed according to a Poisson distribution, with a mean
frequency (chosen from data in the literature) which could vary across the com-
putational experiments. The amplitude of current peak at each synapse for each
activation time has been chosen depending on a positive skewness distribution
which considered both experimental data [6] and computational results obtained
in our previous work [29,30]. At any time step (0.01ms) the contribution of each
synapse to the current arriving at the hillock, computed by using equation 2, was
summed up and the voltage was computed by equation 5. Each time the voltage
was equal or exceeded the threshold value (which for simplicity has been consid-
ered constant), the neuron produced a spike. In a first approximation, spikes are
not modelled according to Na+ and K+ channel activation and deactivation as
in the Hodgking and Huxley model, nevertheless each spike is not simply con-
sidered as a discontinuity point in the membrane voltage time series as usually
assumed in simplified models of leaky integrated-and-fire (LIF) neurons [5]. The
following procedure has been assumed for its simulation. When the membrane
potential crossed the threshold value, the voltage was raised to a fixed positive
(+30mV ) value and, after, it went in an hyperpolarization state. During the
subsequent refractory period, with a duration of 15ms, the neuron remained
unable to react to the incoming synaptic current but the membrane potential
increased according to equation 5. The complete procedure mimicked an hyper-
polarizing after potential (see Fig. 3). At the end of the refractory period the
neuron became again able to react to the synaptic activity. For each computa-
tional experiment our simulator computed the ISI distribution, the mean ISI,
the standard deviation and the C.V. (i.e., the coefficient of variation of the dis-
tribution of ISIs), defined as the standard deviation σ divided by the mean μ:
CV = σ

μ . This last parameter is considered as an evaluator of the neuronal firing
irregularity. At the end of the computational experiment, currents, voltages, ac-
tivation of single synapses (chosen as control) and the number of active synapses
at each time were produced. A report of the more important parameters used
for simulation and of the most salient results (mean, sd and C.V. of ISIs and of
spiking frequency) was also generated.

4 Results

In this paper we present results which were obtained in computational experi-
ments in which the number and the position of the synapses have been kept fixed
and so, the biological structure of the neuron remained constant. In a first series
of computer simulations, the numbers of excitatory and inhibitory synapses re-
ported in [16,17] have been considered as reference values to compute the firing
activity of the simulated pyramidal neurons. Several computations have been
carried on by modifying some meaningful parameters. In particular, the mean
and the standard deviation of the peak amplitudes for Excitatory and Inhibitory
Post Synaptic Currents (EPSC and IPSC) or the frequency of Poissonian inputs
to excitatory and inhibitory synapses changed in the different simulations. The
currents produced at the synaptic level, arrived delayed and reduced at the axon
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Fig. 2. 20s of simulated CA3 pyramidal neuron activity for 3 different combination of

synaptic input frequency: A) excitatory 0.526Hz and inhibitory 22.2Hz; B) excitatory

0.526Hz and inhibitory 20Hz; C) excitatory 0.5Hz and inhibitory 22.2Hz

hillock, in conformity with the equation 2 which takes into account the distances
of each synapse from the hillock. The experiments have been compared only by
changing the frequency of activation of the synaptic input. The synaptic cur-
rents, both excitatory and inhibitory, had peak amplitude of 30 ± 30pA (mean
± standard deviation). The panels of Figure 2 show an example of three differ-
ent runs where the synaptic input frequency changed, while the structure and
position of synapses did not varied. The mean spike frequency of the simulated
neuron was 4.34Hz and the CV of ISIs was 1.11 for the panel A. In the simulation
producing the output of the panel B only the activation frequency of inhibitory
synapses has been changed slightly with respect to the previous example. In this
case the mean spike frequency of the simulated neuron was 10.5Hz and the CV
of ISIs was 0.98. For the panel C, the result was obtained by decreasing a little
the activation frequency of excitatory synaptic input and increasing that of the
inhibitory one. The obtained results give a mean spiking frequency of 1.26Hz
with a CV for ISIs of 0.98. The difference in the spiking activity was obtained by
small variations of excitatory and/or inhibitory synaptic activation frequency.
In all the above cases the CV of ISIs was very close to the unit and within the
range of values reported for in vivo recordings of cortical pyramidal neurons [24].
Figure 3 shows the membrane potential in the proximity of a spike generation
(2nd spike of panel C in Fig. 2). It has to be noted the large, irregular fluctua-
tions of the membrane potential which occasionally can produce the threshold
crossing and hence the firing of the neuron. This high irregularity is due to the
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Fig. 3. Membrane potential at the hillock for a time period encompassing the genera-

tion of a spike

complete contribution of excitatory and inhibitory synapses and depends greatly
on the respective frequency of activation.

5 Discussion

In the present paper we exhibit a model of pyramidal neuron which accounts for
many biological parameters. The structure of a single pyramidal neuron of the
CA3 field of Hippocampus has been geometrically determined. Up to 30802 ex-
citatory and 4280 inhibitory synapses have been positioned onto dendritic tree,
shaft, soma and axon. By combining the distance of each synapse with the cable
properties of the dendrites and the contribution given by each filtered synaptic
current at any time, the membrane potential at the hillock has been computed.
The stochastic fluctuations due to a non-synchronous activation of synapses (pro-
duced by a stochastic Poissonian process) determine a large fluctuation in the
current arriving at the hillock. The direct consequence of this is a random fluctu-
ation of the potential at the hillock which range from hyper-polarizing values up
to the threshold value which is occasionally reached (see Fig. 3). The resulting
randomness in the time occurrence of spikes gives origin to spike patterns com-
parable with those observed in in vivo experiments [24]. Of great relevance is
that the C.V. we obtain in our simulation is very close to the unit which is that
computed from in in vivo recordings [24]. This shows that, in spite of the sim-
plifications, the model can be considered robust and biologically plausible. Also,
we want to stress that although the pyramidal neuron model used in the present
investigations reflects structural data from hippocampal pyramidal neurons, its
input and its basic activity are quite similar to pyramidal neurons of cortical
areas. Hence, the results describe adequately the behavior of the last neurons.
In this preliminary study we present data derived by computational experiments
in which the response of the neuron to small variations of the synaptic input fre-
quency is considered. Analysis of data seems to show that such a system is very
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sensitive to small changes of the synaptic input frequency both in inhibitory and
in excitatory synapses (compare panels A,B, and C of Fig. 2). A system with
such characteristics would suggest that codification of information in the brain
is arranged in such a way that small variations of input frequencies on single
neurons result in large (amplified) variations of their output spiking frequency.
Highly irregular spike trains seem to be a characteristic of pyramidal neurons of
superior cortical areas. The indications about the code underlying the transmis-
sion derived from our computational results reinforce the bias toward the rate
code hypothesis. However, we want to stress the fact that this indication can not
be extended to the activity of primary cortices, which seem to be organized in a
different way. In fact, results from primary visual and auditory cortices denote
much more tuned responses to specific features of the input [4,9].
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Abstract. Because it is a highly approachable part of the brain, the retina is by 
far one of the best known regions of the Central Nervous System. The 
systematic application of modern neuroanatomical and quantitative techniques 
has provided the complete catalogue of retinal cells, while electrophysiological 
experiments are gradually revealing their functions. Retinal complexity is 
achieved through serial and parallel connections of about 50 different types of 
neurons. Among retinal circuits, the best known is the rod pathway, a chain of 
neurons by which rod-generated signals are grafted onto an evolutionary more 
antique cone system. About ten types of cone bipolar cells provide parallel 
channels conveying to the brain information related to colour, temporal domain, 
motion etc. This elegant and complex circuitry becomes severely corrupted in 
retinal degeneration causing the progressive death of photoreceptors for genetic 
causes. Retinitis Pigmentosa and related disorders are more than just 
photoreceptor diseases, as inner retinal cells are severely affected by the loss of 
their major input neurons. 

1   Retinal Rod and Cone Pathways 

Vision starts in the retina, one of the best known regions of the Central Nervous 
System. Thanks to the retinal highly regular structure and to the systematic 
employment of sophisticated neuroanatomical and electrophysiological techniques, 
we know now by name each of the some 50 types of neurons contributing to retinal 
architecture.  

In mammals, retinal organization is remarkably conserved; albeit differences in the 
relative proportions of rods and cones, and regional specializations such as the 
primate fovea, information processing is achieved basically through the same 
neuronal networks.  

Considerable computation of the visual signal is performed in the retina, a true 
piece of the brain, and not simply a relay station of electric responses initiated in 
photoreceptors. This is obtained by means of two basic types of photoreceptors (rods 
and cones), two classes of second order neurons (bipolar cells and horizontal cells), 
specialized interneurons (amacrine cells) and output neurons (ganglion cells). A 
fundamental role is also played by Müller glial cells, dedicated, among other 
functions, to the retrieval of glutamate used for neuronal transmission. The basic 
wiring diagram of the mammalian retina is schematized in Figure 1.  
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Fig. 1. Schematic drawing of the major classes of retinal cells and their connections. is/os: inner 
and outer segments of photoreceptors; onl and inl: outer and inner nuclear layers; opl and ipl: 
outer and inner plexiform layers; gcl: ganglion cell layer; nfl: nerve fiber layer. 1-2: cones and 
rods. 3: horizontal cell. 4: rod bipolar cell. 5 and 6: ON and OFF cone bipolar cells, 
respectively. 7, 8 and 9: examples of amacrine cells. The neuron n.7 is an AII amacrine cell. 10 
and 12: ON and OFF ganglion cells. 11: Müller glial cell. 

Remarkably, each of the six classes of neuronal cells is fragmented in different 
types, each of them constituting parallel circuits, anatomically equipotent, presumably 
dedicated to different functions. Each cellular type is characterized by a collection of 
properties, all together conferring unique signatures: morphology, stratification 
pattern, tiling over the retinal surface, number, physiology. Hence, one can 
distinguish 1-3 types horizontal cells, about a dozen bipolar cells, thirty types of 
amacrine cells and 12-15 types of ganglion cells [1]. Albeit well defined on the basis 
of morphological features, the physiological properties of each cell types are only 
beginning to be unravelled. 

One of the best known retinal neuronal networks is the so-called rod pathway, 
meaning by that the dedicated chain of neurons responsible for the elaboration of 
visual signals initiated in rod photoreceptors and carried up to ganglion cells toward 
the exit of the retina. 

It is long known from electrophysiological findings that a single set of ganglion 
cells is used for both vision in scotopic as well as in photopic conditions (starlight and 
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sunlight, respectively); this represents an obvious example of retinal efficiency in the 
absence of duplication. However, because rod photoreceptors far outnumber cones in 
most mammalian retinas, it was a surprise to learn, by means of quantitative 
neuroanatomy, that cone bipolars outnumber rod bipolars even in the retina of mice, 
nocturnal animals in which cones are only 3% of all the photoreceptors [2-3]. The 
reason is that more rods converge onto a single rod bipolar than cones onto cone 
bipolars; thanks to convergence, the rod system achieves high sensitivity.  

The circuitry associated with rods is simpler than that of cones. There is only 
one type of rod photoreceptor and rods are connected to only a single type of 
bipolar cell. The latter synapses on a specialized amacrine cell, termed AII, which 
can be considered an hallmark of the mammalian retina. Thanks to the bi-
stratified morphology, the AII transmits the output of rod bipolar cells to ganglion 
cells stratified at various depth in the inner plexiform layer. Output occurs by 
either chemical synapses or via gap junctions established by AII dendrites onto 
axon terminals of various types of cone bipolar cells, which then excite the 
ganglion cells [4-5].  

 

Fig. 2. Montage of key neurons of the mammalian rod pathway, individually labeled with 
fluorescent dyes. The light signal generated in rods is conveyed to a single type of rod bipolar 
cell (rb), that, in turn, is presynaptic onto the dendrites of AII amacrine cells. The latter 
establish connections with the axonal arborizations of cone bipolar cells (cb); these, finally, 
deliver the signal to ganglion cells, and thus to the exit from the retina. 
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Figure 2 schematizes the key players of the principal rod pathway. The illustrated 
cells have been individually labelled with lipophilic fluorescent dyes with the aid of a 
gene gun, and assembled in a montage. Only one type of cone bipolar cells is 
represented, although up to a dozen types have been described in the retina of various 
mammals. AII amacrines establish connections with most of them; hence, the 
principal rod pathway is composed of a chain of 5 neurons, comprising rods, rod 
bipolars, AII amacrines, cone bipolars and, finally, ganglion cells. 

The reason of this particular arrangement can be explained in evolutionary terms: 
because rods appeared in evolution after cones [6], the possibility exists that the rod 
circuitry was grafted onto the pre-existing cone pathways, ultimately exploiting its 
complexity. By connecting to the axon terminals of the cone bipolar cells, the rod 
pathway gains access to the elaborate circuitry of the cone pathway, including its 
associated amacrine network [7]. For example, the directionally selective type of 
ganglion cell, sensing the particular direction of motion of a visual stimulus, can 
function in scotopic conditions, even though it receives no direct synapses from the 
rod bipolar cells. One can say that the rod system piggybacks on the cone circuitry 
rather than accessing a dedicated, re-invented neural pathway solely dedicated to rods. 

 

Fig. 3. Schematic representation of bipolar cells types of the mouse retina. There is one single 
type of rod bipolar cell (RB) and nine types of cone bipolar cells (CB).  

Molecular cloning of the visual pigments (opsins) supports the conclusion that 
cone pigments evolved long before rhodopsin, the rod pigment [6]. Cones are 
associated with a complex variety of postsynaptic cells, as demonstrated by the fact 
that most mammalian retinas have 8 to 12 cone-driven bipolar cells. Our laboratory 
has recently provided a detailed classification of bipolar cells of the mouse retina, 
individually labelled with fluorescent molecules delivered with a gene gun to living 
retinal slices [8]. An example of the classification is given in Figure 3. Cone bipolars 
can be divided into two large group, based on the level of ramifications in the outer or 
inner laminae of the inner plexiform layers. In all vertebrates, these correspond to the 
termination of neurons most responding to increasing (“ON”) or decreasing (“OFF”) 
light levels. It is well known that the dichotomy between ON and OFF channels is 
established by the presence of different types of glutamate receptors on the dendrites 
of diverse types of cone bipolar cells. In the retina of the mouse, we found 4 types of 
presumptive OFF-cone bipolar cells and 5 types of presumptive ON-cone bipolar 
cells. This is quite similar to the results of Ghosh et al. [9] who provided a similar 
classification by means of intracellular injections of fluorescent dyes. It also agrees 
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with previous studies on monkeys, rabbits and rats, confirming the existence of a 
largely conserved structural plan in the retina of mammals [10-13]. 

The different types of OFF and ON cone bipolar cells can provide separate 
channels for high-frequency and low-frequency information. This is made possible by 
the presence on the dendrites of the bipolar cells of different types of AMPA and 
kainate receptors [14]. Experimental data demonstrate that different glutamate 
receptors recover from desensitization quickly in the transient cells and more slowly 
in the sustained cells [14]. 

Besides the ON and OFF subdivision, cone bipolars can be further discriminated 
according to the morphology of their axonal arbors, size, and relative abundance. 
Pharmacological and biochemical studies demonstrate that individual bipolar cell 
types have characteristic sets of neurotransmitter receptors and calcium-binding 
proteins [15]. These molecular signatures reflect different modes of intracellular 
signaling and different types of excitatory and inhibitory inputs from other retinal 
neurons, either at their inputs from cones or from amacrine cells that synapse on their 
axon terminals. At the cone synapses, different glutamate receptors are present. At 
their axon terminals, different bipolar cells can receive inhibitory glycinergic or 
GABAergic input via one of two different kinds of GABA receptors. The different 
receptors and their channels have different affinities and rates of activation and 
inactivation, which give the cells different postsynaptic responsiveness. 

Thus, the two broad classes of ON and OFF bipolars are each further subdivided, 
providing, among others, separate channels for high-frequency (transient) and low-
frequency (sustained) information. Two obvious consequences of splitting the output 
of the cones into separate temporal channels are to expand the overall bandwidth of 
the system and to contribute creating temporally distinct types of ganglion cells. The 
result is that the output of each cone is split into several bipolar cell types to provide 
many parallel channels, each communicating a different version of the cone’s output 
to the inner retina.  

Although artificial vision does not have necessarily to mimic the retinal operating 
mode, the articulated cone pathways and the existence of a piggy-backing rod 
network provide an elegant example of parallel and serial processing, representing a 
formidable and challenging template for devising artificial prostheses. 

2   Alterations of Retinal Circuitry in Disease 

Photoreceptor-specific genes undergo an exceptionally high number of mutations; 
more than 100 of them have been identified for the sole gene of rhodopsin, the light 
sensitive molecules of rods. The resulting phenotype is usually a retinal degeneration 
starting in rods at various ages and then propagating to cones as well.  

In humans, mutations in photoreceptor specific genes might cause Retinitis 
Pigmentosa (RP), a family of genetic disorders leading to progressive blindness, with 
an incidence of about 1:3,500. Although RP is presently without cure, experimental 
work is in progress in the hope to prevent the progressive death of photoreceptors or 
in the attempt to repair and replace these highly specialized cells.  

In view of the growing body of therapeutic approaches being developed to cure 
RP, it is important to focus the attention not only onto photoreceptors (the cells 
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traditionally studied in this family of diseases) but on the fate of the whole retina; 
particularly, it is important to understand whether secondary degeneration affects the 
synaptic partners of photoreceptors, and namely the bipolar and horizontal cells. 

Preservation of second order neurons, in fact, is a pre-requisite for retinal repair 
based on transplantation of photoreceptor precursors, on gene-therapy or on retinal 
exogenous stimulation achieved with electronic prostheses [16-18]. 

Up to few years ago, it was generally accepted that photoreceptor degeneration had 
minor effects upon inner retinal cells. Staining of histological sections with general 
methods did not reveal particular changes in retinal architecture; this was thus 
considered to be preserved except at the very late stages of the disease, anyway 
considered not suitable for attempting a cure. 

The application of cell-type specific methods of staining to pathological retinal 
tissue allowed the study of individual cell types at various stages of the disease 
progression. Few groups of investigators (including ours) examined systematically the 
retina of mammals (mostly rodents) with various forms of inherited retinal 
degeneration and brought to light impressive changes occurring among inner retinal 
cells as a consequence of the death of rods and cones [19]. 

 

Fig. 4. Diagram illustrating some of the effects of photoreceptor degeneration upon rod (left) 
and cone bipolar cells (right). As long as photoreceptors die off, the dendrites of bipolar cells 
undergo progressive retraction, up to complete atrophy. Neurotransmitter receptors, such as the 
metabotropic glutamate receptor mGluR6 (black dots) are down regulated and misplaced to the 
cell bodies and axons of the bipolar cells. The axonal arborizations, normally growing to their 
adult size during postnatal retinal development, show a structural failure and remain atrophic. 
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Our laboratory demonstrated that, the wave of photoreceptor death is accompanied 
by a stereotyped series of changes in second order neurons: this series is independent 
of the genetic abnormality underlying the disease and it is common to different animal 
species. Abnormalities include progressive and wide-spread dendritic retraction in rod 
and cone bipolar cells, misplacement and loss of glutamatergic postsynaptic receptors, 
aberrant neurite sprouting and, in the most aggressive mutations, secondary neuronal 
loss [20-23]. A diagram illustrating major remodelling events in bipolar cells of 
mouse models of RP is shown in Figure 4.  

Other investigators have described extensive gliosis, ectopic cellular migration and 
self-excitation of neuronal and glial cells in advances stages of the disease [19].  

Studies on reactive changes of ganglion cells are in progress in our laboratory; they 
are made possible by the recent development of mice expressing the fluorescent 
protein GFP in a small number of ganglion cells. By crossing these animals with mice 
carrying a mutation causing photoreceptor degeneration, one can correlate the 
anatomy and physiology of individual types of ganglion cells to the stage of the 
disease. This is very important in view of the recent development of intra-ocular 
electronic devices which transform light energy into electric impulses that then should 
excite ganglion cells directly, completely bypassing the retinal circuitry. An apparent 
limitation of such a prosthetic approach to treat retinal degeneration is the 
experimental finding that the threshold of electrical stimulation of ganglion cells in 
human patients suffering from RP is surprisingly high [24]. Our results on secondary 
remodelling of bipolar cells in mice rise the possibility that the effects of 
photoreceptor death propagate as a cascade to the innermost retinal layers, ultimately 
leading to the progressive atrophy and loss of excitability of ganglion cells.  

More studies are necessary to understand the biology of Retinitis Pigmentosa; 
however, this should be considered a disease affecting the retina as a whole, more 
than just a dysfunction of photoreceptors. 

The possibility of studying retinal neurons individually by means of cell-type 
selective methods has considerably increased our knowledge of retinal architecture 
and specialized circuitry. Now it is time to extend the same panel of methods to 
retinal disorders, to study with equal detail how the refined retinal architecture 
becomes corrupted in degenerating diseases. The challenge and the hope are to 
prevent and cure them. 
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Abstract. We posit a new paradigm for image information processing. For the 
last 25 years, this task was usually approached in the frame of Triesman’s two-
stage paradigm [1]. The latter supposes an unsupervised, bottom-up directed 
process of preliminary information pieces gathering at the lower processing 
stages and a supervised, top-down directed process of information pieces 
binding and grouping at the higher stages. It is acknowledged that these sub-
processes interact and intervene between them in a tricky and a complicated 
manner. Notwithstanding the prevalence of this paradigm in biological and 
computer vision, we nevertheless propose to replace it with a new one, which 
we would like to designate as a two-part paradigm. In it, information contained 
in an image is initially extracted in an independent top-down manner by one 
part of the system, and then it is examined and interpreted by another, separate 
system part. We argue that the new paradigm seems to be more plausible than 
its forerunner. We provide evidence from human attention vision studies and 
insights of Kolmogorov’s complexity theory to support these arguments. We 
also provide some reasons in favor of separate image interpretation issues.  

1   Introduction 

It is generally acknowledged that our computer vision systems have been and 
continue to be an everlasting attempt to imitate their biological counterparts. As such, 
they have always faithfully followed the ideas and trends borrowed from the field of 
biological vision studies. However, image information processing and image 
understanding issues have remained a mystery and a lasting challenge for both of 
them. Following biological vision canons, prevalent computer vision applications 
apprehend image information processing as an interaction of two inversely directed 
sub-processes. One is – an unsupervised, bottom-up evolving process of low-level 
elementary image information pieces discovery and localization.  The other  – is a 
supervised, top-down propagating process, which conveys the rules and the 
knowledge that guide the linking and grouping of the preliminary disclosed features 
into more large agglomerations and sets. It is generally believed that at some higher 
level of the processing hierarchy this interplay culminates with the required scene 
decomposition (segmentation) into its meaningful constituents (objects). 



 Does a Plane Imitate a Bird? 109 

 

As said, the roots of such an approach are easily traced to the Treisman’s Feature 
Integrating Theory [1], Biederman’s Recognition-by-components theory [2], and 
Marr’s theory of early visual information processing [3]. They all shared a common 
belief that human’s mental image of the surrounding is clear and full, and point by 
point defined and specified. On this basis, a range of bottom-up proceeding 
techniques has been developed and continues to flourish. For example, super-fast 
Digital Signal Processors (DSPs) with Gigaflop processing power, which were 
designed to cope with input data inundation. Or Neural Nets that came to solve the 
problems of data patterns discovery, learned and identified in massive parallel 
processing arrangements. Or the latest wave of computational models for selective 
attention vision studies [4].  

 With only a minor opposition [5], the bottom-up/top-down processing principle 
has been established as an incontestable and dominating leader in both biological and 
computer vision. 

2   Denying the Two Stage Approach 

The flow of evidence that comes from the latest selective attention vision studies 
encourages us to reconsider the established dogmas of image processing. First of all, 
the hypothesis that our mental image is entirely clear and crisp does not hold more, it 
was just an inspiring illusion [6]. In the last years, various types of perceptual 
blindness have been unveiled, investigated and described [7]. 

Considering selective attention vision studies, it will be interesting to note that the 
latest investigations in this field also come in contradiction with the established 
bottom-up/top-down approaches. After all, it was a long-standing conviction that the 
main part of the incoming visual information is acquired via the extremely dense 
populated (by photoreceptors) eye’s part called fovea. Because of its very small 
dimensions, to cover the entire field of view, the eyes constantly move the fovea, 
redirecting the gaze and placing the fovea over different scene locations, thus 
enabling successful gathering of the required high-resolution information. A more 
scrutinizing view on the matters reveals that the decision to make the next saccadic 
move precedes the detailed information gathering performed at such a location. That 
leads to an assumption that other sorts of information must be involved, supporting 
attention focusing mechanisms. 

Considering the empirical evidence (and the references that we provide are only a 
negligible part of an ample list of recent publications), juxtaposing it with the insights 
of Kolmogorov Complexity theory (which we adopt to explain these empirical 
biological findings), we have come to a following conclusion: the bottom-up/top-
down principle can not be maintained any more. It must be replaced with a more 
suitable approach. 

Recently, we have published a couple of papers ([8], [9]) in which we explain our 
view on the issue. For the clarity of this discussion, we will briefly repeat their main 
points. First, we reconsider the very notion of image information content. Despite of 
its widespread use, the notion of it is still ill defined, intuitive, and ambiguous. Most 
often, it is used in the Shannon’s sense, which means information content assessment 
averaged over the whole signal ensemble (an echo of the bottom-up approach). 
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Humans, however, rarely resort to such estimates. They are very efficient in 
decomposing images into their meaningful constituents and then focusing attention to 
the most perceptually important and relevant image parts. That fits the concepts of 
Kolmogorov’s complexity theory, which explores the notions of randomness and 
information. Following the insights of this theory, we have proposed the next 
definition of image contained information: image information content can be defined 
as a set of descriptions of the visible image data structures. Three levels of such 
description can be generally distinguished: 1) the global level, where the coarse 
structure of the entire scene is initially outlined; 2) the intermediate level, where 
structures of separate, non-overlapping image regions usually associated with 
individual scene objects are delineated; and 3) the low level description, where local 
image structures observed in a limited and restricted field of view are resolved. 

The Kolmogorov Complexity theory prescribes that the descriptions must be created 
in a hierarchical and recursive manner, that is, starting with a generalized and simplified 
description of image structure, it proceeds in a top-down fashion to more and more fine 
information details elaboration performed at the lower description levels. 

A practical algorithm, which implements this idea, is presented, and its schema is 
depicted in the Figure 1. 
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Fig. 1. The Schema of the proposed approach 

As it can be seen from the figure, the schema is comprised of three processing 
paths: the bottom-up processing path, the top-down processing path and a stack where 
the discovered information content (the generated descriptions of it) are actually 
accumulated. 

As it follows from the schema, the input image is initially squeezed to a small size 
of approximately 100 pixels. The rules of this shrinking operation are very simple and 
fast: four non-overlapping neighbour pixels in an image at level L are averaged and 
the result is assigned to a pixel in a higher (L+1)-level image. This is known as “four 



 Does a Plane Imitate a Bird? 111 

 

children to one parent relationship”. Then, at the top of the shrinking pyramid, the 
image is segmented, and each segmented region is labeled. Since the image size at the 
top is significantly reduced and since in the course of the bottom-up image squeezing 
a severe data averaging is attained, the image segmentation/classification procedure 
does not demand special computational resources. Any well-known segmentation 
methodology will suffice. We use our own proprietary technique that is based on a 
low-level (local) information content evaluation, but this is not obligatory. 

From this point on, the top-down processing path is commenced. At each level, the 
two previously defined maps (average region intensity map and the associated label 
map) are expanded to the size of an image at the nearest lower level. Since the regions 
at different hierarchical levels do not exhibit significant changes in their characteristic 
intensity, the majority of newly assigned pixels are determined in a sufficiently 
correct manner. Only pixels at region borders and seeds of newly emerging regions 
may significantly deviate from the assigned values. Taking the corresponding current-
level image as a reference (the left-side unsegmented image), these pixels can be 
easily detected and subjected to a refinement cycle. In such a manner, the process is 
subsequently repeated at all descending levels until the segmentation/classification of 
the original input image is successfully accomplished. 

At every processing level, every image object-region (just recovered or an 
inherited one) is registered in the objects’ appearance list, which is the third 
constituting part of the proposed scheme. The registered object parameters are the 
available simplified object’s attributes, such as size, center-of-mass position, average 
object intensity and hierarchical and topological relationship within and between the 
objects (“sub-part of…”, “at the left of…”, etc.). They are sparse, general, and yet 
specific enough to capture the object’s characteristic features in a variety of 
descriptive forms. 

Finally, it must be explicitly restated: all this image information content discovery, 
extraction and representation proceeds without any involvement of any high-level 
knowledge about semantic nature of an image or any cognitive guidance cues 
mediating the process. However, that does not preclude a human observer to grasp the 
gist of the segmented scene in a clear and unambiguous way. (Which confirms that all 
information needed for gist comprehension is extracted and is represented correctly.) 

3   Illustrative Example 

To illustrate the qualities of the image information extraction part we have chosen a 
scene from the Photo-Gallery of the Natural Resources Conservation Service, USA 
Department of Agriculture, [10]. 

Figure 2 represents the original image, Figures 3 – 7 illustrate segmentation results 
at various levels of the processing hierarchy. Level 5 (Fig. 3) is the topmost nearest 
level (For the image of this size the algorithm has created a 6-level hierarchy). Level 
1 (Fig. 7) is the lower-end closest level. For space saving, we do not provide all the 
samples of the segmentation succession, but for readers’ convenience each presented 
example is expanded to the size of the original image. 
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Fig. 2. Original image, size 1052x750 pixels 

 

 
 
Fig. 4. Level 4 decompos., 14 region-objects 

 

 
 
Fig. 6. Level 2 decompos., 49 region-objects 

 
Fig. 3. Level 5 decompos., 8 region-objects 

 

 
Fig. 5. Level 3 decompos., 27 region-objects 

 

 
Fig. 7. Level 1 decompos., 79 region-objects 

 
 
Extracted from the object list, numbers of distinguished (segmented) at each 

corresponding level regions (objects) are given in each figure capture. 
Because real object decomposition is not known in advance, only the generalized 

intensity maps are presented here.  
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4   Introducing Image Interpretation  

Eliminating information content extraction from the frame of the bottom-up/top-down 
approach and declaring its independent, self-consistent and unsupervised top-down 
manner of information processing, immediately raises a question: and what is about 
high-level cognitive image perception? Indeed, none at any time has ever denied the 
importance of cognitive treatment of image content. But the autonomous nature of 
image information content preprocessing (that we have just above defined and 
approved) does not leave any choices for an anticipated answer: understanding of 
image information content, that means, its appropriate interpretation, must come from 
the outside, from another part of the processing system. Contrary to the bottom-
up/top-down approach, this part has no influence on its predecessor. 

The consequences of acceptance of such a two-part processing concept are 
tremendous. First of all, the common belief that the knowledge needed for high-level 
information processing can be learned from the input data itself is totally invalidated. 
Now, all of the so cherished training and learning theories, neural nets and adaptive 
approximators – all that must be put in junk. And then... Regarding image 
interpretation duties (the functionality of the second system’s part), several questions 
must be urgently considered: 1) how the knowledge, packed into a knowledge base 
that supports the interpretation process, is initially acquired? How and from where 
does it come? 2) how it must be presented? What is the best representation form of it? 
3) how the interaction with the information content (the image stuff subjected to 
interpretation and contained in the preceding system’s module) is actually performed? 

We hope that we have the right answers. At least, we will try to put them 
unambiguously. For the first question, we think that the knowledge must come from 
the system designer, from his image context understanding and his previous domain-
related experience. As in humans, the prime learning and knowledge accumulation 
process must be explicit and declarative. That means, not independently acquired, but 
deliberately introduced. As in humans, the best form for such introduction, its further 
memorization for later recall, its representation and usage – is an ontology [11]. (And 
that is the answer for the second question.) By saying this, we don’t mean the world’s 
ontology that a human gradually creates in his life span. We mean a simplified, 
domain-restricted and contextualized ontology, or as it is now called – domain 
interpretation schema [12]. Which can be very specific about image information 
content and context, and does not have to share knowledge with other applications. 
This makes it very flexible, easily designed by the application supervisor, which thus 
becomes a single source for both the required knowledge and its representation in a 
suitable form (of an interpretation schema). 

A known way to avoid complications in ontology maintenance and updating (in 
accordance with the changing application environment) is to create additional partial 
interpretation schemas, which take into account the encountered changes. To make 
the whole system workable, a cross mapping between partial schemas must be 
established. Such mapping is a part of a local representation, and, as we see that, must 
be also provided by the system designer. However, he has not to do this in advance, 
he can gradually expand and increase the system’s interpretation abilities adding new 
ontologies as the previous arrangement becomes insufficient. 
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Finally, and that is the first time when the idea is announced, we propose to see the 
description list at the output of the first module (the early described information 
processing module) as a special kind of a partial ontology, written in a special 
description language. By the way, this language can be shared with attribute 
description languages utilized in the partial ontologies. Once more, providing the 
mapping between them paves the way for the whole system integration. And that is 
the answer for the third question. 

The proposed framework does not solve the whole image interpretation problem. It 
must be seen only as a first step of it, where segmented in an unsupervised manner 
image regions become meaningfully regrouped and bonded into human accustomed 
objects with human familiar lexical names and labels. The latter can be used then in 
further more advanced interpretations of image spatio-temporal content. 

5   Conclusions 

In this paper, we have presented a new paradigm for image information content 
processing. Contrary to the traditional two-stage paradigm, which rely on a bottom-up 
(resource exhaustive) processing and on a top-down mediating (which requires 
external knowledge incorporation), our paradigm assumes a two-part approach. Here, 
one part is responsible for image information extraction (in an unsupervised top-down 
proceeding manner) and the other part is busy with interpretation of this information. 
Such subdivision of functional duties more reliably represents biological vision 
functionality, (albeit, it is still not recognized by biological vision research 
community). 

   The two-part paradigm forces reconsideration of many other image information 
related topics. For example, Shannon’s definition of information, as an average over 
an ensemble, versus Kolmogorov’s definition of information, as a shortest program 
that reliably describes/reproduces the structure of image objects. A new viewpoint 
must be accepted regarding information interpretation issues, such as knowledge 
acquisition and learning, knowledge representation (in form of multiple parallel 
ontologies), and knowledge consolidation via mutual cross-mapping of the ontologies. 

   A hard research and investigation future work is anticipated. We hope it would 
be successfully fulfilled. 

References  

1. A. Treisman and G. Gelade, “A feature-integration theory of attention”, Cognitive 
Psychology, 12, pp. 97-136, Jan. 1980. 

2. I. Biederman, “Recognition-by-components: A theory of human image understanding”, 
Psychological Review, vol. 94, No. 2, pp. 115-147, 1987. 

3. D. Marr, “Vision: A Computational Investigation into the Human Representation and 
Processing of Visual Information”, Freeman, San Francisco, 1982. 

4. L. Itti, “Models of Bottom-Up Attention and Saliency”, In: Neurobiology of Attention, (L. 
Itti, G. Rees, J. Tsotsos, Eds.), pp. 576-582, San Diego, CA: Elsevier, 2005. 

5. D. Navon, “Forest Before Trees: The Precedence of Global Features in Visual Perception”, 
Cognitive Psychology, 9, pp. 353-383, 1977. 



 Does a Plane Imitate a Bird? 115 

 

6. A. Clark, “Is Seeing All It Seems? Action, Reason and the Grand Illusion”, Journal of 
Consciousness Studies, vol. 9, No. 5/6, pp. 181-218, May – June 2002. 

7. D. J. Simons and R. A. Rensink, “Change blindness: past, present, and future”, Trends in 
Cognitive Science, vol. 9, No. 1, pp. 16 – 20, January 2005. 

8. E. Diamant, “Image information content estimation and elicitation”, WSEAS Transactions 
on Computers, vol. 2, issue 2, pp. 443-448, April 2003. 

9. E. Diamant, “Searching for image information content, its discovery, extraction, and 
representation”, Journal of Electronic Imaging, vol. 14, issue 1, article 013016, January-
March, 2005. 

10. NRCS image collection. Available: http://photogallery.nrcs.usda.gov/  (Iowa collection). 
11. M. Uschold and M. Gruninger, “ONTOLOGIES: Principles, Methods and Applications”, 

Knowledge Engineering Review, vol. 11, No. 2, pp. 93-155, 1996. 
12. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt, “C-

OWL: Contextualizing Ontologies”, Second International Semantic Web Conference 
(ISWC-2003), LNCS vol. 2870, pp. 164-179, Springer Verlag, 2003. 

 
 



A Neural Model of Human Object

Recognition Development

Rosaria Grazia Domenella and Alessio Plebe

Department of Cognitive Science, University of Messina, Italy
{rdomenella, aplebe}@unime.it

Abstract. The human capability of recognizing objects visually is here
held to be a function emerging as result of interactions between epige-
netic influences and basic neural plasticity mechanisms. The model here
proposed simulates the development of the main neural processes of the
visual system giving rise to the higher function of recognizing objects.
It is a hierarchy of artificial neural maps, mainly based on the LISSOM
architecture, achieving self-organization through simulated intercortical
lateral connections.

1 Introduction

Object recognition is the most astonishing capability of the human visual sys-
tem, and in the last decades many researches has been carried out to simulate
it by means of artificial computational models. However, the majority of these
attempts have just addressed the achievement of performances comparable with
human vision, regardless of how the performances would be achieved. The point
of how the human brain may gain recognition abilities has been much less inves-
tigated, since it may appear inessential to the understanding of how the adult
visual system works. In part this is still heritage of Marr’s epistemology, with
the underlaying principle of engineering design as discloser of the natural evolu-
tionary strategies in forging vision.

On the contrary, here is held that the understanding of how the brain areas
involved in recognition gradually succeed in developing their mature functions
would be a major key in revealing how humans and primates in general can
recognize objects. This is the motivation of studying artificial models of vision
where the main focus is in reproducing basic developmental mechanisms, avoid-
ing the explicit design of any of the processing steps involved in the classical
algorithmic approach to artificial vision.

The background assumption is that most of the processing functions involved
in recognition are not genetically determined and hardwired in the neural cir-
cuits, but are the result of interactions between epigenetic influences and some
very basic neural plasticity mechanisms. This view is clearly not a prerogative of
visual recognition only, but is extended as the most general explanation of the
representational power of the neural system [20], in line with the constructivism
in philosophy [28] and biology [29]. Visual recognition is indeed an exemplar case,
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where the idea of cortical functions as emerging organizations of neural maps
is supported by a particularly strong ground of neuroscientific [12, 2, 13, 11],
neurocognitive [8], and psychological [4, 23, 16] evidences.

2 Modeling Cortical Development with Self-organization

In the neurocomputational community several computational tools has been
suggested for modeling the development of functions in population of neurons,
especially in vision. One of the most attractive mathematical principle is the
so-called self-organization of cortical maps, first applied to the development of
visual areas in [27]. In this approach the final functions are achieved by the
combination of self-reinforcing local interaction of neurons, supporting Hebbian
principle, and some sort of competitive constraint in the growth of synaptic con-
nections keeping constant the average of cell activities. Using variants of this
principle von der Malsburg was able to simulate visual organizations like retino-
topy, ocular dominance and orientation sensitivity. His original formulation was
fairly realistic in mimicking cortical computations, limited to the two mentioned
effects, but the resulting system of differential equation was not too manageable
and therefore had little further developments.

On the contrary a later mechanism called SOM (Self-Organizing Maps) [14]
become quite popular because of its simplicity. The learning rule is on a winner-
take-all basis: if the input data are vectors v ∈ R

N , the SOM will be made of
some M neurons, each associated with a vector x ∈ R

N and a two dimensional
(in vision applications) coordinate r ∈ {< [0, 1], [0, 1] >} ⊂ R

2. For an input v
there will be a winner neuron w satisfying:

w = arg min
i∈{1,...,M}

{‖v − xi‖} . (1)

The adaptation of the network is ruled by the following equation:

Δxi = ηe−
‖rw−ri‖2

2σ2 (v − xi) , (2)

where w is the winner, identified thanks to the (1), η is the learning rate, and σ
the amplitude of the neighborhood affected by the updating. Both parameters η
and σ are actually functions of the training epochs, with several possible schemes
of variations.

The SOM is a useful tool for modeling in an abstract sense brain processes
emerging from input interactions and represented as topological organization,
but it is clearly far from reproducing realistic cortical mechanisms.

A recent model called LISSOM (Laterally Interconnected Synergetically Self-
Organizing Map) attempts to preserve the simplicity of the SOM with a more re-
alistic simulation of the basic plasticity mechanisms of cortical areas [22, 1]. The
main differences from the SOM are the inclusion of intercortical connections, and
the resort to plasticity as interaction between Hebbian growth and competitive
constraints. In this model each neuron is not just connected with the afferent input
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vector, but receives excitatory and inhibitory inputs from several neighbor neurons
on the same map. The activation a

(k)
i of a neuron i at discrete time k is given by:

a
(k)
i = f

(
γXxi · v + γEei · y (k−1)

i + γHhi · z (k−1)
i

)
, (3)

where the vectors yi and zi are the activations of all neurons in the map with a
lateral connections with neuron i of, respectively, excitatory or inhibitory type.
Vectors ei and hi are composed by all connections strengths of the excitatory
or inhibitory neurons projecting to i. The vectors v and xi are the input and
the neural code. The scalars γX, γE, and γH, are constants modulating the con-
tribution of afferents. The map is characterized by the matrices X,E,H, which
columns are all vectors x, e, h for every neuron in the map. The function f is
any monotonic non-linear function limited between 0 and 1. The final activation
value of the neurons is assessed after a certain settling time K.

The adaptation of the network is done by Hebbian learning, reinforcing con-
nections with a coincidence of pre-synaptic and post-synaptic activities, but is
counterbalanced by keeping constant the overall amount of connections to the
same neuron. The following rule adapts the afferent connections to a neuron i:

Δxi =
xi + ηaiv

‖xi + ηaiv‖ − xi. (4)

The weights e and h are modified by similar equations.

3 The Object Recognition Model

The model is made of several maps of artificial neurons, named in analogy with
the brain areas, locus of the corresponding function; the overall scheme is visible
in Fig. 1. The environment of the experiments is the set of natural images in
the COIL-100 benchmark library [19], a collection of 100 ordinary objects, each
seen under 72 different perspectives. In the model there are two distinct path-
ways, one monochromatic connected to the intensity retinal photoreceptors, and
another sensitive to the green and red photoreceptors. For simplicity the short
band photoreceptors has been discarded, it is known that short waves are less
important for the representation of colors in the cortex [30]. The lower maps
are called LGN with relation to the biological Lateral Geniculate Nucleus, the
function performed includes in fact also the contribution of ganglion cells [5].
There are three pairs of on-center and off-center sheets, the former activated
by a small central spot of light, and inhibited by its surround, conversely for
the latter. One pair is for intensity, the other two collect alternatively the acti-
vation or the inhibition portions from the red and the green planes, producing
the red-green opponents. It is known that also in LGN the functions performed
are the result of early neural development, however since this work is aimed at
investigating functions taking place in the cortex, for simplicity this component
was not left to develop naturally, but was simulated using predefined difference
of Gaussian functions.
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Fig. 1. Scheme of the model architecture

The cortical map named V1 collects its afferents from the monochromatic
sheets pair in the LGN, and is followed by the map V2, which has a lower reso-
lution and larger receptive fields. The relationship between brain areas and maps
of the model is clearly a strong simplification: the biological V1 is known to be
the place of an overlap of many different organizations: retinotopy [25], ocularity
[18], orientation sensitivity [26], color sensitivity [15], contrast and spatial fre-
quency [24]; the main phenomena reproduced by this model is the development
of orientation domains, small patches of neurons especially sensitive to a spe-
cific orientation of lines and contours. Several studies suggest that the natural

Fig. 2. Development of orientation domains in V1. The gray-scale in the maps is

proportional to the orientation preference of the neuron, from black→horizontal to

withe→vertical.
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Fig. 3. Development of color-constancy domains in V1. The gray-scale in the maps is

proportional to the sensitivity of the neurons to a single specific hue.

development of orientation sensitivity is a long process starting as response to
spontaneous activity before eye opening, and continuing with the exposure to
external images [9, 3, 21]. Accordingly, the training has been done using artifi-
cial elliptical blobs in the first 10000 steps, followed by natural images for other
10000 steps. The gradual development of orientation sensitive domains is shown
in Fig. 2, where the three leftmost maps are the sequence of training using syn-
thetic blobs only, the rightmost final is the result of the training using all the
7200 real images.

The color path proceeds to V4, named as the biological area especially in-
volved in color processing [30]. The main feature of the cortical color process is
color constancy, the property of group of neurons to respond to specific hue, de-
spite the changes in physical composition of the reflected light. This property is
important in recognizing objects, giving continuity to surfaces, and has also been
proven to be an ability emerging gradually in infants [4]. During the training of
V4 at the beginning there is a normal neural response, therefore with very low
sensitivity to pure hue, and is peaked in the middle range between red and green,
at the end the color sensitivity of all patches is uniformly distributed along the
hue range. The development of color constancy domains is shown in Fig. 3.

The paths from V4 and V2 rejoin in the cortical map LOC, which has larger
receptive fields, and is the last area of LISSOM type. It is known that knowledge
of non-visuotopic areas in humans is currently poor [7], and scarcely comparable
with primates [6]. An area that recently has been suggested as strongly involved
in object recognition is the so-called LOC (Lateral Occipital Complex) [17, 10].
The response properties of cells in this area seems to fulfill the requirement for an
object-recognition area: sensitivity to moderately complex and complex visual
stimuli, and reasonable invariance with respect to the appearance of objects.
The most difficult and unconstrained variability in appearance is inherent to the
physics of vision: the 2D projection on the retina of 3D objects. The model LOC
achieves by unsupervised training, using all COIL-100 images in all possible view,
a remarkable invariance with respect to viewpoint, as visible in some examples
in Fig. 4. Table 1 summarizes the numerical results over all images, measured by
cross-correlation between base view and other views, both in the input images
and in the LOC maps:

ρ (I1, I2) =
∑

0<r<N

∑
0<c<M(xr,c − μ1)(yr,c − μ2)

σ1σ2MN
, (5)
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Fig. 4. Invariance properties of the LOC map. In the right block is displayed the

activations of the LOC map in response to the corresponding input images in the left

block. Rotations are in steps of 30o.

Table 1. Correlations between images under viewpoint transformation (middle col-

umn), and the corresponding LOC map (right column), averaged over all 100 objects

type of transformation input image LOC map

rotation of 30o 0.781 0.903
rotation of 60o 0.648 0.756
size downscaling of 80% 0.637 0.794
size downscaling of 70% 0.547 0.655
translation of 10% 0.463 0.586
translation of 20% 0.207 0.397

where I1 and I2 are two images, as matrices N × M of pixels x and y, σ is the
standard deviation and μ the mean value. In Fig. 5 are shown all visuotopic maps
of the model, from the retina up to LOC, excluding OBJ, for two sample images.
It can be seen how, traveling from the bottom to the top of the model, the map
responses gradually loose a definite correspondence with the retinal input, and
assume more the nature of distributed coding.

The highest map in the model is called OBJ. It processes as vector input
the whole content of LOC, ignoring the spacial organization of the data. This
map is an abstraction of the semantic organization of the visual scene, it is not
related to any defined brain locus, but performs functions spread in many areas,
not only the occipital lobe. For this reason it is not modeled with the LISSOM
architecture, but takes advantage of the synthetic categorization capabilities of
the SOM map. In a minimal interpretation it can be just intended as a way of
visualizing the categorizations that are implicitly available in the neural coding
of responses elicited in the LOC map by the various objects.
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Fig. 5. Two sample processes through all the visual areas of the model. For all cortical

areas there is a first activation map, and overlapped the final settled map.

The results of the organization in OBJ are shown using a labeling technique:
being o an object of the COIL set O, I

(o)
i one of its view, and x a neuron in the

OBJ map, the labeling function l(·) is given by:

l(x) = arg max
o∈O

{∣∣∣{I
(o)
i : x = w

(
I
(o)
i

)}∣∣∣} , (6)

where w(·) is the model function giving the winner in OBJ for an input image,
and being |·| the cardinality of a set. The image used for labeling an object o is
its base view. The organization of all objects in OBJ, revealed by the labeling
(6), is shown in Fig. 6. For most objects the prevailing neurons are clustered
close together, in some cases even in a single unit. The neighborhood of different
objects is based on the overlap of several coexisting ordering principles: color,
shape, symmetries. For the large majority of the objects this topological rela-
tionship represents a consistent spontaneous categorization. There are also cases
of objects in two positions far away in the map, like the electrical plug, in the
middle of the top row and in central part of the second and third columns, or
the house-shaped piece of wood. In all those cases there are two clusters corre-
sponding to very different appearance of the object under different perspectives,
in general at orthogonal angles. This is consistent with the image-based view of
invariant recognition.
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Fig. 6. Organization of objects in the OBJ map of the model. Each neuron of the map

is labeled using the base view of the object prevailing on that neuron.

4 Conclusions

A neural model of visual object recognition has been presented. As every model,
it includes several simplifications with respect to the biological vision. Some
are really drastic: the segregation of processes in areas, the lack of backprojec-
tions, and the simplification of the neural computations. Probably it is even
more simple than other models available in literature. But it pursues a precise
goal: not to simulate the functions involved in object recognition, to simulate
instead the mechanisms giving rise spontaneously to these functions. In this
objective, the model succeeds in reproducing some of the fundamental compu-
tational steps, known to be essential for visual recognition, without any explicit
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modeling of the processing functions necessary, only thanks to the basic neural
self-organization plasticity.
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Abstract. Bacteriorhodopsin is a protein in the purple membrane of
the archaean Halobacterium salinarum. Its natural function is to act as
a light-driven proton pump contributing to the energy balancing mech-
anism in the archaean. Bacteriorhodopsin retains its proton pumping
property even when isolated from the purple membrane and incorpo-
rated into an artificial membrane or polymeric film. Such bacteriorhod-
opsin films have been studied as a potential material for information
technology. We built optical elements based on bacteriorhodopsin and
measured their spectral properties. Here we describe a model of photo-
electric response of the elements and compare it to the experimentally
measured values.

1 Introduction

Very-large-scale integration (VLSI) technology dominates construction of con-
temporary artificial vision systems in every part, including photodetectors, am-
plifiers, and processors. In contrast, nature has evolved rather different comput-
ing architectures, such as highly parallel neural structures. Consequently, there
are suggestions to closely emulate biological systems. In molecular computers,
for example, silicon circuits are replaced by a molecular material [5]. In those
computers, molecules have a key functional role.

One protein that has received considerable attention as a potential material
for molecular optical devices is bacteriorhodopsin (BR), a light-transducing pro-
tein found in the purple membrane of the archaean Halobacterium salinarium
[18]. BR resembles both vertebrate and invertebrate photoreceptor rhodopsins
both structurally and functionally, yet all three molecules evolved indepen-
dently. As with all rhodopsins, BR is composed of seven transmembrane alpha-
helices of aminoacids and a functional retinal chromophore, derivative of vita-
min A. The protein part (opsin) is bound to the chromophore with a Schiff base
linkage.
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The purpose of BR in the archaean is to take part to the energy balancing
mechanism. Under anaerobic conditions, BR produces a proton gradient across
the cell membrane by the light-induced photocycle [2,10], which together with
electric potential difference between the cytoplasm and the outside makes it
possible for ATPases in the cell to convert ADP to ATP [1].

BR retains the photocycle even when isolated from the purple membrane
and incorporated into an artificial membrane [7,12,21] or thin polymer-based
film [3,22]. BR responds to light with a differential sensitivity common in mo-
tion detection and edge enhancement [4,11]. Such capabilities are also found in
natural sensors, for example, the receptive field structure of the ganglion cells in
the human eye [20].

To study the functionality of BR, or to use it in an application, purple mem-
brane fragments can be incorporated into an artificial membrane. Both thin and
thick films1 of BR can be used for this purpose. BR films have properties that
make them well suited for optical and photoelectric applications. Films produced
by immobilizing wild-type BR in gelatin or polyvinylalcohol (PVA) are highly
stable. A film of BR molecules produces a photoelectric response (PER) when
illuminated, caused by the translocation of protons in the film. Therefore, it can
be used in making photodetectors.

Beside the naturally occurring form, BR can also be modified by methods of
bioengineering. Among the modifications of BR are variants with shifted absorp-
tion spectra, and consequently, combination of the variants in one photosensing
device can be used for color discrimination. The sensor in which three BR types,
wild-type BR, and 4-keto and 3,4-didehydro variants, were combined into one
matrix was described in [23] and its color detection capabilities were demon-
strated in [9].

In our previous work [8], we reported the wavelength dependencies of BR films
with different absorption properties, their PERs, and we compared the modeled
PERs with the measurements for the elements containing wild type BR and its
two retinal analogs. BR for the elements was used in a form of purple membrane
isolated from Halobacterium salinarum wild type (S9), the membrane was iso-
lated as described by Oesterhelt and Stoeckenius [19]. Two variants of wild type
BR were prepared by reconstituting bleached BR with synthetic retinal ana-
logues: 4-keto and 3,4-didehydro retinals. Opto-electric elements were produced
from the three proteins as follows: PVA films were prepared by mixing PVA with
BR solution and spread onto a conductive glass substrate. After drying 24 hours,
a gold layer of about 40 nm was sputtered on the PVA film to form a counter
electrode for the conductive glass. A thin wire was attached to the corner of
gold layer by silver paint to form an electric connection from the gold layer; a
system containing altogether six such elements was made [23]; the elements were
in pairs, each pair containing one of the three proteins. In this study, we used a
set of new BR PVA elements as described in [14], and used signal conditioning
electronics to achieve good signal-to-noise ratio in the PER.

1 A coating of less than 5 μm thick is a thin film, whereas coatings of 5 μm or thicker
are thick films.
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2 Model of Photoelectric Response

Absorption of a photon by BR excites the retinal chromophore to a higher en-
ergy state which causes structural changes in the molecule. The excitation is
followed by a series of thermal relaxations during which the molecule returns to
the ground state. The absorption coefficient of BR depends on the photon energy.
The energy Ep depends on the frequency ν or wavelength λ of the photon, that is,

Ep = hν =
hc

λ

where h is Planck’s constant, and c is the velocity of light. When the spectral
energy P of a single pulse from the light source is known, the number of photons
at a given wavelength λ is

Np (λ) =
λP (λ)

hc
. (1)

The quantum yield of BR, that is, the average number of protons moved
per incident photon has been studied by optical measurements indirectly from
the number of molecules in the M intermediate. The minimum value of quan-
tum yield has been determined to be 0.64±0.04 [24]. Knowing the number of
photons from the light source at each wavelength and the spectral sensitivity or
absorptance α of BR, the total number of moved charges is as follows:

Ne = ΦB−→J

∫
α (λ) ∗ λP (λ)

hc
dλ (2)

where ΦB−→J is the quantum yield of photo-induced transition from the ground
state to the first identified intermediate of the photocycle. Often, the absorbance
function is provided instead of absorptance. Absorptance α(λ) can then be di-
rectly calculated from absorbance A(λ) as [26]

α(λ) = 1 − 10A(λ) (3)

Elementary charges generate an electric field to their environment. When
charges move, they induce charge and current to electrodes within their proxim-
ity. Since BR molecules move protons during their light-induced photocycle, a
BR film enclosed between two electrodes generates a photoelectric response [25].

To estimate the number of moved charges, it is necessary to know spectral
energy of the light pulse and spectral absorbance of the retinal. Obtaining both
functions is not straightforward. Although spectral absorbance of BR elements
can be measured with a spectrophotometer, the measured functions are not ab-
sorbance functions of retinals — the elements contain also other light absorbing
matter in addition to the retinals, such as protein, glass, gold, PVA, indium-tin-
oxide, and some impurities. The absorbances of some nonretinal matter cannot
be measured independently. Therefore, we need a way how to derive the spectral
absorbance of retinals. The absorbance function of BR containing the retinal
also differs from the absorbance function that could be derived by simple super-
position of absorbance funtions of bleached BR, that is, BR without retinal, and
the retinal alone.
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In the following section, we will describe a method to account for the non-
retinal absorption and to find an approximation of retinal absorbance functions.

2.1 Template Fitting

Building on structural and functional similarity between BR and photoreceptor
rhodopsins, we can derive the absorptance function of retinals indirectly from the
so called absorption template introduced by Dartnall [6]. The functional form of
the template has been proposed by Lamb [13]. The template is parameterized
by the wavelength of maximum absorption λmax. The template function is nor-
malized, so generally the fitting requires scaling of the template. Multiplicative
scaling will, however, make the curve either broader or narrower. To match the
correct width, we can offset the template by a constant. The justification to offset
the absorbance is found from the fact that the measured spectral absorbances
include absorbance of nonretinal matter.

First, let us examine whether it is possible to use the λmax found directly from
spectrophotometric measurements. The absorption spectra of the three types of
BR, wild-type BR, 4-keto BR, and 3,4-didehydro BR in aqueous solution are
shown in Fig. 1a, and the absorption spectra of elements are shown in Fig. 1b.
The spectral absorbances of PVA, conductive glass, and gold are plotted in
Fig. 2, respectively. Note, that the spectral absorbance of nonretinal matter is
nearly flat near the absorbance peaks of all three BR variants in aqueous solution,
and for elements with wild-type BR and 4-keto BR variants. Therefore, positions
of the peaks λmax will not be strongly affected in those cases.

Next, we find the template scaling factor and a constant absorption offset.
Since the measured spectral absorption should fit the fixed invariant curve, both
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Fig. 1. Absorption spectra of the three types of bacteriorhodopsin (a) in aqueous so-
lution, and (b) in polyvinylalcohol films

values can be determined using the fact that the wavelength λmax of the peak
is related to the wavelength of half the maximum absorbance λ0.5 through a
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Fig. 2. Absorption spectra of (a) polyvinylalcohol film of 48 nm, (b) gold layers with
different thicknesses, and (c) conductive glass

constant [17]. For retinal-based pigments the constant is 1/1.0948 following from
Dartnall’s data (see also [16]). Since we use Lamb’s curve as a template, the ratio
of λ0.5/λmax = 1.0899. The described method was used to fit the templates to
spectral absorbances of BR elements in [8].

Due to the close attachment of new BR elements to signal electronics and
shielding casing in [14], light has to pass through a gold layer before it interacts
with BR. The spectral absorbance of the BR film is affected by the gold absorp-
tion in such a way that the measurement of λ0.5 will not be reliable because
the spectral absorption curve of gold has a high slope at long wavelength tail
of BR absorption. Nevertheless, since the template has a fixed shape for given
λmax and measurements of spectral absorbance are made at sufficiently small
intervals, we can find the proper scaling (and width) from the relation of λmax
to the wavelength of another fraction of the peak absorbance than half. The
ratio of 0.9 yielded rather good fitting results. This is because λ0.9 is close to
λmax so it remains in the region where the gold absorbance is nearly flat.

Clearly, a measure of goodness of the fit of each individual absorbance func-
tion to the “ideal” invariant form is needed. MacNichol [17] proposed to use the
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Fig. 3. Absorption spectra of the three variants of bacteriorhodopsin and the fitted
templates for the elements described in [8]

product of slope tangent s to the curve at λ0.5 multiplied by λ0.5, Q = s ∗ λ0.5.
If the spectral absorbance function is invariant when plotted on a relative wave-
length scale, then the slope tangent s will be linearly dependent on λ0.5. From
this follows that Q will be constant. If the experimental curve is broader than
the invariant template, the slope and Q will be smaller than in the ideal case.
Similarly, if the experimental curve is narrower, Q will be larger. MacNichol
found a Q of about 8.5 for the retinal based visual pigments. Q calculated from
the invariant form of Lamb is about 8.78.

The value of Q was 7.44 for wild-type BR, 8.34 for 3,4-didehydro BR, and
8.81 for 4-keto BR for the fitted spectral absorbance templates shown in Fig. 3.

2.2 Measured and Modeled Photoelectric Responses

The measurement of photoelectric properties requires a light source and an in-
strument to register the electric response. In [8], we used a photographic flash
as the source of light pulses. A pulsed Oriel series Q xenon flash lamp was used
as the source of short light pulses (1.6 μs) for measuring the elements described
in [14]. The wavelength dependence of photoresponse was measured using a set
of Oriel narrow band interference filters placed between a light source and the
elements. The transmittance peaks of the filters were every 20 nm from 400 to
700 nm, the half width of the transmittances was about 10 nm. The wavelength
dependences for all the three types of elements was measured. The measured
responses were compensated for the irradiance of the photographic flash or flash-
lamp, respectively, and for the transmittances of the narrow-band filters. In [8],
to measure the wavelength dependence of element response, the elements were
connected to a standard digital oscilloscope. The maximum compensated re-
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Fig. 4. Compensated responses for wild type, 4-keto, and 3,4-didehydro bacteriorhod-
opsin compared to responses calculated from template. (a) The elements described in
[8], and (b) the elements described in [14].

sponse for the element with wild-type BR was at 580 nm, for the element with
4-keto BR was at 500 nm, and for the element with 3,4-didehydro BR was at
560 nm, respectively. The compensated photoelectrical responses are compared
to responses calculated from the templates in Fig. 4a. To measure elements de-
scribed in [14], signal conditioning electronics to achieve good signal-to-noise
ratio in the PER was used between the elements and the oscilloscope, and the
elements were installed into aluminum cases to reduce electromagnetic interfer-
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ence from the environment [15]. The maximum compensated response for the
element with wild-type BR was at 580 nm, for the element with 4-keto BR was at
500 nm, and for the element with 3,4-didehydro BR was at 560 nm, respectively.
The responses are compared to responses calculated from templates in Fig. 4b.

3 Conclusions

The templates fit to the measured spectral absorbances well as can be seen
both from the figure and from the values of coefficient Q measuring the good-
ness of fit. This suggests that the template functions can be used in place of
measured spectral absorbances in the model of PERs. The modeled spectral re-
sponse functions are in good agreement with experimentally measured values for
the elements containing wild-type and 4-keto BR. The measured and modelled
response functions for 3,4-didehydro BR, however, differed significantly. We can-
not give a full plausible explanation of this disparity at present state, two major
issues confound the modeling: the spectral absorption of gold and conductive
layers were considered constant and the measurement of the spectral irradiance
of the light source is not reliable enough for the pulsing frequencies used in the
measurements.

Determining the spectral irradiance of the pulsed xenon light source was prob-
lematic. The optical power meter used for the measurement was applicable to
pulsing frequencies above 20 Hz, but the PERs had to be measured at 1 Hz. The
narrow-band irradiance from the source was observed to contain abrupt changes
when the pulsing frequency and/or discharge energy was altered. Therefore, the
spectrum should be measured with identical settings of the light source as the
ones used for measuring the photoelectric responses. Primary concern in the
future research will be to obtain accurate information concerning the spectral
irradiance of the light source.
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Abstract. Several identified photoresponsive neurons (or extraocular photore-
ceptors) exist in the ganglion (CNS) of the sea slug Onchidium. The named A-
P-1/Es-1 of these neurons responded to light with a depolarization, caused by 
closing of the cGMP-gated K+ channels, as in vertebrate phototransduction. The 
hyperpolarizing photoresponse of the others Ip-2/Ip-1 was produced by opening 
of the same cGMP-gated K+ channels as above following activation of a G-
protein, Go coupled with guanylate cyclase. The amount of light required to 
stimulate these neurons covered in situ could be easily provided by the trans-
mission of living daylight through the animal’s body wall. The first order pho-
tosensory cells, A-P-1/Es-1 and Ip-2/Ip-1 were not only the second order in-
terneurons relaying several kinds of sensory inputs, but also motoneurons in-
nervating the mantle and the pneumostome. Thus, it is suggested that the depo-
larizing photoresponse of A-P-1/Es-1 plays a role in facilitating the synaptic 
transmission of sensory inputs and the following outputs, i.e. the mantle move-
ments and that the hyperpolarizing one of Ip-2/Ip-1 in depressing a transmission 
similar to above and the following pneumostome ones. Similarly, it is possible 
that the photoresponse of photoresponsive neurons, ipRGCs in mammalian ret-
ina operates also in the general regulation of synaptic transmission and behav-
ioral activities. 

1   Introduction 

Extraocular photoreception is mediated through photoresponsive neurons in the 
caudal ganglion of the crayfish [17], [24] and in the abdominal or pleuro-parietal 
ganglion of the sea slugs, Aplysia [1], [2] and Onchidium [8], [16], but not through 
photoreceptor cells (photoreceptors) included in well-developed bilateral eyes (ocu-
lars) on their head. Such neurons will be referred to as extraocular photoreceptors, 
because they are directly responsive to light without the aid of any above-
mentioned eye photoreceptors.  We will also call those neurons simple photorecep-
tors, in view of their lack of microvilli or cilia characteristic of vertebrate and inver-
tebrate eye photoreceptors. 
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Of four identified simple photoreceptors in the Onchidium ganglion, the named A-P-1 
and Es-1 respond to a brief light stimulus with a long-lasting depolarization [9], [19], 
while the others Ip-2 and Ip-1 respond to the same light with a long-lasting hyperpolariza-
tion [20].  In addition, these neurons (the primary photosensory cells) have also been sec-
ond order interneurons relaying some sensory stimuli. A considerable amount of informa-
tion has since been obtained about the phototransduction mechanisms of the above simple 
photoreceptors [9], [12], [13], and [21].  However, little has yet been definitely established 
about the functional significance of those extraocular photoreceptors in situ. 

Recently, extraocular photoreceptors, called the intrinsically photosensitive retinal 
ganglion cells (ipRGCs) which differ radically from the rod and cone eye photorecep-
tors have been also discovered in the rat or mouse retina [3], [15] (for review, see [4]). 
According to these authors, the simple ipRGCs without microvilli or cilia showed a 
remarkably sustained depolarization following a suitably brief light and also these pri-
mary photosensory neurons functioned as secondary interneurons in the retinal pathway. 
Considering a characteristic of such a sustained photoresponse and an arrangement as 
interneurons of ipRGCs, one supposes that the simple ipRGCs may be homologous to 
the same simple photoreceptors, Onchidium A-P-1/Es-1 and Ip-2/Ip-1. At present, the 
phototransduction and precise role of ipRGCs has not yet been determined. Related 
matters will be discussed later. Here, we survey the phototransduction and light-
dependent channels of the Onchidium simple photoreceptors studied to date. We further 
examined and discussed with reference to non-visual function of those photoreceptors. 

2   Materials and Methods 

Experimental animals, the opisthobranch (or pulmonate) mollusc Onchidium verrucula-
tum weighting 10 - 15 g, were collected from the intertidal zone of Sakurajima, Kago-
shima, Japan. The molluscs were kept in a natural seawater aquarium (20-23 ), and 
were fed with dried natural sea weeds occasionally. The circumesophageal ganglia were 
exposed by dissecting through the mid-dorsal surface of the animal and were isolated 
after overlying connective tissue had been removed (Fig. 1A, B). The procedure for 
preparing and conditioning extraocular photoreceptors, the photoresponsive neurons in 
the abdominal ganglion of this animal was similar to that described previously [9], [20]. 
In some experiments, a whole animal, the semi-intact preparation was used to examine 
the possible electrophysiological correlates of the behavioral phenomena observed. This 
preparation was similar to that described previously [6]. 

The normal solution, artificial seawater (ASW) used for continuous perfusion of each 
preparation had the following composition (mM): NaCl, 450; KCl, 10; CaCl2, 10; MgCl2 

50; Tris buffer, 10. The pH was 7.8. Various modified perfusing solutions used for op-
tional experiments intended have been described previously (e.g., see [9], [13], [20].   

For electrophysiology, an individual, identified neuron was inserted with up to four 
microelectrodes for the recording of membrane potential or current, passing current, 
the ionophoresis and the pressure injection under visual control. The general tech-
niques of current-, voltage-, and patch-clamp recordings have been fully described 
previously [9], [10], [13], [20]. 

The standard procedure for photostimulation has been described in detail else-
where [9], [20]. The light stimulus energy was measured with a radiometer (4090, 
SJI) whose sensor was placed at the position of the preparation.  
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Fig. 1. The depolarizing and hyperpolarizing photoresponses of extraocular photoreceptors in 
the Onchidium CNS. A diagram (dorsal aspect) showing the location of central ganglia in the 
intact animal.  B: The diagram of the dorsal surface of the expanded central ganglia. Approxi-
mate location of photoresponsive neurons (A-P-1, Es-1, Ip-2, Ip-1) is indicated. C: Depolariz-
ing photoresponse of A-P-1. C1: the depolarizing receptor potential. C2: an inward current, 
voltage clamped at -40 mV. C3: single-channel currents closed by light illumination (upper 
trace). An open channel level in a dotted line. D: Hyperpolarizing photoresponse of Ip-2. D1: 
the hyperpolarizing receptor potential. D2: an outward current, voltage-clamped at -40 mV. D3: 
single channel currents opened by light. The expanded unitary currents in the insets. The 15 s 
light stimuli are indicated by horizontal bars (1, 2 in C and D). 

3   Results 

3.1   Neural Photoreception of the Extraocular Photoreceptors in the Onchidium 
Central Ganglion (CNS) 

Several extraocular photoreceptors, the photoresponsive neurons are identified on the 
dorsal aspect of the abdominal ganglion of the sea slug Onchidium (fig. 1A, B). Of 
these simple (extraocular) photoreceptors, the named A-P-1/Es-1 responded to  light 
with a depolarizing receptor potential, caused by a decrease in K+ conductance (Fig. 
1C-1; see also [9]), while a hyperpolarizing photoresponse of the others named Ip-
2/Ip-1 resulted from an increase in K+ conductance (Fig. 1D-1; see also [20]). When 
those simple photoreceptors were voltage-clamped at resting revel, light induced in-
ward (Fig. 1C-2) and outward (Fig. 1D-2) photocurrents, corresponding to the above 
depolarization and hyperpolarization. 

As shown, it should be characterized that these both photoresponses can last for 
many minutes following only tens of seconds of light stimuli. 
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Fig. 2. Single-channel recordings showing changes from the cell-attached patch (A) to the 
inside-out patch (B) excised from the intact simple photoreceptor Ip-2. The bottom in A shows 
light-dependent single-channel currents, and the bottom in B, cGMP-activated single-channels, 
but no light-dependent channels in the excided inside-out patch. The upward steps of the above 
recordings in A and B show the light stimuli, and an application of 8-Br-cGMP. Parts of the 
channel recordings at the point marks, the expanded time scale. For details, see also [12]. 

A further analysis for the single channel recordings showed that the depolarizing 
and hyperpolarizing responses of A-P-1/Es-1 and Ip-2/Ip-1 are produced by the clos-
ing (Fig. 1C-3) and opening (Fig. 1D-3) of the same light-dependent K+ channels, 
respectively (see also [11], [13]). 

3.2   A Phototransduction Mechanism of the Simple A-P-1/Es-1 and Ip-2/Ip-1   

To determine whether cGMP can directly activate the above light-dependent K+ chan-
nels in the cell-attached patches of the simple photoreceptors their patch membranes 
were excised, forming inside-out patches and allowing access to the intracellular face 
(Fig. 2A). An application of cGMP to the excised inside-out patches newly activated 
a channel that disappeared on removal of cGMP (Fig. 2B).  However, an application 
of cAMP, IP3, or Ca2+ failed to activate any channels (not shown). This cGMP-
activated channel was indistinguishable from the light-dependent K+ channels re-
corded earlier in the same intact patches on the basis of K+-selectivity, conductance 
and kinetics of the channels [11], [13]. The above results show direct evidence that 
cGMP acts as a second messenger involved in the final stages of transduction process  
 

 
Table 1. Threshold of wavelength (λ) in a spectral peak sensitivity of the extraocular photore-
ceptors (A-P-1, Es-1, Ip-1, Ip-2) 

 

                   λ (nm)               Threshold (photons/cm2 •s) 
A-P-1                    490                           3 011 
Es-1                      580                           7 1013 
Ip-2/Ip-1                510                           2  1012 
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activating or gating the light-dependent K+ channels, the cGMP-activated channels of 
the simple photoreceptors. 

Finally, we have concluded that the depolarizing photoresponse of A-P-1/Es-1 is 
produced by closing of the cGMP-activated channels, as in vertebrate rod or cone 
cGMP cascade theory [28] and that the photoresponse of Ip-2/Ip-1 is hyperpolarized 
by opening the same cGMP-activated channels following an activation of a G-protein, 
Go (but not Gq nor Gt) coupled with guanylate cyclase to allow an increase in cGMP 
levels [10], [11], [13], [18], [20], [22]. 

3.3   Is the Photosensitivity of Those Simple Photoreceptors High Enough to 
Overcome the Deficiencies of Their Internal Location? 

A-P-1, Es-1, Ip-1, and Ip-2 in situ which are well buried in the CNS and covered by 
the body wall are unsuitable for a functional photosensory system; but it may be that 
those simple photoreceptor type has been adapted to serve as a sensory photoreceptor 
unit in other forms. 

To test whether the absolute sensitivity of the above internal photoreceptors is thus 
sufficient to activate those photoresponses or not, we measured the amount (energy) 
of light transmitted through the body wall (mantles and feet, mesopodia) and com-
pared with the absolute sensitivity, the threshold energy. In table 1, the threshold is 
defined as an energy of light wavelength for a minimally detectable photoresponse of 
each simple cell. The light wavelength showed a maximally effective light for each 
photoresponse [9], [19], [20]. 

Tλ (transmittance) in Table 2 shows the rate (%) of spectral incident light transmit-
ted vertically at the dorsal mantle or ventral foot surface of animals from the outside 
to the inside. Each Tλ in the mantle and foot was obtained from spectral scanning 
through the almost middle circle area having a radius of 4 mm in the surface of 

 
 

Table 2. Transmittance (Tλ) of the spectral illumination through the animal's body wall (man-
tle and foot sides) 

 

Tλ                        Mantle                             Foot 

T490                   2.3 - 10    %                   6.0  -   20    % 
T580                   7.0 - 25    %                 15.4  -   35    % 
T510                   3.3 - 13.3 %                   8.0  -   23.3 % 

 
 
Table 3. The incident energy in the spectrum of sunlight in Kagoshima, Japan with a fine 
weather at noon on August 13, 2002, measured by using a spectroradiometer (MS-700; EKO, 
Inc.) 
 

Wavelength (λ, nm)           Energy (photons/cm2 •s) 

490                                      2.4   1015 
580                                      2.6   1015 
510                                      2.4   1015 
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mantles or mesopodia of 3 to 5 individuals. As a whole, Tλ of each spectral light was 
about 2 times higher through the translucent white mesopodia than the dark-brown 
mantles. Further, we measured the spectral energy of incident sunlight in the center of 
Kagoshima by using a spectroradiometer (Table 3). Each energy value of the con-
cerned wavelength in sunlight was almost comparable to that at Sakurajima beach, the 
home of Onchidium. 

Taken together, the results suggest that light transmittance of the animal’s body 
wall covered by both mantle and foot is high enough to activate (stimulate) the inter-
nal Onchidium extraocular photoreceptors in situ. 

3.4   Morphology and Electrophysiological Properties 

3.4.1   The Depolarizing A-P-1 and Es-1 
The axonal branchings and spatial arrangement of both A-P-1 and Es-1 in the same 
ganglion was visualized by an intracellular cobalt or Lucifer yellow injection tech-
nique and confirmed by the simultaneous recording of the evoked somatic spike and 
the subsequent axonal spike in the nerves leaving the ganglion (not shown, [7], [9], 
[19]). The simultaneous recordings of A-P-1 and Es-1 in the membrane potential 
showed that both cells are connected by inhibitory chemical synapses from A-P-1 to 
Es-1 [19]. Further, previous study [6] showed that the primary simple photoreceptor, 
Es-1 is not only a second order interneuron receiving (relaying) tactile or other sen-
sory synaptic input from the mantle, but also a motoneuron innervating the mantle 
and foot, leading to the mantle-elevating movements. 

On the other hand, we investigated effects of light on the synaptic transmission of 
the tactile sensory inputs. 

Under dark conditions, the single electrical stimuli to a given afferent nerve, in-
stead of the tactile mechanical stimulation, were adjusted so as to be subthreshold for 
the spike generation of Es-1. The light intensity was also adjusted to a subthreshold 
value. Here, if the subthreshold electrical stimuli were applied under the condition of 
the subthreshold light intensity, all or nothing spikes (impulses), following the graded 
EPSPs were generated in Es-1 (not shown). 

This suggest that the depolarizing photoresponses of A-P-1/Es-1 play a role in facili-
tating the transmission of the tactile or other sensory information (see also Fig. 5B). 

3.4.2   The Hyperpolarizing Ip-1 and Ip-2 
Two whitish colored somata of Ip-1 and Ip-2 lie close together in the lower edge of 
the abdominal ganglion, so that they can be easily distinguished from those of the 
orange colored A-P-1 and Es-1, as shown in Fig. 1B. The axonal processes of Ip-2/Ip-
1 in the CNS have been partly known by the intracellular staining of Lucifer Yellow 
[20]. Both Ip-1 and Ip-2 in the ganglion branch into 2 or 3 main axons and at least two 
of their branches go into abd. n. 1 and abd. n. 2, respectively (scheme of Fig. 3B). 
Further, an anatomical analysis showed that abd. n. 1 and abd. n. 2 innervate the 
pneumostome and pulmonary sac ( [14], see also Fig. 5A).  
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Fig. 3. Simultaneous recordings showing electrical synapses between Ip-1 and Ip-2. A1: Depo-
larizing and hyperpolarizing current injections (the lowest step marks) for Ip-1. A2: Current 
injections for Ip-2. B: A scheme showing electrical synapses and axonal branchings of Ip-1 and 
Ip-2. abd. n.1: abdominal nerve 1. For details, see text. 

 
 
Fig. 4. Effects of a presynaptic electrical (B) and light (C) stimulation on the simultaneous 
membrane potential activities of Ip-1 and Ip-2. A: A sketch map showing experiments, B, C. lt. 
post pl-pr. n.: left posterior pleuro-parietal nerve. 
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Fig. 5. Proposed scheme for the functions of the simple, non-specialized photoreceptors, A-P-
1/Es-1 and Ip-2/Ip-1. A: A-P-1/Es-1 and Ip-2/Ip-1 innervating mantle and pneumostome, re-
spectively. B-upper: Dark and light levels of synaptic transmission. B-lower: Dark and light 
effects of nerve impulse on synaptic transmission. For details, see text. 

To examine the functional properties of these simple hyperpolarizing photorecep-
tors, we tried simultaneous intracellular recordings of the membrane potential of Ip-2 
and Ip-1 (Fig. 3). Fig. 3B shows that the two Ip-2 and Ip-1 are interconnected by elec-
trical synapses which do not rectify. A slow de- or hyper-polarization in one cell was 
transformed in a smaller polarizing change of the same polarity in the other. However, 
spikes in one cell were never transmitted, instead reflected only by small spike-like 
deflections of less than 1 mV in the other, suggesting the low-pass filtering synapses 
(fig. 3A). Those electrical coupling ratios ranged from 0.05 to 0.1 in 3 to 5 experi-
ments. Similar results were obtained from Ca2+-deficient ASW (not shown). Thus, 
these low-pass filter properties of the electrical synapse suggested that each spike in a 
sustained beating or bursting discharges of Ip-2/Ip-1, is never transmitted, but that only the 
periodical slow changes of membrane potential underlying the beating or bursting are 
well transformed, thereby leading to the synchronous beating or bursting discharges 
along both axonal branches (outputs) of Ip-2 and Ip-1 (see also Fig. 4B, C). 

 Fig. 4 shows effects of a presynaptic electrical stimulation on the membrane poten-
tial activity of Ip-2/Ip-1. When the left posterior pl- pr. nerve containing afferent fi-
bers was stimulated, the post synaptic Ip-2/Ip-1 produced a synchronous long-lasting 
IPSP with blockade of the beating or bursting discharges (Fig. 4B). This suggested 
that the primary extraocular photoreceptors, Ip-2/Ip-1 are also second order 
interneurons relaying some synaptic inputs from various nerves leaving the ganglion 
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(CNS). On the other hand, synchronous bursting discharges in Ip-1 and Ip-2 were 
inhibited and hyperpolarized by illumination (Fig. 4C).  

These results suggest that the hyperpolarizing photoresponses of Ip-2/Ip-1 play a role in 
depressing the transmission of inhibitory or excitatory sensory inputs (see also Fig. 5B). 

4   Discussion 

We should like to claim that extraocular photoreceptors in the Onchidium CNS are 
referred as ‘simple’ or ‘non-specialized’ photoreceptors, for lack of any morphologi-
cally specialized structures such as microvilli and/or cilia, characteristic of most eye 
photoreceptors. In other words, it should be understood that the above specialization 
or its vestigial structure in the eye photoreceptors is not always required for a photo-
sensory cell to become photoresponsive. This is well supported by the most recent 
discovery [4] of the non-specialized ipRGCs in the mammalia retinas, similar to the 
Onchidium extraocular photoreceptors. It has been also proved that melanopsin is a 
functional sensory photopigment of these ipRGCs, instead of rhodopsin in the eye 
photoreceptors [25, 26]. Unfortunately, such a photopigment has not yet been found 
in the Onchidium simple cells, although it is suggested to be a rhodopsin-like pho-
topigment for the Aplysia simple photoreceptor, R2 [27].  

On the other hand, the present study show that the simple Ip-2/Ip-1 use a photo-
transduction included activation of a Go, G-protein coupled with guanylate cyclase, 
which differs from that of a cGMP cascade theory [28] in another simple A-P-1/Es-1. 
It is likely that the mammalian simple ipRGCs use also a phototransduction similar to 
that of Ip-2/Ip-1, from a similarity between their photoresponse and their morphologi-
cal arrangements as described in the Introduction. Of course, it has been reported that 
the phototransduction of ipRGCs may differ from that of Ip-2/Ip-1 [23, 26]. 

Function of Extraocular Photoreceptors, the Photoresponsive Neurons or the 
Simple, Non-specialized Photoreceptors, A-P-1, Es-1, Ip-1 and Ip-2 

Onchidium are intertidal and amphibian molluscs, so that they use gill at high tide and 
interchange with lung (pneumostome) for ventilation at low tide. Thus, these molluscs 
could very easily be affected by the incident sunlight (light/dark cycles). However, 
the functional importance of the simple photoreception remains unclear, because of 
the deep-lying positions of the central ganglia. 

The present study showed that the incident sunlight transmittance of the animal’s 
body wall is high enough to elicit a photoresponse of the internal simple photorecep-
tors. Further, the same units performing these primary simple photoreceptors were not 
only interneurons relaying various sensory inputs, but they were also motoneurons 
innervating the mantle and pneumostome with pulmonary sac. 

Thus, Fig. 5 shows a tentative scheme to explain functions of the Onchidium simple 
photoreceptors, A-P-1/Es-1 and Ip-2/Ip-1. The depolarizing photoresponses of A-P-
1/Es-1 may play a role in facilitating the synaptic transmission of the tactile sensory 
inputs and in enhancing more the following mantle movement activities. The hyperpo-
larizing photoresponses of Ip-2/Ip-1 may play a role in depressing the transmission of 
inhibitory or excitatory inputs and in diminishing more the following pneumostome 
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movement activities. Similarly, it is possible that the mammalian ipRGCs operate also 
in the general regulation of synaptic transmission and behavioral activity (see also [5]). 

We wish to thank Professors H. Akasaka and K. Soga, Dept. of Architecture, Fac-
ulty of Engineering, Kagoshima Univ., for supplying us with the data of sunlight 
spectrum energy. This study is supported by Senshu University research grant for 
study of Onchidium nervous system in 2004. 

References 

1. Andresen, M.C., Brown, A.M.: Photoresponses of a Sensitive Extraretinal Photoreceptor 
in Aplysia. J. Physiol. 287 (1979) 267-282 

2. Arvanitaki, A., Chalazonitis, N.: Nervous Inhibition. In: Florey, E. (ed): Excitatory and 
Inhibitory Processes Initiated by Light and Infra-red Radiations in Single Identifiable 
Nerve Cells (Giant Ganglion cells of Aplysia). Pergamon, Oxford (1961) 194-231 

3. Berson, D.M., Dunn, F.A., Takao, M.: Phototransduction by Retinal Ganglion Cells that 
Set the Circadian Clock. Science 295 (2002) 1070-1073 

4. Berson, D.M.: Strange Vision: Ganglion Cells as Circadian Photoreceptors. Trends Neu-
rosci. 26 (2003) 314-320 

5. Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, 
K.-W., Gamlin, P.D.: Melanopsin-expressing ganglion cells in primate retina signal col-
our and irradiance and project to the LGN. Nature 433 (2005) 749-754 

6. Gotow, T., Tateda, H., Kuwabara, M.: The Function of Photoexcitive Neurones in the 
Central Ganglia for Behavioral Activity of the Marine Mollusc Onchidium verruculatum. 
J. Comp. Physiol. 83 (1973) 361-376 

7. Gotow, T.: Morphology and Function of the Photoexcitable Neurons in the Central Gan-
glion of Onchidium verruculatum. J. Comp. Physiol. 99 (1975) 139-152 

8. Gotow, T.: Decrease of K+ Conductance Underlying a Depolarizing Photoresponse of a 
Molluscan Extraocular Photoreceptor. Experientia 42 (1986) 52-54 

9. Gotow, T.: Photoresponses of an Extraocular Photoreceptor Associated with a Decrease 
in Membrane Conductance in an Opisthobranch Mollusc. Brain Res. 479 (1989) 120-129 

10. Gotow, T., Nishi, T.: Roles of Cyclic GMP and Inositol Trisphosphate in Phototransduc-
tion of the Molluscan Extraocular Photoreceptor. Brain Res. 557 (1991) 121-128 

11. Gotow, T., Nishi, T., Kijima, H.: Single K+ Channels Closed by Light and Opened by Cy-
clic GMP in Molluscan Extra-ocular Photoreceptor Cells. Brain Res. 662 (1994) 268-272 

12. Gotow, T., Nishi, T.: Cyclic GMP-activated K+ Channels of the Molluscan Extra-ocular 
Photoreceptor Cells. In: Taddei-Ferretti, C., Musio, C. (eds.): From Structure to Informa-
tion in Sensory Systems. World Scientific, Singapore New Jersey London Hong Kong 
(1998) 357-371 

13. Gotow, T., Nishi, T.: Light-dependent K+ Channels in the Mollusc Onchidium Simple 
Photoreceptors are Opened by cGMP. J. Gen. Physiol. 120 (2002) 581-597 

14. Gotow, T., Nishi, T., Nakagawa, S.: Membrane Properties as Interneurons of the Extra-
ocular Photoreceptors in the Onchidium Ganglia. Neurosci. Res. 50 (2004) S190 

15. Hattar, S., Liao, H.-W., Takao, M., Berson, D.M., Yau, K.-W.: Melanopsin-Containing 
Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science 
295 (2002) 1065-1070 

16. Hisano, N., Tateda, H., Kuwabara, M.: Photosensitive Neurones in the Marine Pulmonate 
Mollusc Onchidium verruculatum. J. Exp. Biol. 57 (1972) 651-660 

17. Kennedy, D.: Physiology of Photoreceptor Neurons in the Abdominal Nerve Cord of the 
Crayfish. J. Gen. Physiol. 46 (1963) 551-572 



146 T. Gotow, K. Shimotsu, and T. Nishi 

 

18. Nishi, T., Gotow, T.: A light-induced Decrease of Cyclic GMP is Involved in the Photo-
response of Molluscan Extraocular Photoreceptors. Brain Res. 485 (1989) 185-188 

19. Nishi, T., Gotow, T.: A Neural Mechanism for Processing Colour Information in Mollus-
can Extra-ocular Photoreceptors. J. Exp. Biol. 168 (1992) 77-91 

20. Nishi, T., Gotow, T.: Light-increased cGMP and K+ Conductance in the Hyperpolarizing 
Receptor Potential of Onchidium Extra-ocular Photoreceptors. Brain Res. 809 (1998) 
325-336 

21. Nishi, T., Gotow, T.: Depolarizing and Hyperpolarizing Receptor Potentials of the Mol-
luscan Extra-ocular Photoreceptor Cells. In: Taddei-Ferretti, C., Musio, C. (eds.): From 
Structure to Information in Sensory Systems. World Scientific, Singapore New Jersey 
London Hong Kong (1998) 341-356 

22. Nishi, T., Gotow, T.: An Activation of Guanylate Cyclase Coupled with G protein, Go 
Mediates the Hyperpolarizing Photoresponse of the Onchidium Extra-ocular Photorecep-
tors. Neurosci. Res. 46 (2003) S40 

23. Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B., Jegla, T.: Illumination 
of the melanopsin signaling pathway. Science 307 (2005) 600-604 

24. Prosser, C.L.: Responses to Illumination of the Eyes and Caudal Ganglion. J. cell comp. 
Physiol. 4 (1934) 363-378 

25. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., Rollag, M.D.: Melanopsin: An Op-
sin in Melanophores, Brain, and Eye. Proc. Natl. Acad. Sci. USA 95 (1998) 340-345 

26. Qiu, X., Kumbalasiri, T., Carlson, S.M., Wong, K.Y., Krishna, V., Provencio, I., Berson, 
D.M.: Induction of Photosensitivity by Heterologous Expression of Melanopsin. Nature 
433 (2005) 745-749 

27. Robles, L.J., Breneman, J.W., Anderson, E.O., Nottoli, V.A., Kegler, L.L.: Immunocyto-
chemical Localization of a Rhodopsin-like Protein in the Lipochondria in Photosensitive 
Neurons of Aplysia californica. Cell Tissue Res. 244 (1986) 115-120 

28. Yau, K.-W., Baylor, D.A.: Cyclic GMP-activated Conductance of Retinal Photoreceptor 
Cells. Annu. Rev. Neurosci. 12 (1989) 289-327 



A Population-Based Inference Framework for
Feature-Based Attention in Natural Scenes

Fred H. Hamker

Allgemeine Psychologie, Psychologisches Institut II,
Westf. Wilhelms-Universität, 48149 Münster, Germany

fhamker@uni-muenster.de
http://wwwpsy.uni-muenster.de/inst2/lappe/Fred/FredHamker.html

Abstract. Vision is a crucial sensor. It provides a very rich collection of informa-
tion about our environment. However, not everything in a visual scene is relevant
for the task at hand. Feature-based attention has been suggested for guiding vi-
sion towards the objects of interest in a visual search situation. Computational
models of visual attention have implemented different concepts of feature-based
attention. We will discuss these approaches and present a solution which is based
on population-based inference. We illustrate the proposed mechanism with sim-
ulations using real world-scenes.

1 Introduction

Visual Search and other experimental approaches have demonstrated that attention
plays a crucial role in human perception. Understanding attention and human vision
in general could be beneficial to computer vision, especially in vision tasks that are
not limited to specific and constrained environments. Previous models of attention have
suggested different underlying computational mechanisms of how feature cues (e.g.,
color) affect visual processing. In most models attention is solely defined by determin-
ing the locus of a unique spatial focus [24,13,28,1,19,10]. Feature-based attention is
left to only guide the selection process by weighting the input into the saliency map
[16,18]. For example, the search for the blue lighter is typically implemented by en-
hancing the input into the saliency map for cells encoding the target color (Fig. 1A).
The selective tuning model implements feature-based attention by enhancing the value
of the interpretive nodes which in turn biases the winner-take-all (WTA) competition
for projection into the next layer [26]. A cascade of top-down directed WTA processes
prune away all irrelevant connections within successively smaller receptive fields. As a
result, features such as the color blue allow to segment a target object in the scene (Fig.
1B). Technically the top-down biasing nodes form an independent top-down path, but
present implementations of the selective tuning model do not distinguish between fea-
ture and spatial attention in the sense that feature-based attention induces competition
only through the spatially selective WTA.

Treue and Martı́nez Trujillo [25] have proposed a Feature-Similarity Theory of at-
tention. Their single cell recordings in area MT revealed that directing attention to one
stimulus enhances the response of a second stimulus presented elsewhere in the visual
field, but only if the features of both stimuli match (e.g. upward motion). They proposed

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 147–156, 2005.
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that attending towards a feature could provide a global, spatially non-selective feedback
signal. The same effect has been found in a similar experiment using fMRI [22]. In an
earlier experiment that presumably revealed feature-based attention as well, the knowl-
edge of a target feature increased the activity of V4 cells [17].

Inspired by these findings, computational approaches have been used to investi-
gate the mechanisms of feature-based attention [14,12,27,4,21,3]. We have developed
a model to investigate the putative feedforward and feedback interactions between area
V4, TE and the frontal eye field [6,8]. In this model attention emerges by interactions
in the vision process. To find an object in a crowded scene our model predicts a feature-
specific component that highlights all cells encoding target features in parallel and a
spatially directed, serial component that is linked to the planning of an eye movement.
This prediction of our model has been recently confirmed in neural cell recordings [2].
However, only little has been done to demonstrate that the proposed mechanisms even
hold for large networks, e.g. for natural scene processing.

Thus, we have further developed our aprochach and extended it to a large scale
network for natural scene processing [7,9] (Fig. 1C). We now explain the population-
based inference framework and its relation to feature-based attention. Then, the model
is introduced and specifically its feature-based attention effects are illustrated.

2 Population-Based Inference

Population coding has been frequently used as a theoretical basis for describing com-
putation in the brain. Much emphasis has been given to investigate how a population
encodes a stimulus. Our population-based inference approach provides a framework to
continuously update the conspicuity of an internal variable using prior knowledge in
form of generated expectations. The population is represented by a set of cells. The
selectivity of each cell is defined by its location i ∈ {1..20} in the population and its
activity ri reflects the conspicuity of its preferred stimulus. Each cell is simulated by
an ordinary differential equation, that governs its average firing rate over time. Thus,
the model allows to describe the temporal change of activity induced by top-down in-
ference. In abstract terms, the top-down signal represents the expectation r̂ to which
the input (observation) r↑ is compared. If the observation is similar to the expectation
the conspicuity is increased. This increase is implemented as a gain control mechanism
on the feedforward signal. The population-based inference approach has been proven
to be a suitable computational framework for simulating spatial [5] and feature-based
attention effects [6]. As far as feature-based attention is concerned a cell’s response
over time rd,i,x(t) at location x, selective dimension d and preferred feature i can be
computed by a differential equation (with a time constant τ ):

τ
d

dt
rV4
d,i,x = I↑d,i,x + IN

d,i,x + IA
d,i,x − I inh

d,x (1)

The activity of a V4 cell is primarily driven by its bottom-up input I↑. Inhibition I inh
d,x

introduces competition among cells and normalizes the cell’s response by a shunting
term. IN

d,i,x describes the lateral influence of other cells in the population. Feature-

based attention is a result of the bottom-up signal I↑d,i,x modulated by the feedback
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Fig. 1. Three models of attention for real world scenes and their implementation of feature-based
attention. The goal directed search for the blue lighter requires some knowledge of the target
object, called a template, to be represented. Most models assume that just simple, ”preattentive”
features (e.g. color, orientation) are part of such a template. A) In the classical approach of visual
attention, feature-based attention only modifies the input of the saliency map. For example, all
weights into the saliency map of cells encoding blue are globally increased, such that the lighter
has a higher chance being selected. A neural correlate of feature-based attention would therefore
only be visible in a pronounced activation in the saliency map. A winner-takes-all process then
determines the location of the highest activity, which in turn can be used to compute a focus of at-
tention such that the area around the blue lighter is processed preferably . B) The selective tuning
model uses top-down directed feature cues to guide competition in the what pathway. Present im-
plementations of this model, however, do not distinguish feature-based and spatial attention, since
a cascade of winner-take-all processes immediately generates an attentional beam that segments
the lighter from its background and generates an inhibitory surround. C) A model of distributed
processing with spatial and feature feedback. Here, attention emerges by the interactions in the
network. A template, which can contain any object information, is send downwards, enhances the
sensitivity of specific populations encoding the features of interest and lateral interactions nor-
malize the activity. As a result, the model shows feature-based attention. For example, the search
template of the lighter selectively enhances cells encoding blue in parallel prior to any spatial
selection, as indicated by the brighter parts of the image. Other parts are relatively suppressed
as illustrated by the darkened areas in the scene. This modulated activity in V4 guides areas re-
sponsible for eye movements, which in turn send a spatially selective signal back to enhance
populations encoding stimuli at a specific location - spatial attention emerges.
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signal from TE rTE
d,j,x′ with wIT,V4

i,j,x,x′ as the strength of the feedback connection:

IA
d,i,x = I↑d,i,xσ(α − rV4

d,i,x) · max
j,x′

(wTE,V4
i,j · rTE

d,j,x′) (2)

σ(α−yV4
d,k,x) implements a saturation of the gain for salient stimuli [7]. Consistent with

the Feature-Similarity Theory, the enhancement of the gain depends on the similarity
between the input and the feedback signal.

3 Large Scale Approach for Modeling Attention

In this model, neural populations are defined in a space spanned by the feature selec-
tivity i and spatial selectivity x of the cells. The variable d refers to different channels
computed from the image such as orientation (O), intensity (I) or red-green (RG),
blue-yellow (BY ), or spatial resolution (σ). The conspicuity of each encoded feature
is altered by the target template. A target encoded in prefrontal cortex defines the ex-
pected features r̂PFC

d,i (Fig. 2). We infer the conspicuity of each feature in TE denoted as
rTE
d,i,x by comparing the expected features r̂PFC

d,i with the observation, i.e. the bottom-up

input rTE↑
d,i,x. If the observation is similar to the expectation we increase the conspicuity.

Such a mechanism enhances in parallel the conspicuity of all features in TE which are
similar to the target template. The same procedure is performed in V4 to compute the
conspicuity rV4

d,i,x where the expected features are the ones encoded in TE.
In order to detect an object in space the conspicuities rV4

d,i,x and rTE
d,i,x are combined

across all channels d and encoded in the frontal eye field visuomovement cells. The
projection from the visuomovement cells to the movement cells generates an expecta-
tion in space r̂FEFm

x . Thus, a location with high conspicuity in different channels d tends
to have a high expectation in space r̂FEFm

x . Analogous to the inference in feature space
the expected location r̂FEFm

x is iteratively compared with the observation r↑d,i,x in x and
the conspicuity of a feature with a similarity between expectation and observation is
enhanced. The conspicuity is normalized across each map by competitive interactions.
Such interative mechanisms finally lead to a preferred encoding of the features and
space of interest.

We now briefly explain the simulated areas in the model. A detailed description can
be found in [9].

Early visual processing: Feature maps for Red-Green opponency (RG), Blue-Yellow
opponency (BY ), Intensity (I), Orientation (O), and Spatial Resolution (σ) are com-
puted. The initital conspicuity is determined by center-surround operations [10]. Center-
surround operations calculate the difference of feature values in maps with a fine scale
and a coarse scale and thus, the obtained conspicuity value is a measure of stimulus-
driven saliency. The feature information and the conspicuity are used to determine a
population code, so that at each location the features and their related conspicuities are
encoded.

V4: V4 has d channels which receive input from the feature conspicuity maps: rθ,i,x

for orientation, rI,i,x for intensity, rRG,i,x for red-green opponency, rBY,i,x for blue-
yellow opponency and rσ,i,x for spatial frequency (Fig. 2). The expectation of features
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Fig. 2. Model for object detection in natural scenes. From the image, the features of 5 channels
(RG, BY , I , O, σ) are obtained. For each feature we also compute its conspicuity as determined
by the spatial arrangement of the stimuli in the scene and represent both aspects within a popu-
lation code, so that at each location a feature and its related conspicuity is encoded. This initial,
stimulus-driven conspicuity is now dynamically updated within a hierarchy of levels. From V4 to
TE a pooling across space is performed to obtain a representation of features with a coarse coding
of location. The target template encodes features of the target object by a population of sustained
activated cells. It represents the expected features r̂PFC

d,i which are used to compute the (posterior)
conspicuity in TE. Similarly, TE represents the expectation for V4. As a result, the conspicuity
of all features of interest is enhanced regardless of their location in the scene. In order to iden-
tify candidate objects by their saliency the activity across all 5 channels is integrated in the FEF
perceptual map. The saliency is then used to compute the target location of an eye movement in
the FEF decision map. The activity in this map r̂FEFm

x is fed back, which in turn enhances the
conspicuity of all features in V4 and TE at the activated areas in the FEF decision map. Thus,
objects at expected locations are preferably represented. By comparing the conspicious features
in TE with the target template in the match detection units it is possible to continuously track
if the object of interest is encoded in TE. Visited locations are being tagged by an inhibition of
return. This allows the model to make repeated fixations while searching for an object.
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in V4 originates in TE r̂V4F

d,i,x′ = rTE
d,i,x and the expected location in the FEF decision

map r̂V 4L

x′ = rFEFm
x′ . Please note that even TE has a coarse dependency on location.

TE: The features with their respective conspicuity and location in V4 project to TE,
but only within the same dimension d, so that the conspicuity of features at several
locations in V4 converges onto one location in TE. A map containing 9 populations
with overlapping receptive fields is simulated. The complexity of features from V4
to TE is not increased. The expected features in TE originate in the target template
rTEF

d,i,x = w · rPFC
d,i and the expected location in the FEF decision map r̂TEL

x = w · rFEFm
x .

FEF perceptual map: The FEF perceptual map indicates salient locations by inte-
grating the conspicuity of V4 and TE across all channels. Its cells show a response
which fits into the category of FEF visuomovement cells (FEFv). In addition to the
conspicuity in V4 and TE the match of the target template with the features encoded
in V4 is considered by computing the product

∏
d

max
i

rPFC
d,i · rV4

d,i,x. This implements

a bias to locations with a high joint probability of encoding all searched features in a
certain area.

FEF decision map: The projection of the perceptual map to the decision map trans-
forms the salient locations into a few candidate locations, which dynamically compete
for determining the target location of an eye movement. This is achieved by subtracting
the average saliency from the saliency at each location wFEFvrFEFv

x − wFEFv
inh

∑
x

rFEFv
x .

Thus, the cells in the decision map show none or only little response to the onset of
a stimulus, such that their response fits into the category of the FEF movement cells
(FEFm). Their activity provides the expected location for V4 and TE units.

4 Results

An object is presented to the model for 100 ms and the model memorizes some of its
features as a target template. We do not give the model any hints which feature to mem-
orize. The model’s task is to make an eye movement towards the target (Fig. 3A,B).
When presenting the search scene, TE cells that match the target template quickly in-
crease their activity to guide perception on the level of V4 cells. Thus, the features of
the object of interest are enhanced prior to any spatial focus of attention. This feature-
based attention effect allows for a goal-directed planning of a saccade in the FEF. The
planning of an eye movement provides a spatially organized reentry signal, which en-
hances the gain of all cells around the target location of the intended eye movement. As
a result of these inference operations, the high-level goal description in PFC is bound
to an object in the visual world. Further simulation results are discussed in [9].

We now take a close view on the feature-based attention effects of the model. In this
respect we compare two conditions: attend towards the visual properties of the lighter
(Fig. 3A) and attend towards the cigarettes (Fig. 3B). Fig. 3C shows the difference activ-
ity of both conditions in V4 prior to any spatial selection as determined by a low FEFm
activity (max rFEFm

x (t) < 0.05). Our analysis clearly shows that feature-based atten-
tion selectively modulates the activity according to the task at hand. Thus, the model
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A BTarget 1 and its detection

t [ms]12 17 22 27

V 4 difference activityC

Target 2 and its detection

B lue-Yellow channel

Intens ity channel

Orientation channel

Fig. 3. Illustration of feature-based attention. A) Target object 1 and its detection in the visual
scene. B) Target object 2 and its detection in the visual scene. C) Difference activity in V4 in
three channels over time. For a comparison with cell recordings a latency of about 60 ms has to
be added to the time axis. Only the difference of the maximal activity at each location is shown
irrespective of the feature selectivity. Gray areas indicate equal (maximal) activity, light areas
more activity in the first condition and dark areas more activity in the second condition. We can
observe that parts of the scene are relatively enhanced or reduced according to the target template.

predicts feature-based attention effects independent of focused attention. Although the
effect is global in space it can guide gaze towards the object of interest since it depends
on the content encoded at each location.
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Fig. 4. Illustration of feature-based attention effects on the single cell level. The activity is shown
in two conditions with time relative to search array onset (0 ms): attend towards the lighter (blue)
and attend towards the cigarettes (red). The red shaded area between the curves appears when the
activity in the second condition is higher. A) Selected cells in the orientation (O), intensity (I) and
blue-yellow (BY) channel with the receptive field center located on the lighter. A) Selected cells
in the orientation (O), intensity (I) and blue-yellow (BY) channel with the receptive field center
located on the cigarette box.

To illustrate the effects of feature-based attention on the cell level we show their time
course of activity. Fig. 4A shows the activity of cells with their receptive field centered
on the lighter. A difference in activity between the attend lighter and attend cigarettes
condition reflects the relative effect of feature-based attention. In the orientation channel
(O) cell 01 shows an enhancement in the attend cigarettes condition whereas cell 08 an
enhancement in the attend lighter condition. Thus, even cells with their receptive field
on the lighter can be enhanced in the attend cigarettes condition. The target template
for orientation in the attend lighter condition was close to horizontal and thus increased
the activity of cell 08, whereas target template for orientation in the attend cigarettes
condition was vertical and thus enhanced the sensitivity of cell 01 and adjacent cells.
The blue color of the lighter primarily increased the activity of cells around cell 14 of
the BY channel in the attend lighter condition. The white color of the cigarette box
increased cell 18 of the intensity channel in the attend cigarettes condition. We observe
also differences in the timing of the feature-based attention effect, which are based on
recurrent interactions between V4 and TE as well as TE and PFC.

5 Discussion

We have introduced different models of attention and their implementation of feature-
based attention. The classical approach, which defines attention solely by a selection of
a location in the saliency map, predicts that target templates only guide the competition
for spatial attention. Such guidance of spatial attention does also occur in the Selective
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Tuning model as well as in our approach. These models use feature cues to enhance
the activity of feature-sensitive cells. However, our approach seems to be closer to a
neural correlate of feature-based attention, since we consider the temporal dynamics
prior to any spatial selection. We predict that goal directed visual search first selectively
modulates feature-sensitive cells prior to any spatial selection.

This prediction is consistent with cell recordings in visual search [2] and recent
findings in which the learning of degraded natural scenes resulted in a selective en-
hancement of V4 cells [20]. According to this study V4 plays a crucial role in resolv-
ing an indeterminate level of visual processing by a coordinated interaction between
bottom-up and top-down streams.

Our model further predicts that saliency is encoded as part of the variable itself
through the dual coding property of a population code. Saliency is not encoded in a
single map. Thus, attentional effects can be found throughout the visual system. The
observation of an attentional modulation does therefore not allow to conclude that a
stimulus has been selected by a spatially directed focus. For example, V4 also provides
a spatially organized map encoding saliency (Fig. 3C), which is consistent with recent
findings [15]. However, V4 cells are selective for location and specific features. Con-
sistent with recordings in the FEF [23], the FEF visuomovement cells in our model are
more related to the classical idea of a saliency map [11], since they solely encode lo-
cation by integrating the activity across all channels and features. We assume that this
information needs an additional, decisional stage of processing before it is feed back
such that the saliency information is transformed into a dynamic, competitive represen-
tation of a few candidate regions.
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Abstract. In this paper, we describe a biological motivated image representa-
tion in terms of local multi–modal primitives. These primitives are functional
abstractions of hypercolumns in V1 [13]. The efficient and generic coding of vi-
sual information in terms of local symbolic descriptiones allows for a wide range
of applications. For example, they have been used to investigate the multi–modal
character of Gestalt laws in natural scenes [14], to code a multi–modal stereo
matching and to investigate the role of different visual modalities for stereo [11],
and to use a combination of stereo and grouping as well as Rigid Body Motion to
acquire reliable 3D information as demonstrated in this publication.

1 Introduction

The aim of this work is to compute reliable feature maps from natural scenes. To es-
tablish artificial systems that perform reliable actions we need reliable features. These
can only be computed through integration across the spatial and temporal context and
across visual modalities since local feature extraction is necessarily ambigious [1,15].
In this paper, we describe a new kind of image representation in terms of local multi–
modal Primitives (see fig. 1) which can be understood as functional abstractions of
hypercolumns in V1. These Primitives can be characterized by three properties:

Multi-modality: Different visual domains describing different structural properties of
visual data are well established in human vision and computer vision. For example, a
local edge can be analyzed by local feature attributes such as orientation or energy in
certain frequency bands. In addition, we can distinguish between line and step–edge
like structures (contrast transition). Furthermore, color can be associated to the edge.
This image patch also changes in time due to ego-motion or object motion. Therefore
time specific features such as a 2D velocity vector (optic flow) can be associated to this
image patch. In addition the image patch has a certain source in 3D space and therefore
also depth information can be associated. In this work we define local multi–modal
Primitives that realize these multi-modal relations. These modalities are also processsed
in so called hyper-columns in the first area of visual processing (V1) [7].

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 157–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Multi-modal Primitives a) One primitive covers different aspects of visual information in
a condensed way. b) Stereo Image Pair. c) Frame taken from c). d) Representation of an image by
multi-modal primitives (local motion and stereo information not shown for sake of understand-
ability). e) 3D view of extracted stereo representation.

Adaptability: Since the interpretation of local image patches in terms of the above
mentioned attributes as well as classifications such as ‘edgeness’ or ‘junctionness’ are
necessarilly ambigious when based on local processing stable interpretations can only
be achieved through integration by making use of contextual information [1]. Therefore,
all attributes of our Primitives are equipped with confidences that are essentially adapt-
able according to contextual information expressing the reliability of this attribute.
Adaptation occurs by means of recurrent processes (see, e.g., [21]) in which predictions
based on statistical and deterministic regularities disambiguate the locally extracted and
therefore neceassarily ambigious data.

Condensation: Integration of information requires communication between Primitives
expressing spatial [14,11] and temporal dependencies [9]. This communication has nec-
essarily to be paid for with a certain cost. This cost can be reduced by limiting the amount
of information transferred from one place to the other, i.e., by reducing the bandwidth.
Therefore we are after a compression of data. Essentially we only need less than 5% of
the amount of the pixel data of a local image patch to code a Primitive that represents
such a patch. However, condensation not only means a compression of data since com-
munication and memorization not only require a reduction of information. Moreover,
we want to reduce the amount of information within an image patch while preserving
perceptually relevant information. This leads to meaningful descriptors such as our at-
tributes position, orientation, contrast transition, color and optic flow. In [14], we have
also shown that these descriptors (in particular when jointly applied) allow for strong
mutual prediction that can be related to classical Gestalt laws.
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In section 2, we describe the Primitive attributes and their extraction and in section
3 we describe the biological background. In section 4, we refer to applications of our
Primitives for the modelling of disambiguation processes in mid-level vision.

2 Multi-modal Primitives

We compute the following semantic attributes and associate them to our Primitives (see
also fig. 1).

Intrinsic Dimension: Local patches in natural images can be associated to specific
local sub-structures, such as homogeneous patches, edges, corners, or textures. Over
the last decades, sub-domains of Computer Vision have extracted and analysed such
sub-structures.

The intrinsic dimension (see, e.g., [23]) has proven to be a suitable descriptor that
distinguishes such sub-structures. Homogeneous image patches have an intrinsic di-
mension of zero (i0D); edge-like structures are intrinsically 1-dimensional (i1D) while
junctions and most textures have an intrinsic dimension of two (i2D). In [10,4] it has
been shown that the topological structure of intrinsic dimension essentially has the form
of a triangle with the corners of the triangle representing ’ideal cases’ of homogeneous
structures, edges or corners (see figure 2b). This triangular structure can be used to asso-
ciate 3 confidences (ci0D, ci1D, ci2D) to homogenous-ness, edge–ness, or junction–ness
according to the positioning of an image patch in the iD–triangle.

This association of confidences to visual attributes is a general design principle
in our system. These confidences as well as the attributes themselves are subject to
contextual integration via recurrent processes. Aspects with associated low confidences
have a minor influence in the recurrent processes or can be disregarded.

Orientation: The local orientation associated to the image patch is described by θ.
The computation of the orientation θ is based on a rotation invariant quadrature filter,
which is derived from the concept of the monogenic signal [5]. Considered in polar
coordinates, the monogenic signal performs a split of identity [5]: it decomposes an
intrinsically one-dimensional signal into intensity information (amplitude), orientation
information, and phase information (contrast transition). These features are pointwise
mutually orthogonal. The intensity information can be interpreted as an indicator for the
likelihood of the presence of a certain structure with a certain orientation and a certain
contrast transition (see below).

Contrast Transition: The contrast transition is coded in the phase φ of the applied
filter [5]. The phase codes the local symmetry, for example a bright line on a dark back-
ground has phase 0 while a bright/dark edge has phase −π/2 (see fig. 2a). There exists a
whole continuum of i1D structures that can be coded in the phase by one parameter (see
also [6,8]).

Color: Color (cl, cm, cr) is processed by integrating over image patches in coincidence
with their edge structure (i.e., integrating separately over the left and right side of the
edge as well as a middle strip in case of a line structure). In case of a boundary edge of
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Fig. 2. a) The continuum of phases (indicated by φ) taking values between −π and π correspond
to a continuum of oriented grey-level structures as expressed in the changing circular manifold
(sub–figure a) is based on a figure in [3]). b) The likelihood of a local image patch to be a
homogenous image patch, an edge or a junction can be visualised as a triangle with corners
representing ideal patterns. Points inside the triangle represent structures that are only with a
certain likelihood categorizable as ideal homogenuous image patches, edges, or junctions. For
example, there is a slight texture on the patch close to the lower left corner which produces a
filter response with low contrast (origin variance) and low orientation variance or the structure
close to the upper corner has some resemblance to a junction. In this triangular representation
distances from the corners represent the likelihood of the structures being of the ideal type. This
is used for the formulation of confidences indicating such likelihoods in [10]. Note that figure 2b
is thought to be a schematic description. The exact positioning of patches in the triangle depends
on two parameters (for details see [10]).

a moving object at least the color at one side of the edge is expected to be stable since
(in contrast to the phase) it represents a description of the object.

Optic Flow: There exist a large variety of algorithms that compute the local displace-
ment in image sequences. [2] have them devided into 4 classes: differential techniques,
region-based matching, energy based methods and phase-based techniques. After some
comparison we decided to use the well-known optic flow technique [16]. This allgo-
rithm is a differential technique in which however (in addition to the standard gradient
constraint equation) an anisotropic smoothing term leads to better flow estimation at
edges (for details see [16]). The optic flow is coded in a vector o.

Stereo: By performing a matching between primitives in the left and right image and
finding correspondences we can compute a 3D-primitive (see figure 1e). We code the
correspondence by a link l to a primitive in the right image.

To determine the position x of the primitives we look for locations in the image
where the magnitude of the response of a set of edge-detection filters [5] has local
maxima. To avoid the occurrence of very close line–segments produced by the same
image structure we also model a competition process between the primitives. Basically,
for each primitive position it is checked whether another primitive exists with a posi-
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tion closer than a given threshold distance. If that is the case, the position with lower
magnitude is dropped (for details see [12,13]). Finding of suitable positions is a sophis-
ticated task and is also part of a cruicial transformation process from a signal–based to
a symbol–based representation. Once the positions of the primitives are determined, the
other attributes computed from the filter response at the found position is associated to
the primitive.

Usually an image patch that is represented by our Primitives has a dimension of
3×12×12 = 432 values (3 color values for each pixel in a 12×12 patch). However, the
output of our Primitives has less than 20 parameters. Therefore, the Primitives condense
the image information by more than 95%. This condensation is a crucial property of our
Primitives that allows to represent meaningful information in a directly accessible and
compressed way.

We end up with a parametric description of a Primitive as

π = (x, θ, φ, (cl , cm, cr),o, (ci0D, ci1D, ci2D), l).

In addition, there exist confidences ci, i ∈ {φ, cl, cm, cr,o} that code the reliabilty of
the specific sub–aspects that is also subject to contextual adaptation.

3 Multi-modal Primitives as Functional Abstractions of
Hyper-columns

The above–mentioned visual modalities are processed at early stages of visual process-
ing. Hubel and Wiesel [7] investigated the structure of the first stage of cortical pro-
cessing that is located in an area called ‘striate cortex’ or V1 (see figure 3a). The striate
cortex is organized like a continuous, but distorted map of the visual field (retinotopic
map). This map contains a specific repetitively occurring pattern of substructures called
hyper-columns. Thus, a hyper-column represents a small location of visual space and
the neurons in such a hyper-column represent all important aspects of this spatial loca-
tion; ideally all orientations, all colors, the complete distance-information (disparity),
etc. To be able to achieve this in an orderly manner, hyper-columns themselves are
subdivided into “columns” and “blobs”. The blobs contain color sensitive cells, while
the columns represent the continuum of orientations (see figure 3b). Here one observes
that the orientation columns are organized in an ordered way such that neurons repre-
senting similar orientations tend to be adjacent to each other. However, it is not only
orientation that is processed in an orientation column but the cells are sensitive to ad-
ditional attributes such as disparity, contrast transition and the direction of local motion
(see [22]). Even specific responses to junction–like structures have been measured [19].
Therefore, it is believed that in the striate cortex basic local feature descriptions are
processed similar to the feature attributes coded in our primitives.

However, it is not only local image processing that is going on in early visual pro-
cessing. As mentioned above, there occurs an extensive communication within visual
brain areas as well as across these areas. The communication process leads to the bind-
ing of groups of local entities (see, e.g., [20]). In [14] we described a self–emergence
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Fig. 3. a) Primary visual pathway and schematic location of a hyper-column (black box), which
corresponds in reality to about 1 mm2 of cortical surface. b) Schematic diagram of a hyper-
column (thick lines) embedded in the visual cortex. Each hyper-column represents a small loca-
tion in visual space. Vertically to the surface neurons share similar response properties, whereas
their responses differ when moving horizontally on the surface. Information from both eyes is
represented in adjacent slabs of the cortex. Each slab contains neurons that encode different ori-
entations (depicted by tiny lines on the surface) but also all other important visual features such
as local motion and stereo. In the cylinder-shaped part mainly color is processed. Note, the actual
cortical structure is less crystalline than suggested by this diagram.

process in which groups organize themselves based on statistical regularities. Here we
use grouping inthe context of improving stereo information.

4 Disambiguation in Recurrent Process Making Use of the
Spatial-temporal Context

The processing of primitives is still based on local processes. Therefore, ambiguity can
not be resolved at this level. However, using the richness of the image descriptors we
can already decrease the amount of ambiguity by interaction of modalities on a local
level (section 4.1). Global interdependencies realized in cross–modal recurrent pro-
cesses based on perceptual organisation and rigid body motion can then further reduce
the ambiguity and are described in section 4.2 and 4.3.

4.1 Multi-modal Stereo

To be able to reconstruct 3D primitives we require correspondences between image
primitives πl, πr in the left and right image of a stereo system. For this we make use of
a multi-modal similarity
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sim(πl, πr) =
∑

i∈{o,p,c,f}
αidi(πl, πr) (1)

in which distance measures in the different modalities di() are combined by a weighted
average (see [11,17] for details). In table 1, we show the performance of the system on
a sequence of images with known ground truth (see figure 4). The results for a stereo
with only one modality (orientation), two modalities (orientation and phase) and three
modalities (orientation, phase and colour) respectively are displayed in the first column
of the left , middle and right block in table 1.

4.2 Stereo and Grouping

We formalized the spatial constraint indicated in figure 4.2a. Basically the constraint
states that stereo correspondences must be consistent under collinear line structures.
In [18], we have defined a multi-modal grouping process in which the likelihood of
two primitives to be originated from a collinear image structure is coded in two link
confidences g(πl

1, π
l
2) for the left and g(πr

1 , π
r
2) for the right image. In combination

with (1) we have defined an external similarity that is not based on a direct comparison
of image patches but on the consistenny of the stereo with the grouping process only
based on the two link confidences g(πl

1, π
l
2), g(πr

1 , π
r
2) and the stereo matching similar-

ity c(πl
2, π

r
2). We can use this external similarity to enhance stereo processing. Table 1

Fig. 4. Left and right image of one frame of the stereo image sequence (left) with 3D-ground truth
(right)

Table 1. The number of false positives depending on four fixed numbers of trues is shown for
stereo, grouping and accumulation. The results for uni-modal, two-modal and multi-modal rep-
resentations are kept separately in the three blocks. n.a. stands for ’not applicable’ which means
that the number of trues as indicated in the left most column was not achieved.

Uni-modal (ori) Two-modal (ori, pha) Tri-modal (ori, pha, col)
Trues Stereo Group. Accum Stereo Group. Accum Stereo Group. Accum
100 1479 1064 8 77 60 6 4 5 2
500 2126 1600 32 346 262 11 19 24 16

1000 2878 n.a. 102 832 586 25 85 78 19
2000 n.a n.a. 1372 n.a. n.a. 153 328 278 42
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Fig. 5. Top: Stereo–Grouping Constraint

(second columns for each block) shows quantitative results. Performance usually incre-
saes by approximately 20–30 percent.

4.3 Accumulation Using a Spatial-temporal Context Based on Rigid Body
Motion

A spatial–temporal constrained is based on rigid motion. Assuming the egomotion or
the motion of objects between frames is known we can predict the occurence of spatial
primitives π(t + 1) in the next frame. This is possible since knowing the 3D structure
underling the primitive (as coded in the link l) the spatial-temporal transformation of
this primitive can be computed explicitely. The validation of such a correspondences
is an indicator for a higher likelihood for the spatial primitive to be a correct one and
the associated confidence becomes increased (see also [9]). Table 1 (third column in
each block) gives quantitative results. As can be seen from the results even for quite
unreliable stereo based on one modality only after only few iterations the number of
false positives can be decreased significantly. Note that the scheme also allows for the
integration of new hypothese generated in in new frames. In figure 6 the effect for an
example sequence is shown.

5 Summary and Conclusion

We have introduced a functional model of hyper-columns in terms of multi-modal prim-
itives representing local image information in a condensed way. This condensation
leads to symbol-like descriptors of image information which allows the formalization
of cross–modal processes and spatial-temporal integration.

Acknowledgement. We thank Nicolas Pugeault and Sinan Kalkan for their help. Fur-
thermore, we gratefully acknowledge the support of Riegl Ltd. which provided the im-
age data with 3D ground truth shown in figure 4 on which our quantitative evaluation is
based.
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Fig. 6. Top row: Left: Confidences of different hypothese are displayed by grey level values (white
for high confidences and dark for low confidences) projected on the image. Right: Top view of
the stereo of the first frame. Bottom row: Left: Image view of all hypothese with high confidence
after 5 iterations of the accumulation. Right: Top view of all hypothese with high confidence after
five iterations.
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Abstract. We discuss problems of signal– and symbol based representa-
tions in terms of three dilemmas which are faced in the design of each vi-
sion system. Signal- and symbol-based representations are opposite ends
of a spectrum of conceivable design decisions caught at opposite sides of
the dilemmas. We make inherent problems explicit and describe potential
design decisions for artificial visual systems to deal with the dilemmas.

1 Introduction

Scientists in different fields such as speech processing or computer vision have
been debating about signal- and symbol- based representations. This debate has
been accompanied by research efforts in Artificial Intelligence (see, e.g., [5]) and
Neural Networks (see, e.g., [24]). The argument underlying this debate has not
been resolved until now, however many work does not fall sharply in one of the
two categories and an increasing number of work emerges which attempts to
bridge between the two sides (see, e.g., [11]).

In this paper the problems of signal- and symbol-based approaches are made
explicit in terms of three dilemmas which are faced in the design of each vision
system. The first dilemma (called the interpretation/decision dilemma) deals
with the need of interpretation of the input signal which however requires de-
cisions. These decisions constitute prejudices (in terms of assumptions about
the input) that are difficult to justify. In the completeness/feasibility dilemma
the need to condense information to make processing feasible interferes with
the wish not to throw away information. The non-learnable/non-formalisable
dilemma deals with the problem that on the one hand complex problems such
as vision are not completely learnable but on the other hand neither completely
formalisable.

Signal- and symbol-based representations are opposite ends of a spectrum of
conceivable design decisions which are caught at opposite sides of the dilemmas.
In this paper, we do not intend to take sides in the debate but to make inherent
problems explicit and to describe design decisions interms of an existing artificial
visual systems (also described in a contribution in this book, see [21]) to deal
with the dilemmas.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 167–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Symbol and Signal-Based Representations

Before formalising the three dilemmas we give in the first subsection a brief
general categorisation of signal- and symbol based representations. For a more
detailed discussion we refer to (e.g., [11]).

The standard notion of symbols in a certain representational framework is
that symbols are (1) semantic representatives for certain pieces of knowledge on
which (2) operations can be performed that correspond to relevant functional
relations in this framework (see also [12]).

In general, a symbol serves as a surrogate for a body of knowledge that may be

needed to be accessed and used in processing the symbol. And ultimately, this

knowledge includes semantics or meanings of the symbol ... Symbolic processes

are essentially transformations that operate on symbol structures to produce

other symbol structures. [11]

Symbol-based representations have been successfully established in formal-
izable contexts such as chess computers or other expert systems. However, they
have failed to solve ’easy tasks’ such that to grasp a cup from a table, fill it with
coffee and hand it over to Ann or Paul. It turned out that these ‘easy’ problems
are apparently much harder to model than the ‘hard’ chess task.

There are two main problems symbol based representations ran into:

– The ’right symbols’ and ’right rules’ are either not exhaustively formalisable
within a framework of reasonable complexity or, even more severely, might
not exist at all (see, e.g., [2]).

– The meaning of symbols in perceptive systems comes from the environment
and the body and purposes of the system itself (the so called symbol ground-
ing problem, [10]).

Signal based representations (such as applied in neural networks or other sta-
tistical learning mechanisms) refrained from trying to formalise the functional
relations but instead aim at learning starting with the (often preprocessed) sig-
nal as input. In this approach there is neither a problem of finding the right
descriptors in terms of symbols nor their functional relations since these stages
are supposed to be learned. There is also no grounding problem since meaning is
not explicitely defined. However, it became clear that although statistical learn-
ing medthods have been successfully applied to a number of problems they were
unable to solve more complex problems since they lack of inherent structure in
form of bias (see the Bias/Variance dilemma [6]).

Signal-based (sometimes also referred to as sub-symbolic representations [25])
and symbol based representations in cmputer vision can be characterized by four
key aspects:

Feature Maps: Signal-based representations are typically organized as dense
feature maps, i.e., at every spatial coordinate a certain feature value is stored,
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whereas symbolic representations typically store a list or tree of feature vectors
which include the spatial vectors.

Completeness: Signal-based representations are mostly complete in the sense
that one can reconstruct the original image from the coefficients of the dense
feature maps (e.g., a Laplace pyramid). In symbol-based representations infor-
mation is essentially reduced and therefore incomplete in the sense that infor-
mation judged as irrelevant for a certain purpose is dropped for the sake of a
condensed representation.

Stability: Stability of the estimation can easily be guaranteed by using operators
with finite operator norm. For instance, the response of a Laplace filter is stable,
but the extraction of the zeros, i.e., the transition to a symbolic interpretation
as an edge, leads to unstable estimates in terms of thresholding operations.

Transition to Higher Abstraction Levels: When it comes to the transition
to higher levels in the system, the typical way a signal-based representation
is used is to feed it into a neural network [26] or to use further deterministic
processing steps which lead to higher-level signal-based representations [9]. In
general, there is no mechanism taking discrete decisions, leading to a (spatial)
selection of information. These mechanisms are however essential when it comes
to symbol-based representations and allow for the incorporation of high level
semantical knowledge.

3 Dilemma 1: Interpretation and Early Decisions

Dilemma 1 deals with the problem that the semantic information represented in
single pixel values is limited. Feature extraction processes make such semantic
more explicit but might lead to loss of information.

Scientists working with statistical approaches within the framework of signal-
based representations usually do not apply their methods directly to the the sig-
nal level but introduce some kind of pre-processing (in terms of, e.g., filtering
processes) beforehand. By this, the original problem is transferred to a more
suitable feature space in which important aspects of the input are made more
explicit. In vision, the feature maps carry in general ’meaning’ in terms of at-
tributes such as magnitude, orientation or phase that have higher semantic value
than the original pixel value.

Independently which framework is used to estimate such attributes, the ap-
plied filters always impose some model assumption upon the signal. The filter
response is not more than a matching of the data to the model. Thus, considering
a single filter response in a particular point, information from the original signal
is lost. However, in general the complete image information can be recovered
from the filter responses (see, e.g., [8]). This is fundamentally good news, since
the severeness of the prejudice applied in the interpretation by the filter opera-
tion is reduced since one can always go back to the original signal. However, it
also leads to a larger feature space than the original image itself which leads to
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even more dramatic consequences when looking at the relational space (this will
be discussed in detail in section 4).

However, the meaningfulness of interpretations in terms of filter operations
leads to another problem that addresses the sampling of these features. The
meaning of a ’feature’ is based on information that covers a larger spatial area.
For example, to estimate an orientation we need at least three samples which do
not lie on a line. In general, depending on their bandwidth, filters cover much
larger spatial areas. However, the extracted information is represented for each
sample, leading to quantization errors if the features are (erroneously) consid-
ered at isolated samples. To apply e.g., phase as a feature, we need to take the
exact position into account, i.e., we have to interpolate the phase information
at the locus of maximum magnitude. Otherwise statements about the edge-ness
or line-ness of the local structure become wrong for high frequencies. Another
inherent problem is that the estimation of local local descriptors (such as orien-
tation) from linear filters suffers from superposition of the true orientation and
of values from structures in the vicinity of the measurement. Therefore, apply-
ing the straightforward and naive transition to a semantic interpretation in a
point-wise way often leads to inaccurate of even false results, i.e., an ill-defined
interpretation.

Seeing signal based representations caught in the problem of a too large
features space in which semantic interpretations are partially ill-defined we now
take a closer look at a representation that can be associated to the symbol-
based approach. A straightforward solution that makes (1) use of and preserves
the meaningfulness of the filter responses, (2) avoids the problem of ill-defined
meaning, and (3) reduces the cost in terms of a large feature and unmanageable
relational feature space is a sparsification of the signal in terms of position which
is done in many artificial vision systems (see, e.g., [22]).

In this context, in [19] we have developed an new kind of image representa-
tion in terms of multi modal primitives (see figure 1 in [21]). In the primitives
different aspects of visual information are coded in terms of visual sub-modalities
known in human and computer vision. Primitives carry information about at-
tributes such as local energy, orientation and phase in certain frequency bands.
Colour is associated to the local patch in coincidence with the local orientation.
Furthermore, time specific features such as a 2D velocity vector (optic flow) and
also 3D information is associated to our Primitives.

The attributes such as orientation and phase are associated to the position of
the structure such that the meaning (at least for edge-like structures) is clearly
defined. Further processing is facilitated since information is coded in a con-
densed way. After a sparisfication process, a primitive represents a local image
patch while the amount of information is reduced by 95% and relevant informa-
tion is made explicit.

However, the sparsification does not come along without problems. The re-
constructability of the complete signal (although we have a recognisable repre-
sentation) is lost. Also, we are forced to do decisions about the positions as well
as the features. These in general binary decisions are based on thresholds and
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transfer the continuous space of filter responses to a discrete space of symbol-
like structures. However, such decisions can not be made at this level with full
certainty since local visual information is necessarily ambiguous (see, e.g., [1,20]).

Interpretation/Decision Dilemma: Interpretation in terms of extraction

of meaningful information is necessary to make relevant aspects available for

higher levels of processing. However, this goes along with decisions about what

aspects are relevant which constitutes a prejudice about the data.

Signal- and symbol-based representations differ in their willingness to apply
assumption (in terms of decisions) to the signal. In signal based representa-
tions the consequences of interpretations are softened by avoiding to make use
of explicit semantics and sparsification. In symbol-based representations sparsi-
fications are performed that make explicit use of the semantic content of early
filter operations.

Ways Out of the Interpretation/Decision Dilemma: To justify early filter
operations successful biological systems can be taken as a model. In the ground
breaking work [13] the functional organisation of the first stage of cortical pro-
cessing could be explained. They could demonstrate that meaningful features
such as orientation, colour, local motion, and stereo are processed in so called
hyper-columns. Our primitives are functional abstractions pf these hypercolumns
(see [21]).

In our examples, we have also seen that symbol based representations essen-
tially need a good signal processing. Usually, the extraction of symbols is a step
performed on top of filtering processes and therefore signal and symbol based
representation can be seen as two levels of the processing hierarchy. Semantic
meaning in the filter operations can be made explicit and representations sparsi-
fied by early hard decisions. There are two ways to soften the effect of the hard
decision in the the sparsification: (1) Utilising of Confidences and (2) memorising
of multiple hypotheses.

Both strategies are used in the visual primitives: to each parameter a confi-
dence is associated that reflects the reliability of the feature attributes. In this
sense the primitives are designed as first guesses with associated confidences that
are not expected to deliver completely reliable information but become stabilised
by the spatial and spatial-temporal context (see section 5 and [15,20]).

The meaningfulness of the orientation, phase and colour interpretation of the
primitive depends essentially on the local structure. For example, orientation
is ill defined for a homogeneous image patch or a corner. However, it makes
perfect sense for an edge- or line-like structure. To associate a confidence to, e.g.,
the orientation we measure the ’edges-ness’ of the local signal by a continuous
concept for homogeneousness, edge-ness and corner-ness in terms of intrinsic
dimensionality (see [16,4]).

Also the concept of position depends on the intrinsic structure. For example,
for a corner like structure we want to have the position of the primitive to be
placed on the intersection lines while for edges we want to have an aquidistal
sampling along the line structure. Actually, for each local image patch (i.e., a
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local region represented by one primitive) three possible interpretation in terms
of three positions corresponding to an interpretation as an homogeneous image
patch, an edge or a corner is coded. In this way, multiple hypotheses preserve
possible interpretations to be verified at later stages of processing.

4 Dilemma 2: Completeness and Feasibility

Dilemma 2 deals with the problem of the size of the space of relations. While
signal-based representations face the problem of a complete but unmanageable
relational space, symbol-based representations work in a manageable relational
space which are however incomplete and difficult to justify. We will exemplify
this on the problem of stereo processing. However, similar arguments hold for
other relational problems such as grouping or motion estimation.

Important visual information is coded in the relation of visual events. A
second order relation problem occurs for example in stereo processing. A straight
forward signal based approach is to compute all possible correspondences by
some kind of template matching resulting in a full disparity map. Even when
using an epipolar constraint (see, e.g., [3]) this approach becomes quite costly
and the full space of second order relations in the signal based approach becomes
virtually unmanageable.

Sparsification reduces the size of the relational space. The primitives transfer
the semantically weak defined pixel values to sparse symbol-like structures with
strong semantics and by that condense the visual information. Because of the
strong sparsification it is possible to deal with large disparities. Even multiple
hypotheses can be kept now more easily and allow for better decisions at later
stages of processing. Moreover, the result of the primitive representation is ac-
tually a dense disparity map. It is a representation in which the ’symbols’ carry
beside the depth information also information about other semantic aspects (see
figure 1e and figure 6 in [21]).

However, the advantage of low computational complexity by concentration on
semantically relevant information is accompanied by the drawback of a sparse
disparity map. Moreover, errors in the feature extraction stage may lead to
unrecoverable errors in the stereo matching. However, we will see in see section
5 that the inclusion of structural knowledge (based on the explicitness of symbol
based representations) can overcome some of these problems. Similar arguments
hold for other problems involving relations such as grouping or motion estimation
(for details, see [20]). Summarising the discussions:

Completeness/Feasibility Dilemma: An efficient coding of this relational

space is not feasible without a reduction of the visual events that become

related. This reduction however requires a condensation of the local signal

information and interferes with the wish to preserve the complete information.

The completeness/feasibility dilemma is related to the interpretation/
decision dilemma since a reduction in general also involves an interpretation and
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therefore a decision. The completeness/feasibility dilemma however, stresses the
need of condensation and not the semantic aspect involved in the interpretation.

Ways Out of the Completeness/Feasibility Dilemma: There exist strate-
gies within signal based representations to approach the relational space in a
feasible way by, e.g., coarse to fine tracking mechanisms. If multiple hypotheses
are tracked in these mechanisms, the computational effort scales not only with
the image size, but also with the maximum disparity. Furthermore, there are
certain restrictions which make these approaches unsuitable for (relative) wide
baseline stereo.

The condensation process is problematic since throwing away relevant as-
pects of the data may weaken the overall performance. Therefore, the condensed
local descriptors in [21] cover multiple aspects in terms of the relevant visual
modalities. In [17], we showed that with the representation condensed by 95%
we could achieve comparable performance to correlation based methods in which
the full local image patch was used for matching.

There is also a strong potential to combine symbol- and signal-based repre-
sentations. For example, if signal based and symbol based matching delivers the
same result this can be used to increase local confidences in both approaches.
However, if there is a disagreement then this indicates either an error in the fea-
ture (symbol) extraction or an error caused by the limitation of the signal-based
approach. In any case, such incidences point to the need of a more detailed anal-
ysis of the specific local situation (for example by a shift of attention) and most
likely also to an increase of importance of other non-local sources of information.
In this sense we need to think about the signal-symbol relation not only as a
feed-forward process but as a signal-symbol loop.

5 Dilemma 3: Neither Learnable nor Formalisable

Dilemma 3 deals with the problem that a vision system with similar complexity
than the human system can not be fully pre-designed but that learning needs
to be an essential part of such a system. However, successful learning already
requires a quite significant amount of structural knowledge integrated into the
system.

It is widely excepted that the formalisation of higher stages of visual process-
ing requires a transition of the original signal to a more abstract level. This does
not necessarily mean to switch directly to symbols. There are ways to follow a
hybrid approach, which allows to directly feed signal-based representations into
associative networks (see, ee.g., [7]).

The advantage of defining higher levels by statistical methods is a grounding
of the mapping in the problem and the data. However, the reached level is only
weakly defined in terms of semantic. This reduces the possibility to incorporate
structural knowledge about the problem. In human vision structural knowledge
can be embedded by genetical coding. Indeed, there is evidence that such prior
structural knowledge is available at all stages of visual processing [14,20]. This
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Fig. 1. Schematic description of a Signal-symbol loop

structural prior is necessary also in terms of the learning problem as such (see
[6] and dilemma 1).

The symbol related representation of multi-modal primitives provides a clear
structure for higher levels of visual processing which allow for the incorpora-
tion of structural knowledge. For example, using our visual primitives it is
possible to define a non-local stereo constraint that makes use of a grouping
process. This constraint is schematically displayed in figure 5 in [21]. It basi-
cally states that correspondences of entities in a group in the left image have
to have correspondences in the only one group in the right image (for details,
see [23]).

There occur even cases where correspondences can not be found by a local
similarity derived from the local signal since the image patches in the left and
right frame can become too dissimilar (e.g., in case of a large baseline and a
small object distance). Signal based approaches are not able to deal with these
situation. However, through integration of context information such cases can be
handled. For example in [23], good reconstructions can be achieved by using a
matching that did not take any local but only context information into account.
Another example is the use of structural knowledge about rigid body motion for
feature disambiguation (see figure 6 in [21]).

However, the incorporation of structure comes along with the problem of jus-
tifying this structure. In the signal based representation this was done through
learning. In the symbol based representation we buy the incorporation of the
structural constraints by heuristically defined rules working in a heuristically
defined feature space (see dilemma 1). For example, in [23] the grouping is based
on a set of standard criteria for good continuation of local line segments. Sum-
marising the discussions above:

Non-learnable/non-formalizable Dilemma: A lack of inherent structure

makes it difficult to formalise structural constraints that are however necessary

to control the system and facilitate learning. Explicit structure allows for an

incorporation of structural knowledge but is difficult to justify since it is in

general not possible to formalise all aspects of the problem.

The non-learnable/non-formalizable dilemma is related to the other two
dilemmas. First, the incooperation of structural knowledge constitute decisions
that require justification as already postulated in dilemma 1. Since structural
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knowledge addresses essentially relations of visual events and can work only on
condensed representations (as addressed in dilemma 2).
Ways Out of the Non-Learnable/Non-Formalizable Dilemma: There
is justified doubt about the possibility to acquire representations by learning
only as well about the possibility to fully formalize a vision system with similar
complexity than the human visual system. It is more likely that a sufficient
amount of structure has to be incorporated externally into the system probably
at all stages of processing. This structure requires justification. In biological
beings such structures are acquired by an learning mechanism, i.e., evolution,
acting on a different time scale. This opens one possibility to justify such prior
structure by looking at the hardwired components in human perception.

6 Summary and Conclusion

We have formulated three dilemmas that vision system face. Signal- and symbol-
based representations are caught in opposite end of the dilemmas. We have also
given examples to deal with these and by this we have experienced that the clear
borders between signal- and symbol-based become diluted.

As the main result of the discussions above we conclude that the extremes of
the signal- and symbol based approach is not feasable to design complex vision
systems but that they represent different levels in a hierarchy that should be
deeply intertwined. This is in analogy to the fact that an important factor for
the success of human vision is the feedback from higher levels to lower levels. In
this sense we argue that symbol-signal loops in which higher level structure feeds
back to the signal to correct early decisions might be an important part also for
a successful artificial system (see figure 1). In these loops, early interpretations
that are not verified by the context can be disambiguated (see dilemma 1). The
utilisation of contextual information is facilitated since the relational space is
reduced by the condensation process (see dilemma 2). Such loops can be based
on structural knowledge about properties of visual data that might be learned
or hardwired (see dilemma 3).
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20. N. Krüger and F. Wörgötter. Statistical and deterministic regularities: Utilisation
of motion and grouping in biological and artificial visual systems. Advances in
Imaging and Electron Physics, 131, 2004.
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Abstract. The mammalian visual system has developed complex strate-
gies to optimize the allocation of its limited attentional resources for the
relay of behaviorally relevant visual information.Here,wedescribe a frame-
work for the relay of visual information that is based on the tonic and burst
properties of the LGN. The framework consists of a multi-sensor transmit-
ter and receiver that are connected by a channel with limited total band-
width. Each sensor in the transmitter has two states, tonic and burst, and
the current state depends on the salience of the recent visual input. In burst
mode, a sensor transmits only one bit of information corresponding to the
absence or presence of a salient stimulus, while in tonic mode, a sensor at-
tempts to faithfully relay the input with as many bits as are available. By
comparing video reconstructed from the signals of detect/transmit sen-
sors with that reconstructed from the signals of transmit only sensors, we
demonstrate that thedetect/transmit framework can significantly improve
relay by dynamically allocating bandwidth to the most salient areas of the
visual field.

1 Introduction

The mammalian early visual pathway serves to relay information about the ex-
ternal world to higher brain areas where it can be analyzed to make decisions and
govern behavior. However, this relay is constrained by the availability of limited
attentional resources. Because mammals can only attend to a small fraction of
the visual field at any given time, the early visual pathway must carry out two
distinct tasks: the detection of salient input to direct the deployment of atten-
tional resources and transmission of detailed features of those stimuli to higher
brain areas. Neurons in the lateral geniculate nucleus (LGN) of the thalamus
have two response modes known as tonic and burst, and there is evidence that
these response modes serve to facilitate the tasks of detection and transmission
(for review, see [1,2]).

The LGN relays the output of the visual system’s peripheral sensors in the
retina,making both feedforward and feedback connectionswith the visual system’s
computational center in the cortex. The response mode of an LGN neuron is deter-
mined by the state of a special set of low-threshold voltage-dependent channels
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known as T channels [3]. When the membrane is depolarized and the neuron is fir-
ing frequently, the T channels are inactivated, and the neuron is in tonic mode. In
tonicmode, the spontaneous firing rate is high, andmodulations in the response are
linearly related tomodulations in the visual input, allowing theneuron to faithfully
relay both excitatory and inhibitory features to the cortex. When the membrane is
hyperpolarized for a prolonged period of time and the neuron is silent, the T chan-
nels are de-inactivated and the neuron enters burst mode. When the neuron is in
burst mode, depolarization of the membrane opens the T channels, resulting in a
wave of current which further depolarizes the membrane and causes a stereotyped
burst of closely spaced action potentials. This allows the neuron to signal the ap-
pearance of a input with an amplified response.

During visual stimulation, the membrane potential (and thus, response mode)
of an LGN neuron is controlled in part by feedback connections from the cortex [4].
Thus, the thalamocortical circuit is thought to perform both detection and trans-
mission as follows: In the absence of a salient input, the membrane is hyperpolar-
ized, the T channels are de-inactivated, and the neuron is in burst mode. Upon the
appearance of a salient stimulus, the membrane is briefly depolarized and a burst
is triggered. Cortical feedback then maintains the depolarization of the neuron,
switching it to tonic mode and increasing the spontaneous firing rate. While the
stimulus persists, tonic firing transmits detailed information about the stimulus.
When the stimulus disappears, the neuron falls silent, cortical feedback hyperpo-
larizes the membrane, and the cycle repeats. This silence/burst/tonic/repeat re-
sponse pattern has been observed in both anesthetized and awake animals, in the
LGN responses to sinusoidal gratings [5,6] and natural scene movies, as objects
moved in and out of the receptive field [7].

Here, we develop a detect/transmit framework for the relay of visual infor-
mation based on the tonic and burst properties of the LGN. The framework
consists of a multi-sensor transmitter (LGN) and receiver (cortex) that are con-
nected by a channel with limited total bandwidth (attention). Each sensor in the
transmitter has two states: tonic and burst. In burst mode, a sensor transmits
only one bit of information corresponding to the absence or presence of a salient
stimulus. In tonic mode, a sensor attempts to faithfully relay the visual input
with as many bits as are available. The mode of each sensor is determined by the
salience of the recent visual input. To evaluate the detect/transmit framework,
we compare video reconstructed from the outputs of detect/transmit sensors
with that reconstructed from the outputs of transmit only sensors. The results
demonstrate that the detect/transmit framework can significantly increase the
fidelity of relay by dynamically allocating bandwidth to the most salient areas
of the visual field.

2 A Detect/Transmit Framework for the Relay of Visual
Information

Based on the tonic and burst properties of the LGN that facilitate the detection
and transmission of visual inputs, we have developed a framework for the high
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Fig. 1. An LGN inspired scheme for the relay of visual information

fidelity relay of visual information over a channel with limited bandwidth. The
framework consists of a multi-sensor transmitter with tonic and burst modes,
and a receiver that decodes the transmitted signal and controls the mode of each
sensor in the transmitter, designed to mimic cortical feedback control of LGN
response mode. A schematic diagram of the framework is shown in figure 1.

The intensity of the visual stimulus (s) is specified by P pixels per frame.
The transmitter contains P sensors, each of which corresponds directly to one
pixel of the visual input. The transmitter sends the output of each sensor to the
receiver once per frame via a noise-free, lossless channel. The bandwidth limit
on the channel (for all sensors combined) is specified as βmax bits/sec, which,
for a frame rate of F frames/sec, corresponds to βmax/F = βframe bits/frame.
Each sensor in the transmitter can operate in either tonic or burst mode. In
tonic mode, the sensor will attempt to transmit detailed features of the visual
stimulus with as many bits as are available. In burst mode, the sensor will signal
either the absence or presence of a salient stimulus with only one bit. Following
the relay of each frame, the receiver determines the mode (m) of each sensor
for the next frame based on the salience of the recent visual input and sends
the modes back to the transmitter (Note that the P bits/frame required to send
the mode signal back to the transmitter is additional and is not included in
constraint βmax).

We designed the detect/transmit framework to mimic the ability of the mam-
malian visual system to efficiently transmit visual information based on ‘bottom-
up’ control of attention in response to changes in the external environment. How-
ever, ‘bottom-up’ control of attention is only one of many strategies that the vi-
sual systemhas developed to improve the transmission of visual information.Other
strategies, such as spatial and temporal decorrelation, separate ON and OFF chan-
nels, and mechanisms for task dependent ‘top-down’ control of attention are not
included in the model. Correspondingly, in evaluating the framework, we assumed
that the goal of the transmitter is to send a representation of the visual stimulus
with minimal mean-squared error (MSE). Thus, our model neglects any other fea-
tures of the neural response that may be important, such as sparseness or redun-
dancy [8]. Further discussion can be found in section 4.

2.1 Transmitter

The operation of the transmitter can be divided into three steps that must
be repeated for each frame of the input. First, the total bandwidth βframe is
distributed among the P sensors in the transmitter based on the mode signal m
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sent back from the receiver. Next, the recent history of the input is evaluated
for comparison with the current input. Finally, the output of each sensor is
calculated and sent to the receiver. Each of these steps is described in detail
below.

Distribute bandwidth: Let the number of sensors in burst and tonic mode at a
given time as determined by the mode signal m be denoted by nburst and ntonic.
The total bandwidth βframe must be distributed among the P sensors based on
their modes. Each burst sensor is allotted one bit (βburst = 1), and the remaining
bits are distributed among the tonic sensors as follows:

βtonic = floor

{
βframe − nburst

ntonic

}
Thus, at time step t, the number of bits available to a given sensor, β(p, t), is
determined based on its mode m(p, t) as follows:

β(p, t) =
{

βburst , m(p, t) = 0
βtonic , m(p, t) = 1

Evaluate input history: For each sensor, the recent input history must be eval-
uated to determine the salience of the current input. Typically, the salience of
the input in a particular region of the visual field is evaluated across multiple
dimensions (orientation, color, contrast, etc.) [9]. Here, salience is measured in-
dependently for each pixel by simply comparing the current intensity to previous
intensities.

For a given sensor, the recent history of the input, Hburst, is specified by the
average of the previous α intensities of the corresponding pixel:

Hburst(p, t) =
α∑

k=1

s(p, t − k)

where α specifies the number of frames to be considered in the history of the
input. If a sensor is in burst mode, it will signal a change in the input if the
current input is significantly different from Hburst, alerting the receiver to switch
the sensor to tonic mode. For all sensors that have just switched from tonic
to burst mode at time t (m(p, t − 1) = 1 and m(p, t) = 0), the history term
Hburst must be updated. For all sensors that remain in burst mode from the
previous time step (m(p, t − 1) = 0 and m(p, t) = 0), Hburst remains the same
(Hburst(p, t) = Hburst(p, t − 1)). For all sensors in tonic mode, the input history
is evaluated at the receiver as described below.

Send signal: Once the mode, available bandwidth, and recent input history for
each sensor have been set, the transmitter can relay its output to the receiver.
The output of a sensor in burst mode depends on the salience of the current
input relative to the recent history Hburst, with sensitivity determined by the
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parameter σburst. If the current input is significantly different from the recent
history, then the sensor will indicate a change:

r(p, t) =
{

1 , |s(p, t) − Hburst(p, t)| ≥ σburst

0 , otherwise

Sensors in tonic mode simply relay the visual input, quantized to available num-
ber of bits βtonic:

r(p, t) = Q(s(p, t), βtonic)

where Q is the quantizer function.

2.2 Receiver

Receive signal: For sensors in burst mode, the receiver assumes that the input
is unchanged, regardless of the transmitter output. Of course, if the sensor is
in burst mode and the output r(p, t) = 1, the receiver will switch the sensor to
tonic mode for the next frame (see below), but has received no new information
about the input for the current frame. For sensors in tonic mode, the current
value of the input has been relayed. Thus, the input s is reconstructed at the
receiver as follows:

ŝ(p, t) =
{

ŝ(p, t − 1) , m(p, t) = 0
r(p, t) , m(p, t) = 1

Evaluate input history: Just as the transmitter uses the recent input history
to determine when the input changes significantly and signals the switch from
burst to tonic mode, the receiver must determine when the input is no longer
changing to control the switch back to burst mode. The switch from tonic to
burst mode is controlled by comparing the current reconstruction to the recent
history. At each time step, the history term for each tonic sensor is updated as
follows:

Htonic(p, t) =
α∑

k=1

ŝ(p, t − k)

where α specifies the number of frames to be considered in the history of the
reconstructed input.

Set mode: For each sensor, the mode for the next frame is determined by the
current reconstruction and its recent history. Burst sensors that did not signal
a change in the input at time t (r(p, t) = 0) remain in burst mode, while those
that did (r(p, t) = 1) switch to tonic mode. The mode of each tonic sensor is
determined by comparing the current reconstruction with Htonic as follows:

m(p, t) =
{

1 , |ŝ(p, t) − Htonic| ≥ σtonic

0 , otherwise

The modes are sent back to the transmitter and the process is repeated for the
next frame.
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3 Examples of Video Relay with the Detect/Transmit
Framework

To demonstrate the performance of the detect/transmit framework, we used it to
relay and reconstruct a video movie. The video that we used contains footage of a
vehicle traffic intersection in Karlsruhe, Germany, taken by a stationary camera.
The video was provided by the Institut für Algorithmen und Kognitive Systeme,
Universität Karlsruhe (http://i21www.ira.uka.de/image sequences). We used a
section of the video consisting of 1000 frames, each of which contains 100 ×
100 8-bit (0 - 255) grayscale pixels. In addition to reconstructing video from

Fig. 2. Actual frames from the traffic video and the error in the reconstructions. Each
frame consisted of 100 × 100 8-bit grayscale pixels. (A) Actual frames 35, 50, and 65.
(B) Squared error in the reconstructed frames (% variance of intensity of actual frame)
from TO sensors with βframe/P = 3. The MSE of each reconstructed frame is shown.
(C) Squared error in the reconstructed frames from D/T sensors with βframe/P = 3
and σtonic = σburst = 2.
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the signals of detect/transmit (D/T) sensors, we also reconstructed video from
transmit only (TO) sensors as a baseline for comparison. To initialize the relay,
all sensors were set to burst mode and the first α frames of the reconstructed
input were set to the same value as the actual input. Because the frame rate of
the video was 30 frames/sec, a value of α = 3 was used so that the timescale of
the history term was similar to the time constant of T channel de-inactivation
in the LGN [3].

Example frames of the actual video and the error in the reconstructions are
shown in figure 2. Figure 2A shows actual frames 35, 50, and 65 of the video.
Figure 2B shows the squared error in the reconstructed frames (as a percent of
the variance of the intensity of the actual frame) from relay with TO sensors

Fig. 3. Actual and reconstructed intensities of one pixel of the traffic video over 100
frames. (A) The actual (gray) and reconstructed (black) intensities from a TO sensor
with βframe/P = 3. The MSE of the reconstruction is shown (% variance of intensity
of actual pixel). (B) The actual (gray) and reconstructed (black) intensities from a
D/T sensor with βframe/P = 3 and σtonic = σburst = 2.
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with bandwidth limited to 3 bits/frame per sensor (βframe/P = 3). The MSE
of each reconstructed frame is also shown. Figure 2C shows the squared error in
the reconstructed frames from relay with D/T sensors with βframe/P = 3 and
σtonic = σburst = 2. The reconstructions from the signals of the D/T sensors are
superior to those from the TO sensors, as indicated by the decreased MSE.

Figure 3 shows actual and reconstructed intensities of one pixel of the video
over 100 frames. Figure 3A shows the actual (gray) and reconstructed (black)
intensities from a TO sensor with βframe/P = 3, along with the corresponding
MSE. Figure 3B shows the actual (gray) and reconstructed (black) intensities
from a D/T sensor with βframe/P = 3 and σtonic = σburst = 2. The mode of the
sensor during the relay of each frame is indicated. During those times when the
input is not changing, the sensor is in burst mode. Thus, it requires only 1 bit
to transmit its signal, allowing the limited available bandwidth to be allocated
to other sensors with more salient input. During those times when the input is
varying, the sensor switches to tonic mode and transmits the value of the input

Fig. 4. Reconstruction error depends on βmax and σ. The MSE in the reconstruction
from D/T sensors is shown for various values of βframe/P and σ (see legend). For
reference, the MSE in the reconstruction from TO sensors is shown in gray.
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with all available bits. The dynamic allocation of bandwidth provided by the
detect/transmit framework improves the reconstruction, as illustrated by the
decreased MSE.

To investigate the effects of the salience sensitivity and the total available
bandwidth on the fidelity of relay, we reconstructed the video from the signals
of D/T and TO sensors with a range of values of βmax and σtonic = σburst = σ.
The MSE of the reconstructions over all pixels and frames of the video are shown
in figure 4. When a relatively small amount of total bandwidth is available, the
lowest MSE is given by the reconstruction from the relay with the least sensi-
tive sensors (thick black lines). This result indicates that, when bandwidth is
severely limited, a better reconstruction is achieved by having fewer sensors in
tonic mode with more available bits per sensor than by dividing the available
bandwidth among many sensors. As more total bandwidth becomes available, the
lowest MSE is given by the reconstruction from the relay with the most sensitive
sensors (thin black lines). This result indicates that, when there is enough total
bandwidth to encode all of the variations in the input, the best reconstruction
is achieved when small fluctuations are detected.

4 Discussion

We have developed a detect/transmit framework based on the tonic and burst
properties of LGN neurons to facilitate the high fidelity relay of visual informa-
tion with limited bandwidth. The framework enables the dynamic allocation of
bandwidth to those sensors which correspond to the most salient areas of the
visual field. Each sensor in the transmitter operates in either tonic mode (sig-
nals input intensity with all available bits) or burst mode (signals the absence
or presence of a salient input with only 1 bit), depending on the control signal
sent by the receiver. We have demonstrated that video reconstructions from the
signals of detect/transmit (D/T) sensors are superior to reconstructions from
transmit only (TO) sensors and our results illustrate that the minimum MSE
reconstructions are obtained when the sensitivity of the sensors (σ) is set to an
appropriate value for the total available bandwidth (βmax).

We designed the detect/transmit framework to mimic the ability of the mam-
malian visual system to dynamically allocate attentional resources to behav-
iorally relevant areas of the visual field. However, our framework only includes
mechanisms for ‘bottom-up’ control of attention based on changes in the exter-
nal environment, and, correspondingly, control of transmitter mode was based
solely on the salience of the input [10]. However, the mammalian visual system
also contains mechanisms for ‘top-down’ control of attention that is dependent
on the current behavioral task [11]. For example, if an animal is expecting some-
thing to appear in a certain area of the visual field, it may direct its attention to
that area before anything actually appears. Modifications to the detect/transmit
framework to incorporate ‘top-down’ attention would be made at the receiver,
specifically to the method used to control the mode of the transmitter sensors.

In addition to attentional mechanisms, the mammalian visual system incorpo-
rates a number of other strategies to optimize the relay of visual information. While
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the sensors in our transmitter have a one-to-one correspondence with a pixel of
the visual input, retinal ganglion cells, which transmit visual information from the
retina to the LGN, are known to integrate the inputs of many photoreceptors over
space and time to enhance contrast sensitivity and reduce the redundancy in their
responses [12,13,14]. To incorporate these principles into our framework, each sen-
sor would need to integrate multiple pixels of the visual input into its output and
the reconstruction scheme in the receiver would have to be changed accordingly.
The development of such modifications and the implementation of ‘top-down’ at-
tention as described above are directions for future research.
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Abstract. The paper addresses experimental results on peri-space geometry and 
topology perception with a touch sense. A dedicated “perception-action” plat-
form, involving artificial vision and a hand tactile stimulation device as well as 
convenient touch-space perception experiments have been designed. The pro-
posed gravitation representation of the space is based upon nearest object edge 
displays on tactile device, which dynamically modifies with subject navigating 
in the plate form. This representation has been evaluated on voluntary blind-
folded healthy male and female subjects. The collected data show that it is pos-
sible to navigate in space using the touch stimulating device. 

1   Introduction 

The ability to move in 3D space, in safe and independent manner, is a basic and vital 
human activity, for which the space perception seems to be a fundamental element. 
Therefore, an adequate form of space internal (brain) representation is necessary. This 
latter is built only with our senses (vision, touch, hear, smell, kinesthesia, and so on); 
however, if the navigation task is considered, the space perception can be assisted via 
a map, a topographic representation of the space. 

A (cognitive) map could be of assistance for space perception. Indeed, one of the 
map’s functions is to provide data impossible to perceive with vision (because they 
are hidden or remote), data for objects’ localization, data for distance to objects’ esti-
mation, data for displacement direction estimation, data for displacement (or journey) 
path elaboration, and so on. 

The tactile map concept is used since 6000 years [8], but only very late the re-
searchers have realized its importance for spatial information processing.  

“Tactual map” can be used for evaluation of the influence of map’s orientation and 
subject’s orientation in the environment [15]. 

Some experimental environments, similar to tactile map [16], [9], [14], have been 
used for memory and inference tests performance evaluation during the haptic explo-
ration of the spatial relationship between objects located in limited space.  

A familiar environment reconstruction task via tabletop (map, gravitation) model 
construction allows to evaluate someone’s ability for space integration [6-7]. 

A route construction model, in both small- and large- scale environment, can be 
supported by a map as well [13]. 
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Very simple static aligned maps encoding static beacons can be successfully used 
since the age of 4 for moving and for self localization in a peri-personal space [4], 
[11], [8], [15], [16]; the distance between 2 objects (affordance) can also be evaluated 
with an error less than 20% [18]. Visually impaired people can use these maps for 
navigation in unfamiliar indoor and outdoor environments [10]. 

Since its beginning a tactile map encompasses a cognitive (symbolic) 2D projec-
tion of a 3D real space, (quasi) global (such as a city map) or local (a peri-personal 
space, a few meters ahead of you). 

The use of cognitive maps implies synergetic processes: space perception and 
space cognition. Perceptual processes require adaptation of a map provided knowl-
edge representation to biosensors perceptual capabilities; line, geometric figures and 
global space configuration perception are the main challenges of this process. Cogni-
tive processes are complex; they require 3D  2D projection and its scale, map orien-
tation (aligned, misaligned, etc.), map spatial localization, shift between spatial 
frames of referentials (allocentered  <-> egocentered shift), inertial data processing, 
observed scene dynamics analysis, etc. 

Concept of dynamic cognitive maps has been evaluated mainly in laboratories in 
the context of static tasks such as object recognition [12] on non-portable systems. 
However, recent physiology and technology progresses allow to implement portable 
dynamic cognitive maps, which content adapts to environment changes in real time. 
Moreover, such maps can display egocentered and allocentered scene representation 
(contrary to Bach-y-Rita’s TVSS display unit which is egocentered only, [1]). 

This paper presents an ego-allo- centered dynamic tactile map for 3D space binary 
representation structured by the navigation task, and its experimental evaluation. 

Section 2 introduces the space binary representation, and sketches the main physio-
logical basis justifying it. Section 3 briefly presents experimental plate-form Section 4 
outlines experiments performed to validate the proposed space representation Section 
5 summarizes the collected results and provides some future research directions. 

2   Space Partition: Navigational Space Binary Representation 

Figure 1 summarizes the main steps of cognitive map building process in 3D world 
perception task. Almost all senses, such as vision, touch, hearing, vestibule, proprio-
ception (kinesthesia), etc., participate in space perception and its coherent representa-
tion coding (via data internal combination). Despite of some redundant information 
provided to the brain by different sensory channels, it seems that our senses ontogene-
sis requires/expects this redundancy [15].  

Visual navigation action “naturally” partitions space into two subspaces: obstacles 
and obstacles-free zones, thus defines the  cognitive space binary  representation 
(Figure 2). 

This representation varies in time (with scene dynamic) and in space (changing of 
the observation point). Therefore navigation action can be efficiently executed if it is 
supported by space dynamic cognitive map supporting allo- and ego- centered space 
binary representations. 

In the case of a sensory deficiency, it is necessary to provide the most appropriate 
representation of the space binary representation and to find the most appropriate 
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sensory channel to make it participate in brain space cognitive map building. In the 
case of sightless, the touch sense has proven to be an efficient input data channel for 
static data (Braille code); moreover, the recent results on touch sense confirm [3] that 
the touch, as many other senses, reacts on the gradient of information. 

Consequently, touch sense channel is a good candidate to (partly) replace visual 
channel and to receive data from the dynamic cognitive map of the space binary rep-
resentation useful for navigation. 

 

Fig. 1. Main steps of space cognitive map building 

 

Fig. 2. Space binary representation for displacement task 
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3   Experimental Plate-Form 

In order to validate our hypothesis on space for navigation binary representation an 
experimental plate-form has been designed. It encompasses two components: a tactile 
interface, which stimulates touch sense, and tracking plate-form, which allows to 
track subject’s using the tactile device when moving in the space. 

3.1   Tactile Interface 

The tactile surface, a Braille surface, is realised as a two dimensional micro-actuators 
(taxels) matrix (Figure 3). The Shape Memory Alloy (SMA) technology (Figure 3a) 
has been chosen [19], because it is a good compromise between physical characteris-
tics and tactile perception physiology.  Indeed, physiological data allow to determine 
the most appropriate for touch sense stimulation taxel’s dimensions (length, frequency 
contact force, inter taxel distance, etc.).  

 

       
                 a)                                                    b) 

Fig. 3. Touch stimulating devices: a) SMA based, LRP/CEA designed; b) ViTAL, vibrating 
taxels, CEA designed 

Moreover, the SMA technology makes possible the design of a system with a con-
venient energy consumption (wearable battery), good temporal performance and reli-
ability. However, SMA tactile device being in prototype stage only, the vibrating 
VITAL device realised by the CEA, France has been used for experiments (Figure .3b) 

3.2   Tracking Plat-Form 

Figure 4 shows the built “perception-action” plat-form allowing subject tracking in 
limited space (7x7m2), while Figure 5 shows its usage during the experiments. 

This first version of “perception-action” plate-form encompasses three elements: a 
personal computer (PC), a wide angle color camera (webcam) located 6 m above the 
filmed (peri-personal) space and dedicated (original) tracking software. 

The camera acquires images (every 10s), in allocentered referential, which are 
processed by the tracking software running on a PC. Acquired images encompass two 
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information fundamental for the tracking system: direction of subject’s head (gaze) 
navigating in the environment, and subject’s seen part of the navigation space (its 
peri-personal space). The quite precise gaze direction is obtained via a bicolor pointer 
attached to the hat carried by subject during his navigation in the plate-form; indeed, 
the bicolor pointer direction corresponds to subject’s gaze direction. 

We display on the computer’s screen three images for control: space “seen” by the 
camera (Figure 4, central part of the image), part of the space “seen” by the subject 
(Figure 4, to the left with respect to the central part of the image) and space represen-
tation on the touch stimulating device subject’s carried during the navigation  
(Figure 4, to the right with respect to the central part of the image). 

 

Fig. 4. Tracking plate-form 
 

 

 
Fig. 5. Experimental data collection during the space exploration with VITAL interface 
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4   Experiments 

Three experiments have been led with blindfolded voluntary subjects. In experiments 
1 and 2 subjects have been seated in front of the VITAL device (stationary egocen-
tered position), while they have carried the VITAL in place closed to their gravity 
center in the experiment 3 (almost stationary ego-centered position). 

4.1   Experiment 1: Static Form Tactile Perception 

The test of static forms displayed on the tactile surface perception has been the goal of 
this experiment. We wanted to identify if there are preferred geometric shapes in 
tactile perceptive modality (line, square, circle, arrow), and preferred tactile represen-
tation (wired-frame, as shown in Figure 6, or full); what is the best scale (out of three: 
large, medium and small) for the forms’ perception. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Static framed shapes for tactile recognition 

4.2   Experiment 2: Form and Moving Direction Tactile Perception 

This experiment collected data in order to know whether or not the displayed shape 
can induce the moving stimuli direction. 

In vision language, an arrow symbolizes the direction of the movement. This ex-
periment aimed to determine if a “tactile” arrow could have the same effect: speed-up 
the direction recognition (Figure 7). 

 
 
 
 
 
 
 

 
 

Fig. 7. Shapes for direction recognition 
 

4.3   Experiment 3: Navigation in 3D Space with Tactile Interface 

This experiment shown in Figure 5 has been defined in order to understand if and how 
it is possible to perceive the space by blindfolded people. After a very short period of 

rectangle line cercle trianglerectangle line cercle trianglerectangle line cercle triangle

Moving direction W-> E
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learning how to the tactile device (2 minutes in the average) with the assistance of a 
supervisor, blindfolded subjects have been invited to navigate to navigate in the space 
using the tactile device. The whole experiments took 10 minutes. 

5   Discussion 

From data collected during the experiment 1 is it possible to conclude that there is a 
bad perception of filled forms. Moreover, many subjects have complained about tac-
tile surface (8x8 taxels) too weak resolution.  

Data collected during the experiment 2 shows that it is possible to recognize a di-
rection, but the recognition process is shape insensitive (i,e., the arrow does not speed 
up the moving direction recognition).  

From data collected during the experiment 3 it is possible to conclude that (1) it is 
possible to perceive the space organization via its tactile representation; (2) nearest 
obstacle edge representation can be appropriate for a space binary representation 
(obstacles – obstacle free space); (3) it is possible to integrate a space representation 
to a navigation tool. 

Future experiments have to be performed on blind voluntary subjects.  
All experiments have to be done on touch stimulating SMA based (not vibrating) 

tactile interface ; indeed, SMA device will involve in perception Meisner’ biosensors, 
while vibrating interface will involve mainly Paccini’s biosensors, so tactile informa-
tion can be easier understood by subjects (blind people). 

Furthermore, new experiments should provide additional data about space repre-
sentation and representation precision. 
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Visual Selection in Human Frontal Eye Fields 
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Abstract.  Frontal eye field neurons discharge in response to behaviourally 
relevant stimuli that are potential targets for saccades. Distinct perceptual and 
oculomotor processes have been dissociated in the monkey FEFs, but little is 
known about the perceptual capacity of human FEFs. To explore this, transcra-
nial magnetic stimulation (TMS) was applied over the FEFs while subjects car-
ried out visual search. TMS impaired search performance (d') when applied be-
tween 40 and 80ms after search array onset. Unit recordings show that FEF 
signal during this time period predicts monkeys’ behavioural reports on hit, 
miss, false alarm and correct rejection trials. Our data demonstrate that the hu-
man FEFs make a critical early contribution to search performance. We argue 
that this reflects the operation of a visuospatial selection process within the 
FEFs that is not reducible to saccade programs. 

1   Introduction 

The frontal eye fields (FEFs), in the arcuate sulcus of the monkey brain (BA8/6) [1], 
have an important role in converting the outcome of visual processing into eye 
movement commands. In classical anatomical models of the visual system [2], the 
FEFs are situated in the upper reaches of the visual hierarchy, several levels above 
sensory visual areas. However, recent findings have challenged the characterization of 
FEF function solely in terms of oculomotor control. 

FEF neurons exhibit response latencies in the same 40-80ms range as early sensory 
visual areas V1, V2, MT and MST [3], whilst the discovery of feed-forward connec-
tivity between FEF and V4 has re-defined the position of the FEFs within the visual 
hierarchy [4]. FEF damage can induce visual field defects which remain evident in 
raised detection thresholds after oculomotor deficits have recovered [5]. Using feature 
[6] and conjunction [7] search tasks, distinct processes have been dissociated in the 
FEFs: target selection by FEF visual neurons and saccade programming by FEF 
movement neurons. FEF visual neurons are not selective for particular physical visual 
attributes [8]. Instead, they respond to behaviourally relevant stimuli, and have been 
described as computing a saliency map which encodes targets for potential saccades 
[9]. The initial visual response (50ms post-stimulus) is non-selective, but by about 
100-120ms the activity of FEF visual neurons distinguishes with 95% reliability tar-
gets from distractors in the receptive field [10]. Distractor-related activity is sup-
pressed, while target-related activity evolves to signal the spatial location of the 
stimulus. FEF movement neurons do not respond to visual stimulation, but fire before 
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and during saccades, signalling whether and when to make a saccade [11]. Target se-
lection occurs independently of saccade programming: the timing of selection does 
not predict saccadic reaction times and selection occurs whether or not monkeys pro-
ceed to saccade to the target [12].  

In neuroimaging studies, the FEFs are commonly activated in orienting paradigms, 
whether or not an eye movement is required. In the latter case, FEF activation is at-
tributed to the generation of saccade programs that are not overtly executed, rather 
than to visual analytic processes in the FEFs. To date, only four published studies 
have directly assessed the perceptual role of the human FEFs. These have reported 
roles for the FEFs in contralateral visual stimulus analysis [13], preparatory vision 
[14, 15], and target discrimination in conjunction visual search [16].  

The present experiments used TMS to test the hypothesis that, as in the monkey 
brain, human FEFs make a critical early (perceptual) contribution to visual search per-
formance. To de-couple perceptual from oculomotor processes, a conjunction search 
task was used in which eye movements were not required. Search arrays were pre-
sented briefly and fixation was monitored. Array duration was titrated so that each 
subject performed at 75% accuracy. TMS effects were quantified using a measure of 
perceptual sensitivity (d').  

2   Methods 

2.1   Subjects 

Eight subjects (7 male, 1 female) participated in Experiment 1 (mean age = 27.6 + 
4.3). Nine subjects (8 male, 1 female) participated in Experiment 2 (mean age = 27.7 
+ 3.6). Of these, four had participated in Experiment 1. A further four subjects were 
discarded for reasons given below (see Task Design). All subjects were right-handed 
and had normal or corrected-to-normal vision. All gave informed written consent and 
reported an absence of any neurological condition in their known family history. All 
procedures were approved by the Oxford Research Ethics Committee (OxREC) and 
the Institute of Neurology, University College London.  

2.2   Visual Stimuli 

Visual search arrays were displayed on a 16” VDU with 100 Hz vertical refresh rate 
running E-Prime software (Psychology Software Tools, Pittsburgh). Subjects sat in a 
dark room 57cm from of the screen and were restricted by a forehead and chin rest. 
Each search array subtended 2 x 2 degrees of visual angle around a central fixation 
cross. Each array contained 12 stimuli on a grey background (35.8cd/m2). In Experi-
ment 1, these were luminance-matched (22 cd/m2) purple vertical (CIE: x = 0.217, y = 
0.130) and green horizontal (CIE: x =0.282, y =0.589) lines, each subtending ca. 0.23 
degrees of visual angle (DVA). The target was a purple horizontal and was present on 
50% of trials. In Experiment 2, stimuli were luminance-matched (23.3 cd/m2) pink 
(CIE: x = 0.288, y = 0.149) and purple (CIE: x = 0.233, y = 0.203) diagonal lines in 
opposite orientations. Each line subtended ca. 0.18 DVA. The target was a purple di-
agonal sharing the same orientation as the pink diagonals and was present on 50% of 
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trials. The background luminance of both arrays was uniform grey (35.8cd/m2). In 
both experiments, the stimulus mask subtended 2 x 2 DVA and was composed of 
patches of the two stimulus colours used in that experiment. 

2.3   Task Design  

Task procedure replicated Muggleton, et al. (2003)(see Figure 1(a)). A trial began 
with a central fixation cross for 500ms, followed by a briefly presented search array, 
which was masked. Subjects had to make a target present/absent response using a key 
press. Accuracy was emphasized over speed. The inter-trial interval was 2 sec. Array 
duration was determined by a staircase procedure which varied presentation by one 
screen refresh (10ms) until subjects performed at 75% accuracy. Correct performance 
on 6/8 trials on two consecutive blocks (8 trials) determined a subject’s viewing 
threshold. Subjects then ran one block of 60 trials (Experiment 1) or two blocks of 40 
trials (Experiment 2) to confirm the validity of the threshold value. When subjects 
scored d’ > 1.0, they began formal trials. If a subject failed to achieve this criterion, 
array duration was increased until the criterion was reached. Block order was coun-
terbalanced. Procedures were identical in both experiments. 

 

Fig. 1. (a) A trial began with central fixation (i), followed by the search array, for a duration de-
termined individually for each subject (ii), and then a mask until the subject responded (iii). (b) 
TMS (10Hz, 500ms) was applied over the right FEFs at three times: (1) at search array onset 
(0ms), (2) 100ms after array onset (100ms), (3) 200ms after array onset. 

In Experiment 1, subjects performed five blocks of 60 trials, one for each TMS 
condition: Vertex, V5, FEF(0), FEF(100) and FEF(200). In the first three conditions (Ver-
tex, V5 and FEF(0)), 10Hz TMS was applied for 500ms at search array onset (see Fig-
ure 1(b)). In the latter two conditions, TMS was applied 100ms (FEF(100)) or 200ms 
(FEF(200)) after array onset. By comparing FEF(0), FEF(100) and FEF(200) against Vertex, 
the aim was to test the effect of TMS over FEF during the first 100ms of visual proc-
essing (FEF(0)); during visual processing, but after the first 100ms (FEF(100)); and 
when subjects were no longer viewing the search array (FEF(200)).  
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In Experiment 2, subjects ran two blocks (40 trials) in each of five timing condi-
tions (0/40ms; 40/80ms; 80/120ms; “pre-threshold” and “post-threshold”) for each 
TMS site (Vertex and right FEF). In the first three conditions, dual TMS pulses were 
applied at: 0/40ms; 40/80ms and 80/120ms after array onset; in the last two condi-
tions, pulses were applied during the last 40ms below each subject’s visual threshold 
(“pre-threshold”) and during the first 40ms above threshold (“post- threshold”), (eg: 
for a threshold of 150ms, TMS was applied at 100/140 and 160/200ms, respectively) 
(Figure 2). Interspersed among these experimental blocks, subjects performed four 
blocks in which TMS was not applied. If d’ was below 1.0 on any of these baseline 
blocks, the subject was excluded from the experiment. Four subjects were discounted 
on these grounds. 

 

Fig. 2. Double-Pulse TMS was applied in five conditions. The timing of the first three condi-
tions was determined relative to search array onset. The last two conditions were determined 
relative to each individual’s visual threshold and differed across subjects. 

2.4   Eye Movement Recording and Cortical Site Localization  

To confirm that saccades or eye blinks could not account for the results, fixation was 
monitored using infrared light transducers in the Skalar IRIS 6500 system attached to 
the forehead rest. Signals were sampled at a rate of 1000 Hz by an A-D converter card 
and were recorded using DASYlab 5 software. Eye position traces were recorded for 
search array duration on every trial and the equipment was re-calibrated between 
blocks. Based on the results of a previous experiment [16], right FEF was chosen as 
the site of an expected TMS effect. FEF was localized using frameless stereotaxy 
(Brainsight, Rogue Research, Montreal, Canada) and anatomical landmarks. Stimula-
tion was applied over the posterior middle frontal gyrus, at the junction of the precen-
tral and superior frontal sulci [17] at coordinates that correspond well with other FEF 
TMS [18] and imaging studies [19]. Vertex was chosen as the principal control for 
somatosensory and acoustic TMS artefacts. V5 served as an additional control to 
demonstrate that FEF TMS effects were specific, and not a general consequence of in-
terference with the visual system. V5 was functionally localized using the established 
method of moving phosphene elicitation [20]. 
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2.5   Transcranial Magnetic Stimulation  

A Magstim Super Rapid machine (Magstim Company, Dyfed, U.K.) was used to de-
liver repetitive- and double-pulse TMS through a series of small diameter (50mm) 
figure-of-eight TMS coils. Coils were cooled on ice before use to prevent over-
heating during a block. Over FEF and Vertex, the coil was oriented parallel to the 
floor with the handle running in an anterior-posterior direction. Over V5, the coil was 
oriented at a right angle to the floor. 10Hz TMS was applied at 65% of stimulator 
output over Vertex and FEF and at 110% of phosphene threshold over V5. 

3   Results 

3.1   Experiment 1: Repetitive-Pulse TMS  

The d' data for all eight subjects in three of the five conditions (Vertex, V5, FEF(0))  
were submitted to a one-way repeated measures ANOVA to test whether TMS over 
the FEF degraded search performance. There was a main effect of TMS Site (F(2,14) 
= 5.844, p = 0.014). Planned comparisons revealed a significant difference between 
Vertex and FEF(0) (F(1,7) = 7.930, p = 0.026) but no difference between the two con-
trol sites, Vertex and V5 (F(1,7) = 1.525, p = 0.257) (Figure 3). TMS reduced d' in the 
FEF(0) but not the Vertex block (mean FEF(0)  = 1.124, SE = 0.263; mean vertex = 
1.754, SE = 0.184). To test for a selective effect on hits or false alarms, the data were 
analysed by response type: ANOVA (TMS Site * Response Type (hits, false alarms)). 
The interaction was not significant (F(6,42) = 1.984, p = 0.09). Bias scores (C) 
showed that subjects had a tendency towards “target absent” responses, but this was 
not affected by TMS (F(2,14) = 0.512, p = 0.610; mean C values: vertex = 0.16 (SE = 
0.2), FEF(0) = 0.356 (SE = 0.183), V5 = 0.417 (SE = 0.132)). 

To test the hypothesis that earlier TMS application would produce greater interfer-
ence, d' data from the FEF(0), FEF(100) and FEF(200) conditions were compared against 
 

 

Fig. 3. Effect of rTMS over right FEF on Search Performance (Experiment 1). Search perform-
ance was impaired when TMS was applied over right FEF, but not over V5 or Vertex. TMS 
significantly reduced d' (* refers to planned comparison with Vertex, p < 0.05)(n = 8). 
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Vertex. It was expected that all subjects would have thresholds < 200ms, so that in the 
FEF(200) (control) condition TMS would be applied during the mask. Two subjects had 
longer thresholds (230/250ms, mean: 150ms), so their data were excluded. A re-
peated-measures ANOVA showed no main effect of TMS Condition (Vertex, FEF(0), 
FEF(100) and FEF(200))(F(3,15) = 2.249, p = 0.125). However, planned contrasts against 
Vertex revealed a significant reduction in d' in the FEF(0) condition only: (F(1,5) = 
25.019, p = 0.004) (mean FEF(0) = 1.152, SE = 0.238; mean Vertex =1.585, SE = 
0.198). There was a trend in the FEF(100) condition (F(1,5) = 4.904, p = 0.078), but the 
FEF(200) condition did not approach significance (F(1,5) = 1.513, p = 0.273). The re-
sults suggest that the earlier TMS was applied, the greater the reduction in d' (see Fig-
ure 4). Subjects tended towards “target absent” responses in all conditions. TMS did 
not affect this response bias (F(3,15) = 2.017, p = 0.215; mean C values: vertex = 
0.376 (SE = 0.125), FEF(0) = 0.278 (SE = 0.199), FEF(100) = 0.296 (SE = .138), 
FEF(200) = 0.176 (SE = .214)). 

 

Fig. 4. Search performance (d') was impaired when TMS was applied over FEF at search array 
onset (* refers to planned comparison with Vertex, p < 0.05) (n = 6) 

 

Fig. 5. Double-pulse TMS over right FEF at 40/80ms significantly reduced d' (* refers to 
MANOVA with “TMS Time” and “TMS Site” (Vertex, FEF) as factors, p < 0.05)(n = 9) 
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3.2   Experiment 2: Double-Pulse TMS  

Experiment 2 was designed to sample discrete sub-sets of the first 200ms of array 
processing. A MANOVA tested whether TMS over the FEF differed significantly 
from Vertex (control) in any of the five time periods (0/40, 40/80, 80/120, ‘Pre-
Threshold’, ‘Post-Threshold’). TMS applied over FEF in the 40/80ms condition only 
significantly reduced perceptual sensitivity (F(1,16) = 4.762, p = 0.044) (FEF 40/80 
mean d' = 1.132, SE = 0.133; Vertex 40/80 mean d' = 1.543, SE = 0.133) (Figure 5). 
There was no selective effect on hits or false alarms, nor did TMS affect subjects’ 
baseline “target absent” response bias. 

4   Discussion 

These experiments aimed to test whether the human FEFs make a critical perceptual 
contribution to visual search. In Experiment 1, rTMS over right FEF reduced percep-
tual sensitivity (d'), compared to control TMS over Vertex or V5. Perceptual process-
ing was de-coupled from saccade programming by using brief displays and by moni-
toring fixation. Saccades and blinks occurred on fewer than 3% of trials, which did 
not differ across conditions. The reduction in discriminability indicates that the hu-
man FEFs are critical for normal conjunction search performance when saccades are 
not required. This replicates the findings of Muggleton, et al (2003). Experiment 1 
further suggested that the earlier TMS was applied, the greater the disruptive effect. 
Experiment 2 isolated disruption to within 40-80ms after search array onset. This 
temporal profile of interference coincides with neurophysiological data. Thompson & 
Schall (1999) showed that the amplitude of signal in FEF neurons 60-90ms after vis-
ual stimulus onset predicted monkeys’ perceptual reports on hit, miss, false alarm and 
correct rejection trials. The early and discrete effect of TMS suggests disruption of 
visual selection processes in the FEFs rather than saccade programming. 

Under normal circumstances, visual scenes are inspected by cycles of stimulus 
fixation and analysis, followed by saccades that direct gaze to subsequent targets in 
the visual scene. Minimum estimates of the time required to perform these operations 
suggest that perceptual processing requires approximately 100ms [21], while saccade 
programming requires 100-150ms [22]. The contention that early TMS interference 
reflects disruption of target selection, rather than saccade programming, seems to im-
ply that there are temporally discrete stages processing. However, there is evidence 
that both processes occur in parallel [23]. Moreover, it has been shown that FEF 
movement neurons are modulated by distractor properties, suggesting a model of con-
tinuous information transfer between FEF visual and motor neurons [7]. Accordingly, 
disruption of visual analytic processes in FEF should produce a concomitant build-up 
of error in the signal that shapes the oculomotor response. Hence, despite no differ-
ence in saccade rates across conditions, one could argue that the TMS effects stem 
from disruption of latent saccade programming.  

In Experiment 1, TMS reduced d’in the FEF(0) condition. This was attributed to dis-
ruption of target selection processes in FEF occurring during the first 100ms. How-
ever, TMS was applied for 500ms duration so may have disrupted both perceptual and 
oculomotor processes. It is beyond the scope of the rTMS design to evaluate this pos-
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sibility. By contrast, the double-pulse design (Experiment 2) showed a discrete TMS 
effect that corresponds with the timing of target selection processes in monkey FEF. 
Interference occurred early (40-80ms), about 100ms earlier than the mean visual 
threshold (178ms). Since the effect of a TMS pulse on neural firing is immediate, if 
the effects were due to disruption of latent saccade programs then one would expect 
interference to occur later, closer to the time of saccade evolution (eg: in the 80/120 
or 120/160 time bin). Significantly, there was no effect in any of the later time bins. 
Moreover, although it is clear that disrupting target selection should affect saccade 
programming, it is difficult to explain how disrupting saccade programs should affect 
visual discrimination (d'). In light of this, an account based on target selection is more 
parsimonious than one based on latent saccade programs. 

The temporal correspondence between the TMS effect and FEF unit activity is not 
exact. Typically, target selection in FEF neurons evolves over 50-70ms after the onset 
of a search array and peaks at 100-120ms, by which time the neuronal response dis-
tinguishes targets from distractors with 95% reliability [10]. This peak has been 
shown to occur later as task difficulty is increased. The combination of conjunction 
search and an early TMS effect thus seems to pose an interpretative problem. The fol-
lowing observations are offered in an attempt to address this. First, FEF neurons can 
exhibit target selection during conjunction search that is as early as that recorded dur-
ing feature search [10]. Second, our search arrays were foveal, whereas the monkey 
displays were peripheral, a factor which might contribute to the early timing of our ef-
fect. Third, repeated target/distractor combinations likely induced feature priming 
across the ten blocks of eighty trials in Experiment 2 [24]. Such priming has been 
shown to induce earlier target selection in the monkey FEFs [25]. Finally, species dif-
ferences should not be dismissed in considering the lack of precise concordance be-
tween single unit and TMS interference times.    

Based on the temporal correspondence between our TMS results and single-unit 
data, I have argued that our data reflect disruption of target selection processes within 
the FEFs. However, the target selection process manifested in FEF is likely to be 
closely related to selection processes observed in extrastriate areas, such as V4 [26]. 
FEF sends extensive feedback projections to extrastriate cortex [27], and has been 
proposed to exert “top-down control” on these areas, such as modulating the gain of 
visually driven signals [28]. A number of studies have shown that feedback connec-
tions are matched in conduction speed to feedforward connections [29], consistent 
with the notion that feedback modulation by FEF may occur simultaneous with feed-
forward driving input. Hence, the early timing of the TMS effect does not arbitrate 
between a feedforward or feedback interpretation. 

The computational role of human FEF in vision remains to be established. Current 
functional sketches ascribe roles for FEF in covert orienting, search, saliency map 
formation and oculomotor responses [30]. Similar functions have been ascribed to 
posterior parietal cortex (PPC) [31]. FEF and PPC share strong reciprocal intercon-
nections [32] and are both consistently activated nodes in imaging studies of these 
functions. Despite these similar profiles, imaging data are most commonly interpreted 
in terms of relative specialization of FEF for motor-exploratory and PPC for percep-
tual-representational aspects of attentional tasks [33]. A previous study applied TMS 
over the PPC and showed that interference times were yoked to subjects’ responses: 
RT costs were induced 100ms after array onset on target present trials and at 160ms 
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on target absent trials [34]. Although the search tasks used were not identical, taken 
together, the results suggest that the FEFs may contribute to search performance ear-
lier than the PPC. These findings emphasize the need for future work to distinguish 
the relative contributions of the FEF and PPC to visual target selection. 
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Abstract. End-stopped cells in cortical area V1, which combine out-
puts of complex cells tuned to different orientations, serve to detect line
and edge crossings (junctions) and points with a large curvature. In this
paper we study the importance of the multi-scale keypoint representa-
tion, i.e. retinotopic keypoint maps which are tuned to different spatial
frequencies (scale or Level-of-Detail). We show that this representation
provides important information for Focus-of-Attention (FoA) and object
detection. In particular, we show that hierarchically-structured saliency
maps for FoA can be obtained, and that combinations over scales in
conjunction with spatial symmetries can lead to face detection through
grouping operators that deal with keypoints at the eyes, nose and mouth,
especially when non-classical receptive field inhibition is employed. Al-
though a face detector can be based on feedforward and feedback loops
within area V1, such an operator must be embedded into dorsal and
ventral data streams to and from higher areas for obtaining translation-,
rotation- and scale-invariant face (object) detection.

1 Introduction

Our visual system is still a huge puzzle with a lot of missing pieces. Even in
the first processing layers in area V1 of the visual cortex there remain many
open gaps, despite the amount of knowledge already compiled, e.g. [3,5,25]. Re-
cently, models of cortical cells, i.e. simple, complex and end-stopped, have been
developed, e.g. [7]. In addition, several inhibition models [2,17], keypoint detec-
tion [7,12,22] and line/edge detection schemes [2,12,14,15], including disparity
models [6,11], have become available. On the basis of these models and possi-
ble processing schemes, it is now possible to create a cortical architecture for
figure-background segregation [16] and visual attention or Focus-of-Attention
(FoA), bottom-up and/or top-down [4,8,13], and even for object categorisation
and recognition.

In this paper we will focus exclusively on keypoints, for which Heitger et
al. [7] developed a single-scale basis model of single and double end-stopped cells.
Würtz and Lourens [22] and Rodrigues and du Buf [12] presented a “multi-scale”
approach: detection stabilisation is obtained by averaging keypoint positions over
a few neighbouring micro-scales. In [13] we introduced a truly multi-scale anal-
ysis: if there are simple and complex cells tuned to different spatial frequencies,
spanning an interval of multiple octaves, it can be expected that there are also
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end-stopped cells at all frequencies. We analysed the multi-scale keypoint repre-
sentation, from very fine to very coarse scales, in order to study its importance
and possibilities for developing a cortical architecture, with an emphasis on FoA.
In addition, we included a new aspect, i.e. the application of non-classical recep-
tive field (NCRF) inhibition to keypoint detection, in order to distinguish object
structure from surface textures.

A difficult and still challenging application, even in machine vision, is face
detection. Despite the impressive number of methods devised for faces and fa-
cial landmarks, which can be based on Gabor filters [18] or Gaussian derivative
filters [26], colour [27], attention [19], morphology [9], behaviouristic AI [10],
edges and keypoints [20], spiking neurons [1] and saliency maps [23], complicat-
ing factors that still remain are pose (frontal vs. profile), beards, moustaches
and glasses, facial expression and image conditions (lighting, resolution). De-
spite these complications, in this paper we will study the multi-scale keypoint
representation in the context of a possible cortical architecture. We add that (a)
we will not employ the multi-scale line/edge representation that also exists in
area V1, in order to emphasise the importance of the information provided by
keypoints, and (b) we will not solve complications referred to above, because
we will argue, in the Discussion, that low-level processing in area V1 needs to
embedded in to a much wider context, including short-time memory, and this
context is expected to solve many problems.

In Section 2 we present the models for end-stopped cells and non-classical
receptive field inhibition, followed by keypoint detection with NCRF inhibition
in Section 3, and the multi-scale keypoint representation with saliency maps in
Section 4. In Section 5 we present facial landmark detection, and conclude with
a discussion (Section 6).

2 End-Stopped Cells and NCRF Inhibition

Gabor quadrature filters provide a model of cortical simple cells [24]. In the
spatial domain (x, y) they consist of a real cosine and an imaginary sine, both
with a Gaussian envelope. A receptive field (RF) is denoted by (see e.g. [2]):

gλ,σ,θ,ϕ(x, y) = exp
(
− x̃2 + γỹ2

2σ2

)
· cos(2π

x̃

λ
+ ϕ),

x̃ = x cos θ + y sin θ ; ỹ = y cos θ − x sin θ,

where the aspect ratio γ = 0.5 and σ determines the size of the RF. The spa-
tial frequency is 1/λ, λ being the wavelength. For the bandwidth σ/λ we use
0.56, which yields a half-response width of one octave. The angle θ determines
the orientation (we use 8 orientations), and ϕ the symmetry (0 or π/2). We
apply a linear scaling between fmin and fmax with, at the moment, hundreds of
contiguous scales.

Responses of even and odd simple cells, which correspond to real and imagi-
nary parts of a Gabor filter, are obtained by convolving the input image with the
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RF, and are denoted by RE
s,i(x, y) and RO

s,i(x, y), s being the scale, i the orienta-
tion (θi = iπ/(Nθ − 1)) and Nθ the number of orientations. In order to simplify
the notation, and because the same processing is done at all scales, we drop the
subscript s. The responses of complex cells are modelled by the modulus

Ci(x, y) = [{RE
i (x, y)}2 + {RO

i (x, y)}2]1/2.

There are two types of end-stopped cells [7,22], i.e. single (S) and double (D). If
[·]+ denotes the suppression of negative values, and Ci = cos θi and Si = sin θi,
then

Si(x, y) = [Ci(x + dSi, y − dCi) − Ci(x − dSi, y + dCi)]
+ ;

Di(x, y) =
[
Ci(x, y) − 1

2
Ci(x + 2dSi, y − 2dCi) − 1

2
Ci(x − 2dSi, y + 2dCi)

]+

.

The distance d is scaled linearly with the filter scale s, i.e. d = 0.6s. All end-
stopped responses along straight lines and edges need to be suppressed, for which
we use tangential (T) and radial (R) inhibition:

IT (x, y) =
2Nθ−1∑

i=0

[−Ci mod Nθ
(x, y) + Ci mod Nθ

(x + dCi, y + dSi)]
+ ;

IR(x, y) =
2Nθ−1∑

i=0

[
Ci mod Nθ

(x, y) − 4 · C(i+Nθ/2) mod Nθ
(x +

d

2
Ci, y +

d

2
Si)
]+

,

where (i + Nθ/2) mod Nθ ⊥ i mod Nθ.
The model of non-classical receptive field (NCRF) inhibition is explained in

more detail in [2]. We will use two types: (a) anisotropic, in which only responses
obtained for the same preferred RF orientation contribute to the suppression,
and (b) isotropic, in which all responses over all orientations equally contribute
to the suppression.

The anisotropic NCRF (A-NCRF) model is computed by an inhibition term
tAs,σ,i for each orientation i, as a convolution of the complex cell responses Ci

with the weighting function wσ, with wσ(x, y) = [DoGσ(x, y)]+/‖[DoGσ]+‖1,
‖ · ‖1 being the L1 norm, and

DoGσ(x, y) =
1

2π(4σ)2
exp(−x2 + y2

2(4σ)2
) − 1

2πσ2
exp(−x2 + y2

2σ2
).

The operator bA
s,σ,i corresponds to the inhibition of Cs,i, i.e. bA

s,σ,i = [Cs,i −
αtAs,σ,i]

+, with α controlling the strength of the inhibition.
The isotropic NCRF (I-NCRF) model is obtained by computing the inhi-

bition term tIs,σ which does not dependent on orientation i. For this we con-
struct the maximum response map of the complex cells C̃s = max{Cs,i}, with
i = 0, ...Nθ − 1. The isotropic inhibition term tIs,σ is computed by the convolu-
tion of the maximum response map C̃s with the weighting function wσ, and the
isotropic operator is bI

s,σ = [C̃s − αtIs,σ]+.
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Fig. 1. Centre and right: keypoints without and with NCRF inhibition (face196)

3 Keypoint Detection with NCRF Inhibition

NCRF inhibition permits to suppress keypoints which are due to texture, i.e.
textured parts of an object surface. We experimented with the two types of
NCRF inhibition introduced above, but here we only present the best results
which were obtained by I-NCRF at the finest scale.

All responses of the end-stopped cells S(x, y) =
∑Nθ−1

i=0 Si(x, y) and D(x, y)
=
∑Nθ−1

i=0 Di(x, y) are inhibited by bI
s,σ, i.e. we use α = 1, and obtain the re-

sponses S̃ and D̃ of S and D that are above a small threshold of bI
s,σ. Then we

apply I = IT +IR for obtaining the keypoint maps KS(x, y) = S̃(x, y)−gI(x, y)
and KD(x, y) = D̃(x, y) − gI(x, y), with g ≈ 1.0, and the final keypoint map
K(x, y) = max{KS(x, y), KD(x, y)}.

Figure 1 shows, from left to right, an input imageandkeypoints detected (single,
finest scale), before and after I-NCRF inhibition. After inhibition, only contour-
related keypoints remain. Almost all texture keypoints have been suppressed, al-
though some may still remain because of strong local contrast (see [13]).

4 Multiscale Keypoint Representation

Although NCRF inhibition can be applied at all scales, this will not be done
for two reasons: (a) we want to illustrate keypoint behaviour in scale space for
the application of FoA, and (b) at coarser scales, i.e. increased RF sizes, most
detail (texture) keypoints will be eliminated automatically. In the multi-scale
case, keypoints are detected the same way as done above, but now by using
KS

s (x, y) = Ss(x, y) − gIs(x, y) and KD
s (x, y) = Ds(x, y) − gIs(x, y).

An important aspect of a face detection scheme is Focus-of-Attention by
means of a saliency map, i.e. the possibility to draw attention to and to inspect,
serially or in parallel, the most important parts of faces, objects or scenes. In
terms of visual search, this includes overt attention and pop-out. If we assume
that retinotopic projection is maintained throughout the visual cortex, the ac-
tivities of all keypoint cells at the same position (x, y) can be easily summed over
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Fig. 2. Keypoints at fine (a), medium (b) and coarse (c) scales, with saliency map (d)

scale s, which leads to a very compact, single-layer map. At the positions where
keypoints are stable over many scales, this summation map, which could replace
or contribute to a saliency map [4], will show distinct peaks at centres of objects,
important sub-structures and contour landmarks. The height of the peaks (sum-
mation cell activity) can provide information about the relative importance. In
addition, this summation map, with some simple processing of the projected
trajectories of unstable keypoints, like a dynamic lowpass filtering related to
the scale and non-maximum suppression, might solve the segmentation prob-
lem: the object centre is linked to important sub-structures, and these are linked
to contour landmarks. This is shown in Fig. 2(d) by means of a 3D perspective
projection. Such a mapping or data stream is data-driven and bottom-up, and
could be combined with top-down processing from inferior temporal cortex (IT)
in order to actively probe the presence of certain objects in the visual field [8]. In
addition, the summation map with links between the peaks might be available
at higher brain areas where serial processing occurs for e.g. visual search.

In order to illustrate keypoint behaviour in the case of human faces we cre-
ated an almost continuous, linear, scale space. Figure 2 (“face196”), shows three
different scales from scale space: (a) fine scale with λ = 4, (b) medium scale
with λ = 20, and (c) coarse scale with λ = 40. At even coarser scales there will
remain only a single keypoint more or less in the centre of the face (not shown).
Most if not all faces show a distinct keypoint the middle of the line that connects
the two eyes, like in Fig. 2(b). Figure 2(d) shows the saliency map of the entire
scale space (λ = [4, 40]) with 288 different scales. Important peaks are found at
the eyes, nose and mouth, but also at the hairline and even the chin and neck.
For a detailed analysis of keypoint behaviour and stability we refer to [13].

5 Detection of Facial Landmarks

In Fig. 2(d) we can see the regions where important features are located, but it
is quite difficult to see which peaks correspond to important facial landmarks.
On the other hand, looking at Fig. 2(b) it is easy to see that some keypoints cor-
respond to landmarks that we pretend to find (in this study limited to eyes, nose
and mouth), but (a) there are many more keypoints and (b) at other scales (e.g.
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Fig. 3. Left to right: (a) facial landmarks, (b) eye landmarks, (c) impression of keypoint

scale space, and (d) saliency map with single-scale keypoints and NCRF inhibition

Fig. 2(c)) they are located at other structures. Presumably, the visual system
uses a “global” saliency map in combination with “partial” ones obtained by
summing keypoints over smaller scale intervals, or even keypoints at individual
scales, in order to optimise detection. This process can be “steered” by higher
brain areas, which may contain prototype object maps with expected patterns
(with approximate distances of eyes and nose and mouth), which is part of the
fast “where path.” The actual “steering” may consist of excitation and inhibition
of pre-wired connections in keypoint scale space, i.e. grouping cells that combine
end-stopped cells in approximate areas and at certain scales, which is part of
the slower “what path.”

In our simulations we explored one possible scenario. We assume the existence
of very few layers of grouping cells, with dendritic fields in partial saliency maps
that map keypoints in specific scale intervals. The top layer with “face” cells
groups axons of “eyes” (plural!), “nose” and “mouth” grouping cells. The “eyes”
cells group axons of pairs of “eye” cells. Only the “eye,” “nose” and “mouth”

Fig. 4. Left: the saliency map of face196 (λ = [13, 18]); Right: result of face196
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Fig. 5. Results obtained with different faces and expressions
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cells connect to the saliency maps, the “face” and “eyes” cells do not. The
scenario consists of detecting possible positions of eyes, linking two eyes, then
two eyes plus nose, and two eyes plus nose plus mouth. This is done dynamically
by activating synaptic connections in the partial saliency maps.

In our simulations, in which we experimented with faces of different sizes
(Fig. 5), we used 7 partial saliency maps, each covering 40 scales distributed
over Δλ = 5, but the scale intervals were overlapping 20 scales. The finest scale
was at λ = 4. The search process starts at the coarsest scale interval, because
there are much less candidate eye positions than there are at the finest scale
interval. A feedback loop will activate connections to finer scale intervals, until
at least one eye candidate is detected.

First, “eye” cells respond to significant peaks (non-maximum suppression and
thresholding) in the selected saliency map (in the case of “face196” λ = [13, 18],
see Fig. 4 (left)), as indicated by Fig. 3(b)-1, but only if there are also two stable
symmetric keypoints at the 40 finest scales (Fig. 3(b)-4). In order to reduce false
positives, the latter is done after NCRF inhibition (Fig. 3(d)). If not a single eye
cell responds, the scale interval of the saliency map is not appropriate and the
feedback loop will step through all saliency maps (Fig. 3(c)), until at least one
eye cell responds.

Second, “eyes” cells respond if two “eye” cells are active on an approximately
horizontal line (Fig. 3(a)-1), each “eyes” cell being a grouping cell with two
dendritic fields. If no eye pair is found, a new saliency map is selected (feedback
loop).

Third, when two eyes can be grouped, a “nose” cell is activated, its dendritic
field covering an area below the “eyes” cell in the saliency map (Fig. 3(a)-2). If
no peak is detected, a new saliency map is selected (feedback loop).

Fourth, if both “eyes” and “nose” cells respond, a “mouth” cell with two
dendritic fields at approximate positions of the two mouth corners (Fig. 3(a)-3)
is activated. If keypoints are found, a “face” cell will be excitated. If not, a new
saliency map is selected (feedback loop).

The process stops when one face has been detected, but in reality it might
continue at finer scale intervals (there may be more faces with different sizes in
the visual field). However, see the Discussion section. The result obtained in the
case of “face196” is shown in Fig. 4, where +, � and × symbols indicate detected
and used keypoints at eyes, nose and mouth corners (actual positions of face and
eyes cells are less important). More results are shown in Fig. 5, which includes a
correctly detected (!) fake face. Obviously, more features must be used, including
the multi-scale line/edge representation.

6 Discussion

As Rensink [21] pointed out, the detailed and rich impression of our visual sur-
round may not be caused by a rich representation in our “visual memory,” be-
cause the stable, physical surround already “acts” like memory. In addition,
focused attention is likely to deal with only one object at a time. His triadic ar-
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chitecture therefore separates focused attention to coherent objects (System II)
from nonattentional scene interpretation (Layout and Gist subsystems in Sys-
tem III), but both Systems are fed by low-level feature detectors, e.g. of edges,
in System I.

In this paper we showed that keypoints detected by end-stopped operators,
and in particular a few partial keypoint maps that cover overlapping scale inter-
vals, may provide very important information for object detection. Exploring a
very simple processing scheme, faces can be detected by grouping together ax-
ons of end-stopped cells at approximate retinotopic positions, and this leads to
robust detection in the case of different facial expressions. However, the simple
scheme explored only works if the eyes are open, if the view is frontal, and if
the faces are approximately vertical. For pose-, rotation- and occlusion-invariant
detection, the scheme must be fed by Rensink’s short-term Layout and Gist sub-
systems, but also the long-term Scene Schema system that is supposed to build
and store collections of object representations, for example non-frontal faces.

Owing to the impressive performance of current computers, it is now possi-
ble to test Rensink’s [21] triadic architecture in terms of e.g. Deco and Rolls’ [8]
cortical architecture. The ventral WHAT data stream (V1, V2, V4, IT) is sup-
posed to be involved in object recognition, independently of position and scaling.
The dorsal WHERE stream (V1, V2, MT, PP) is responsible for maintaining a
spatial map of an object’s location and/or the spatial relationship of an object’s
parts as well as moving the spatial allocation of attention. Both data streams
are bottom-up and top-down. Apart from input via V1, both streams receive
top-down input from a postulated short-term memory for shape features or ob-
jects in prefrontal cortex area 46, i.e. the more ventral part PF46v generates an
object-based attentional component, whereas the more dorsal part PF46d spec-
ifies the location. As for now, we do not know how PF46 works. It might be the
neurophysiological equivalent of the cognitive Scene Schema system mentioned
above, but apparently the WHAT and WHERE data streams are necessary for
obtaining view-independent object detection through cells with receptive fields
of 50 degrees or more [8]. However, instead of receiving input directly from sim-
ple cells, the data streams should receive input from feature extraction engines,
including end-stopped cells.
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Abstract. Studies on object visual working memory have claimed that
we can maintain 3-5 objects. However, change detection tasks used in
previous work have problems in evaluating feature-bound object repre-
sentations in working memory. We devised a paradigm called multiple-
object permanence tracking (MOPT) for more strict evaluation, where
observers are required to identify the type of switch in feature combi-
nation between objects during an occlusion period, thus eliminating the
use of feature memory or stimulus salience. We showed that capacity of
feature-bound representations is more limited than previous estimates.
To examine whether this limitation reflects memory retrieval or mainte-
nance, we used a cueing version of MOPT. A flashing cue with 100 %
validity was presented on a target object just before or after a feature-
switch event. If memory-retrieval is the bottleneck, postcue will facili-
tate the task performance. A type identification task evaluating feature-
bound representations failed to show any benefit of postcue, whereas a
simple change detection task possibly reflecting saliency-based represen-
tations showed a significant benefit. This suggests that the previously
reported capacity of 3-5 objects may reflect saliency-based representa-
tions. In contrast, feature-bound representations can be stored only for
1 or 2 objects.

1 Introduction

Our visual world contains numerous objects, and these objects have various
different visual features. To perceive the world properly, correspondences must
be made between feature values and multiple objects. This process of feature
integration into coherent object representation has often been discussed under
the name of “binding problems”.

Feature binding has been studied empirically in the context of visual percep-
tion. Treisman and Schmidt [10] demonstrated that feature binding in visual per-
ception is not automatic, and requires visual attention. The problem of feature
binding in visual memory has only recently received attention from researchers,
but the nature of feature binding in visual working memory is still poorly un-
derstood. As detailed below, we have devised an experimental paradigm called

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 215–224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



216 J. Saiki and H. Miyatsuji

multiple object permanence tracking (MOPT) [8,9] to address this issue, and
have shown that our ability to hold feature binding in visual working memory
is much more limited than previously revealed. This study extended this work
to investigate whether the limitation in memory for feature binding is due to
memory maintenance or memory retrieval.

1.1 MOPT and Memory for Feature Binding

Kahneman and colleagues proposed the notion of object file to account for how
the visual system keeps track of object information in a visual scene [4]. Kah-
neman et al. [4] described an object file as “a temporary episodic representa-
tion, within which successive states of an object are linked and integrated”, and
claimed that the visual system can hold multiple object files simultaneously.
Along this line, Luck and Vogel [6] showed that humans can hold about four
object files simultaneously, using a change detection task with multidimensional
objects. These studies suggest that the visual system binds object features by
focused attention to form object files, and about four object files are maintained
in the visual working memory (see [2] for a review).

However, these previous studies have problems in evaluating memory for
feature binding at least in two respects. First, the stimulus design is not suitable
for the issue of feature binding. As in the stimuli used in perceptual feature
binding, we need to manipulate the combination of features while keeping the
identities of component features constant. Most studies with change detection
paradigm for visual memory have used a change of a feature to a new value,
which can be detected without using conjunctions. Second, the task design of
change detection may obscure the representations to be investigated. In the
change detection task, any change can lead to correct detection. Thus, a change in
feature combination may produce other kinds of changes in stimulus information.
Consider the notion of saliency [3,5]. Many studies on visual cognition propose
that objects’ saliency determines deployment of visual attention. Saliency is
assumed to be computed based on the summation of an object’s features, thus
saliency itself does not maintain the information about feature combination. To
illustrate how saliency can be used in change detection, assume for simplicity
that saliency of an object is a simple sum of component feature saliency values.
Suppose that for an observer, saliency values of red, blue, circle, and square are
0.5, 0.3, 0.7, and 0.4, respectively. A change from a pair of red circle and blue
square to a pair of red square and blue circle produces a saliency change from
(1.2, 0.7) to (0.9, 1.0).

To overcome these problems, we devised a paradigm called multiple object
permanence tracking (MOPT) to investigate whether humans can track multi-
ple object files (Saiki, [8,9]). In the MOPT task, four to six objects defined by
different colors and shapes are placed at equal eccentricity, then rotated behind
a windmill-shaped occluder (Figure 1). In the middle of the rotation sequence,
features of two objects may be switched during an occlusion. The task of the
observer was to identify what kind of switch occurred. Because each object is
defined by shape and color, there are four types: no switch, color switch, shape
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Fig. 1. Schematic illustration of MOPT paradigm. By manipulating relative motion of

objects and an occluder, effects of object motion in memory for feature binding can be

evaluated.

switch, and both switch. This task satisfies two requirements discussed above.
First, stimuli have identical set of features and only their combination changes,
and second, the type identification procedure requires access to feature binding
representations, because it is almost impossible to identify the switch type just
by stimulus salience. Speed of disk rotation was manipulated by relative motion
of disks and occluder, to investigate the effect of motion in a parametric manner.

A series of experiments revealed that (1) even when objects are stationary, the
task performance was quite poor compared with previous studies, and (2) object
motion further impaired the performance, even if the motion speed was slow and
easily trackable [11]. When memory capacity was estimated by a standard formula,
it was only about 1.5 objects when stationary, and 1 object when moving.

1.2 Cueing Paradigm to Probe Memory Retrieval

The purpose of this study was to examine whether the severe limitation of mem-
ory for feature binding reflects limit in maintenance or in retrieval of visual
working memory. One may be able to hold only 1 or 2 feature-bound object
representations in visual working memory. Alternatively, memory can hold 4 to
5 objects simultaneously, but the difficulty resides in the process of retrieving
memory representations in parallel in matching perceptual and memory repre-
sentations. To discriminate these two alternatives, we added a new feature to
the MOPT paradigm. New experiments used cues to indicate a changing object.
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Fig. 2. Mapping between change types and responses in Experiments 1 and 2. Exper-

iment 1 used type identification procedure, and Experiment 2 used a simple change

detection.

Cues were 100% valid, and were presented either just before or after a change
occurred, called precue or postcue condition, respectively. If a cue is effective, the
precue condition is expected to show significantly better task performance com-
pared with the no-cue control. This is because observers can maintain only cued
object information to identify switch type. The critical condition was the postcue
condition. If the difficulty in MOPT reflects memory retrieval, the postcue will
facilitate performance, because it provides an effective retrieval cue. Wheeler
and Treisman [12] showed that single probe condition, where only one probe ob-
ject was used, improved performance compared with the whole probe condition,
where observers had to retrieve memory for all objects. Alternatively, if the diffi-
culty reflects memory maintenance, the postcue will not facilitate performance,
because there are only one or two feature-bound object representations to be
retrieved.

2 Experiment 1

2.1 Method

Participants. The experiment used six participants, including one author, and
all displayed normal color vision.

Materials. Participants were shown a pattern of four colored objects and an
occluder on top. Smooth rotation of the pattern and occluder at constant angular
velocities resulted in alternating appearance and disappearance of the pattern.
The four colored objects were configured in a diamond pattern, with each object
placed at a visual angle of 2.9◦ from the center of the occluder. Objects were
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colored using four equiluminant colors (20.85cd/m2, red [CIEx = .56, y = .34];
green [x = .28, y = .60]; blue [x = .19, y = .14]; and yellow [x = .43, y = .49]),
and combinations of these colors were counterbalanced across trials. Shapes used
for objects in the experiment were circle, square, hexagon and triangle. The col-
ored pattern was occluded using a gray windmill-shaped occluder (20.85cd/m2),
and the background was black (0.5cd/m2). The sequence was either regular
clockwise or counterclockwise rotation throughout, containing one visible period
in which locations of features of two objects were switched. A total of four events
were possible: both-switch with simultaneous switch of color and shape; color-
switch with color switch alone; shape-switch with shape switch alone; and no
switch (Figure 2). In Experiment 1, no switch trials were not used. The occluder
displayed four openings of 20◦, through which the colored pattern could be seen.
A single trial contained seven occlusion periods, and a switch event occurred
between the 3th and 5th occluded periods. Time and location of switches were
unpredictable to the observers. Participants were asked to identify event types
without feedback as to which was correct.

The main independent variables comprised object motion and cueing. To
keep exposure duration of the pattern equivalent, object motion was manipu-
lated by the relative motion of the pattern and occluder, as described by Saiki
[9]. Object motion factor comprised of moving and stationary. In the moving
condition, objects were rotating with the angular velocity of 84◦/s, whereas the
occluder was stationary. In the stationary condition, the occluder was rotat-
ing with 84◦/s, whereas the objects were stationary. Note that both conditions
had exactly the same duration of visible period (518ms) and occluded period
(518ms). The cueing factor had three conditions: precue, postcue, and no-cue.
The precue was presented at a period just prior to the switch to one of the to-be-
switched objects as a flash. Cued object was selected randomly between the two.
Flashing cue was presented for 12ms at the middle of a visible period of 518ms.
Thus, a cue was presented 259ms after an object appeared. The postcue was
the same as the precue, except for being presented just after the switch. No-cue
condition was the control condition, where no cue was presented (Figure 3). Ex-
perimental programs were written in MATLAB, using Psychophysics Toolbox
extensions [1,7].

Procedure. Each experimental trial began with a keypress by a participant.
After the beep, the initial display with objects and an occluder stationary for
500ms. Then moving sequence began, followed by the appearance of three re-
sponse boxes for event types (color, shape, and color-and-shape). Participants
selected responses by clicking a response box. To avoid verbal encoding of color
and shape, articulatory suppression was used by getting subjects to say “da,
da, da”. The entire experiment comprised three experimental sessions, each con-
taining 216 trials. Participants performed one session a day. Within each session,
cueing, and object motion conditions were randomly mixed from trial to trial.
For each cueing condition, each object motion condition comprised 108 trials,
with 36 trials for each event type, for a total of 648 experimental trials.
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Fig. 3. Schematic illustration of cueing paradigm. Flashing cue with 100 % validity

was presented either just before or after the switch. No-cue control condition was

also used.

2.2 Results and Discussion

Figure 4 shows proportions of correct type identification as a function of object
motion for three cueing conditions. First, the effect of precue was evaluated
by comparing with no cue condition. There was a strong effect of precue in
both stationary and moving conditions. An ANOVA with a 2 (cueing: precue
and no-cue) x 2 (object motion: stationary and moving) x 3 (event type: color
switch, shape switch, and both switch) design was conducted for the proportion
of correct identification. The main effects of cueing (F (1, 5) = 139.01, p < .01)
and object motion (F (1, 5) = 71.78, p < .01), and their interaction (F (1, 5) =
7.05, p < .05) were statistically significant. Planned comparisons revealed that
the stationary condition showed significantly higher correct identification than
the moving condition in the no-cue condition, (F (1, 5) = 32.02, p < .01). In
the precue condition, both conditions showed no significant difference due to
extremely high correct identification rates (F (1, 5) = 3.72, p > .1). Thus, if one
can focus attention in advance, one can maintain a feature-bound representation
for the attended object, regardless of its motion. Second, the effect of postcue
was evaluated. As shown in Figure 4, there was no effects of postcue at all.
An ANOVA revealed the significant main effects of object motion (F (1, 5) =
27.27, p < .01) and event type (F (2, 10) = 9.16, p < .01). There was no advantage
of postcue, and stationary condition showed better performance.
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Fig. 4. Mean proportions correct in Experiment 1

Because Experiment 1 mixed precue and postcue in the same session, and
precue was obviously quite effective, it may be the case that participants inten-
tionally focused on precues and ignored postcues, though they were instructed
that two kinds of cues were included. To test this possibility, we conducted an
additional experiment where the precue condition was eliminated. The results
were the same, revealing that only object motion had a significant main effect
(F (1, 5) = 83.084, p < .01). Clearly, the lack of postcue effect was not due to
strategic ignorance by inclusion of precue. Even when participants knew that all
cues were for memory retrieval, they could not utilize the postcues effectively.

The lack of postcue effects in this experiment is inconsistent with Wheeler
and Treisman’s findings [12]. One possible reason is that flashing cue used in
this experiment was not strong enough to be an effective cue for memory re-
trieval. Although, flashing was quite effective as a precue, this does not neces-
sarily mean that it is an effective retrieval cue. Alternatively, the discrepancy
reflects difference in task design. A simple change detection task used in Wheeler
and Treisman [12] could reflect representations other than feature binding, such
as saliency. If this is the case, flashing cue with a simple change detection task
will facilitate participants’ performance.

3 Experiment 2

3.1 Method

Method was the same as in Experiment 1, except for the following changes.
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Participants. The experiment used six participants, including one author, and
all displayed normal color vision.

Materials. No change sequences were added. There were four event types: color
change, shape change, both change, and no change. The task was a simple change
detection, thus no change was mapped to no response, and all other types were
mappied to yes response (Figure 2). Precue condition was eliminated, so that
all cues were postcue. The cue was 100 % valid when there was a switch. In the
no change sequence, cue was presented to a randomly selected object,and the
cue timing was matched with sequences with a switch. To reduce the length of
sequence, each sequence ended two occludion periods after the switch event. The
length of the no change sequence was matched with those with switch events.

Procedure. The task was a simple change detection. Participants judged yes
when they detect any type of switch. The entire experiment comprised two ex-
perimental sessions, each containing 144 trials. One session contained cues and
the other did not, and the order of cue and no cue sessions was counterbalanced
across participants.

3.2 Results and Discussion

Figures 5a and 5b show hit and false alarm rates, respectively, as a function
of object motion and cueing. First, hit rates show that postcue had a facilita-
tory effect in the stationary condition, but not in the moving condition (Figure
5a). An ANOVA for hit rate data with a 2 (cueing) x 2 (object motion) design
revealed a significant interaction (F (1, 5) = 8.167, p < .05). Planned compar-
isons showed that postcue condition showed significantly higher hit rate in the
stationary condition, (F (1, 5) = 107.758, p < .01), whereas there was no signifi-
cant effect in the moving condition. Second, as shown in Figure 5b, false alarms
were in general low and there was no clear effects of object motion and cue-
ing. ANOVA for false alarms with the same design revealed no main effects or
interaction.

The results suggest that the lack of postcue effects in Experiment 1 is due to
limits in maintenance capacity of feature-bound representations. A simple change
detection task revealed a significant facilitation in the stationary condition. A
retrieval cue facilitates judgment of whether there is any kind of change, but it
does not help identifying the type of change. One interpretation of Experiments
1 and 2 in this study, and Wheeler and Treisman [12] is that we can hold multi-
ple saliency-based representations in visual working memory, which are sensitive
to retrieval bottleneck, whereas the capacity of feature-bound representations is
more limited.

Another interesting result was the lack of postcue effects in moving condi-
tion, suggesting that even saliency-based representations are not stored simulta-
neously when objects are moving. This may reflect that saliency representations
are location-based, so that motion with occlusion disrupts their continuity.
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Fig. 5. Results in Experiment 2. (a) Mean hit rates. (b) Mean false alarm rates.

4 General Discussion

The present study investigated whether the limitation in feature-bound memory
observed with MOPT tasks reflects limits in memory maintenance or memory
retrieval, using a cueing version of MOPT. There was a significant effect of
precue, but no effect of postcue, suggesting that helping memory retrieval does
not facilitate the task performance. This result supports the hypothesis that
limitation of feature-bound memory reflects memory maintenance, not memory
retrieval. This was not due to peculiarity of MOPT paradigm itself, or the type
of cue, because Experiment 2 with a simple change detection task showed results
consistent with previous findings.

We interpret these data as different types of memory representations of ob-
jects. The type identification paradigm in Experiment 1 measures a function of
feature-bound representation where component features of an object are bound
together as a coherent whole. If such representations are formed, we should be
able to identify the type of change, in addition to whether a change occured. On
the other hand, a simple change detection task in Experiment 2 and many previ-
ous studies measures a function of less analytical representations such as object
saliency, as well as feature-bound representations. Difference in postcue effects
between Experiments 1 and 2 suggests that Experiment 2 and many previous
works mainly measured saliency representations.

One limitation of this study is the use of explicit memory task. No facilitation
by retrieval cue in an explicit type identification paradigm does not necessarily
mean the lack of any type of feature-bound representations in our brain. Mul-
tiple feature-bound object representations may be used only in implicit ways.
Although there are some studies on object working memory using implicit mea-
sures such as object review paradigm [4], it is unclear whether these previous
works provide unequivocal evidence for the existence of feature-bound represen-
tations. For example, information which produced the object preview benefit
[4] may be some type of saliency representations. Feature-bound representations
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in implicit memory is an important future direction, and new developments in
experimental paradigm are necessary.
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Abstract. The primary event of vision is the absorption of photons by
photosensitive pigments, which triggers the transduction process pro-
ducing the visual excitation. Although animal eyes and eyeless photore-
ceptive systems developed along several levels of molecular, morphologi-
cal and functional complexity, image–forming rhodopsin family appears
ubiquous along visual systems. Moreover, all Metazoa have supplemen-
tary extraocular photoreceptors that regulate their temporal physiology.
The investigation of novel non-visual photopigments exerting extrareti-
nal photoreception is a challenging field in vision research. To study
molecular and functional differences between these pigment families, we
propose the cnidarian Hydra, the first metazoan owning a nervous sys-
tem, as a powerful tool of investigation. Hydra shows only an extraocular
photoreception lacking classic visual structures. Our findings provide the
first evidence in a phylogenetically old species of both image– and non–
image–forming opsins, giving new insights on the molecular biology of
Hydra photoreception and on comparative physiology of visual pigments.

1 Introduction

Visual information, in the sense of what we catch and extract from the external
world, represents the coding and the processing of a continuous image-forming
mechanism. The primary step of the image construction is photoreception. It
takes place in the photoreceptorial cellular structures of visual systems that re-
spond directly to light, thanks to the presence of a visual pigment, absorbing its
energy and converting it into an electrical signal. Following light excitation, all
image component elements are elaborated by specialized peripheral neural cir-
cuits and then transmitted by visual pathways to higher brain visual structures
for further processing which culminates with visual perception (for a complete
treatment of neural and cognitive features of the visual stream see [1]).

Photoreception is phylogenetically one of the oldest sensorial systems due
to the amazing ubiquity, in all animal phyla, of light–sensitive morphological,
functional and molecular elements (from simple invertebrate light–sensitive cells
to more complex vertebrate eyes) [2]. The photoreception process occurs within
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highly specialized sensory cells, called photoreceptors, able to convert light into
electrical signal. It is based on the scheme of a G–protein signal transduc-
tion cascade comprising three proteins, a G–protein–coupled receptor (GPCR),
a G–protein (G) and an effector protein (E) [3]. Although the expression of
the structure–function relationship in vertebrate and invertebrate visual cells
leads to different cellular mechanisms underlying phototransduction, basically,
photoreception starts with the photochemical isomerization of the retinal cro-
mophore of the GPCR. This process is followed by the binding with a G–protein
which leads an enzymatic visual cascade culminating in the production of a sec-
ond messenger, the effector protein E, which gates light–sensitive ion channels in
order to modulate and shape the electric signal toward the nervous system [3].
Nevertheless, the early steps of the transduction cascade are notably conserved
in their principal GPCR and G–protein elements [4].

Both vertebrate and invertebrate photoresponses follow the above transduc-
tion scheme although remarkable differences concern the structure/function rela-
tionship of GPCR rhodopsin (Rh) and its photochemical reactions, the activation
of distinct G–protein subtypes, the enzymatic processes occurring in the visual
cascade and the electric signal of the visual excitation [3,4,5] (Fig. 1). Light–
induced cascade produces a huge chemical amplification (e.g., 1 photo–excited
Rh activates 500 G* and finally 250 Na+ channels are closed in vertebrate rods),
proving the functional presence of a diffusible chemical effector [3].

The cyclic GMP (cGMP) is the final messenger that gates light–sensitive
channels in vertebrates in response to light stimulation. As final result, a de-
creasing of cGMP level (caused by the enzymatic activity of a cGMP–phosphodi
esterase, PDE) closes the light–dependent channels producing a hyperpolariz-
ing receptor potential due to a reduction of the Na+ influx [6]. In rhabdomeric
photoreceptors mainly a phosphoinositide (PI) pathway signalling system rules
the visual excitation cascade. Upon light stimulation, the G–protein activates a
phospholipase C (PLC) generating a fast production of two intracellular messen-
gers: inositol-1,4,5-trisphosphate (IP3) and membrane lipid soluble diacylglyc-
erol (DAG) which starts parallel signalling pathways acting on the intracellular
Ca2+ concentration. The light–induced excitation terminates with the opening
of light–sensitive channels that favour a cation influx and the increasing of mem-

Fig. 1. Phototransduction pathways in vertebrate and invertebrate photoreceptors
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brane conductance that leads to a depolarizing receptor potential [5]. Recently,
ciliary photoreceptors hyperpolarizing to light stimulation have been found in
scallop [5]. Their receptor potential, mediated by a cGMP–activated K+ con-
ductance, looks like that of vertebrate rods and cones [6] and their transduction
behavior resembles that of some invertebrate extraocular photosensitive cells
which have K+ channels gated by cGMP [7]. The identification in invertebrates
of multiple effector enzymes and their functional role are still debated.

In addition to classic ocular or retinal structures, vertebrates and inver-
tebrates utilize supplementary extraocular photoreceptor (EOP) systems for
non–image forming (non–visual) functions [8,9]. Photic information mediated
by EOP integrates visual activity involved in temporal (time–of–day) and be-
havioral physiology of the animal (e.g., photoperiodism in locomotion and re-
production, timing and entrainment of circadian rhythms). Extraretinal or non–
image forming photosensitive cells in invertebrates, and non–rod non–cone cells
in vertebrates are mainly located within nervous system and share with retinal
photoreceptors the same G–coupled phototransduction scheme but varying in
some molecular and functional events [Gotow et al., this volume].

The searching for novel opsin–based photopigments triggering non image–
forming photoreception is a new challenging field in vision research. Recently,
these pigments have been identified in cells beyond the retinal photoreceptors [10]
in several species. To deepen primary mechanisms of phototransduction, “simple”
animal models, in which the homologues of the major signaling pathways can be
better analyzed, have been proved as useful tools of investigation. Among those,
we propose Hydra (Cnidaria, Hydrozoa), the first metazoan having a nervous
system, in which photoreception is exerted only by EOP systems [11,12]. This
paper reports main similarities and differences among visual and non–visual
pigment families and their functional role in vertebrates and invertebrates. We
also focus on the identification and the molecular characterization of presumably
functional different opsin–based proteins in Hydra, outlining common strategies
for light–detection and photo–signaling in Metazoa.

2 Rhodopsins for Seeing

As introduced above, the photoreceptors’ light–detecting capability is due to
the absorbing process of photons determined by the presence light–sensitive pig-
ments. The luminous sensitivity (hence the ambient chromatic extracting fea-
tures) of a visual cell is function of photopigment spectral properties that have
evolved as function of the chemo–physical environmental characteristics.

In Metazoa the universal photosensitive protein for vision is rhodopsin (Rh),
one of the GPCRs that constitutes the largest group of transmembrane receptor
protein [13]. Rhodopsin (35-55 kDa) is constituted by a cromophore, 11-cis reti-
nal (aldehyde of vitamin A1), covalently linked to a single polypeptide opsin by a
Schiff–base [14] (Fig. 2). Exceptionally, insects use 3-,4-OH retinal cromophores
[15]. The crystal structure of bovine Rh has confirmed that the cromophore is
bound to Lys296 and Glu113 is the counter-ion in vertebrate Rh [16]. Opsin has 7
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Fig. 2. Bovine Rh structural model. Amino acid residues responsible for chromophore
binding, spectral tuning and signal transduction are shown. Cytoplasmic domains (III,
IV, V, VI, VII helices’ top) are involved in G–protein coupling. Modif. from [4].

membrane–embedded α–helical segments connected by 3 extracellular loops and
3 cytoplasmatic loops. Rhodopsin is located with the chromophore in the center
of the membrane, the N–terminal is on the intradiscal side and the C–terminal
with the phosphorylation sites is on the cytosolic side [14]. In rod photoreceptors
Rh molecules perform rapid rotational and translational movements and diffuse
laterally [14]. Conversely, in rhabdomeric photoreceptors, Rh is not mobile being
anchored to microvilli membrane by cytoscheletric structures [15].

The visual cycle starts with the absorption of light by Rh, triggering the
11-cis to all–trans photoisomerization of the chromophore and formation of
metarhodopsin (M), after the fast production of intermediates (photo–, batho–,
lumi–rhodopsin), that is the transition state able to activate the G–protein sig-
nal transduction. Photochemical cycle is roughly common in vertebrates and
invertebrates apart from the number of Ms and the regeneration mechanisms
[14,15]. In vertebrates M, all–trans cromophore dissociates from opsin and must
be re–isomerized by slow enzymatic isomerase produced by retinal pigment ep-
ithelium. In invertebrates, M is reconverted in Rh by light with λ in the range of
its absorption: this fast photoregeneration is complementary to a slow renewal
process similar to vertebrate Rh regeneration.

Vertebrate and invertebrate Rhs share the same cromophore but a differ-
ent opsin: they differ in both molecular weight (higher in invertebrates, insects
and vertebrates have the same MW) and spectral sensitivity. Invertebrate Rh
ranges from λmax 350 to 550 nm, while vertebrate Rh oscillates between λmax

450-530 nm [15]. Humans have Rh (λmax 496 nm) and 3 kinds of cone pigments,
green–, blue– and red–sensitive pigments (λmax 419, 531 and 558 nm), classified
in 3 opsin groups, LWS (red– and green–sensitive), RH1 (rhodopsin) and SWS1
(blue–sensitive) [17]. Drosophila has 5 Rhs differently located in the photore-
ceptors constituting the ommatidium (R1-6 λmax 480 nm, blu– and green–Rh5
λmax 440 and 520 nm, ultraviolet Rh3 and Rh4 λmax 345 and 375 nm) [15].

This fact gives reason of the great variability among all animal phyla to
perceive, discriminate and integrate light information arising from natural envi-
ronments with various chromatic and luminous contents. In other words, pho-
toreceptors sample the visual environment and their spatial and spectral charac-
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teristics determine the optical information available to the brain. The molecular
interactions between the opsins and chromophores define the spectral properties
of a particular visual pigment. Differences in spectral shifts between pigments
are due firstly to changes in the aminoacid composition of the opsins expressed
within those photoreceptors.

In the bulk of our understanding of phototransduction, cutting–edge ques-
tions still need exhaustive answers. They concern the evolution of visual systems
and the development of functional adaptations conserving molecular phyloge-
netic foundations from photosensitive ancestors. Multidisciplinary approaches
greatly contributed to unravel the key–players involved in photosignaling. The
powerful combination of electrophysiology and genetics has contributed to under-
stand dynamical components (e.g., enzymatic mechanisms, ion channel gating)
[18]. The most direct methods of structural analysis are X–ray crystallography,
solution and solid–state NMR, atomic force microscopy (AFM), EM and image
processing. They have enabled, to date, the molecular detail of more than ten
distinct proteins of the phototransduction pathway (e.g., G protein transducin,
cGMP–gated channels). Surely, the crystal structure of bovine rod Rh solved
at 2.8 Å resolution has represented the turning point for a modern molecular
depiction of the phototransduction components [16].

Comparative molecular strategies are addressed to reconstruct the opsin gene
family pattern of duplication and functional diversification in vertebrates and
invertebrates in order to outline the evolutionary history of visual pigments.
This approach provides insights to the understanding of the molecular bases of
spectral tuning of visual pigments as well as the evolutionary processes taken
by different species to adapting to their photic environment. Despite inter– and
intra–species functional differences, molecular genetics approaches have reported
the sequence of vertebrate and invertebrate rhodopsins, showing the existence
of similar regions of aminoacids conservation.

Phylogenetic trees of the vertebrate photosensitive proteins demonstrated
that vertebrate opsin sequences (to date 113 classified) fall into five fundamental
retinal subfamilies (RH1, RH2, SWS1, SWS2, LWS/MWS) and one non–retinal
(P) [17]. Cones share isoforms that are different from those of rods. The difference
in the molecular properties of these isoforms (and the switch of their expression)
influences the light sensitivity between rods and cones [17].

Color vision evolved in vertebrates from the ancestral tetrachromatic system
to the reduced dichromacy of mammals and the re–emergence of trichromacy in
primates. The molecular basis of spectral tuning in red– and green–sensitive cone
pigments have been studied by site–directed mutagenesis which demonstrates
that the spectral shift is caused by 5-7 aminoacids additive in effect [17].

To date, in invertebrates 59 visual pigment sequences have been identified
and assigned to 3 sub-classes following functional constraints: LW–green–, blue–,
UV–absorbing pigments. Sequence alignment and comparison have revealed sev-
eral structural features common to all visual pigments. Lowest similarities are
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function of the phylogenetic distances between the examined phyla. A phyloge-
netic tree has been constructed on the basis of the “rootless tree” model although
the small number of sequences induces several doubts [15]. The tree is consti-
tuted by five limbs that group pigments according to their taxonomic relations
and functional properties (limbs I, II V insect, III crayfishes, IV cephalopods).

Sequence comparison between invertebrate and vertebrate opsins has re-
vealed more differences than degrees of similarity assigning respective pigments
to two super–classes [15]. Hence, evolutionary analysis of visual pigments sug-
gests that opsins utilize similar set of protein–protein interactions for signaling
and main typology of sub–molecular structure is retained for that function.

3 Opsins for Timing

Vertebrates and invertebrates share other photosensory systems in addition to
classical vision. Lower invertebrates lacking obvious eyed or optical structures
use nervous or dermal cells (single or clustered) for light sensing. They do not
form images but detect only irradiance. Any type of light sensing outside reti-
nal/ocular systems is termed Extraocular Photoreception (EOP) [8,9].

Little more than a decade ago, apart the vital role in eyeless invertebrates,
EOP was considered an unnecessary evolutive residue than a complementary
component of visual function. Until recently, the EOP role has been recognized
fundamental in the photoentrainment of circadian clocks, located in central brain
and peripheral tissues, whose pacemaker activity provides endogenous timetable
for vital expressions (development, reproduction, photoperiodism) [19].

Novel circadian photoreceptors do not depend upon the input of retinal pho-
toreceptors. In fly sine oculis mutant the activity of extraocular H–B (Hofbauer–
Buchner) eyelets and brain LNs neurons (lateral neurons) is necessary to generate
circadian rhythms. Mice rd/rd (retinal degenerations) mutants show a massive
degeneration of rods and cones but still retain circadian activity, pineal mela-
tonin suppression, and pupil size modulation that all overlap those of mices with
normal retinas. All circadian responses are abolished by the eye removal. Blind
or retinal disease patients having lost conscious light perception show circadian
responses and melatonin suppression. On the whole, these results indicate that
in mice and humans eye image–forming and novel non–image forming photore-
ceptors co–exist [19].

Different experimental approaches in vertebrates have identified for these
responses several photopigments all referred to as opsin–like proteins; insects
provide exception using also the blue–light absorbing protein cryptochrome [20].
To date, since the first non–visual opsin, pinopsin, was identified in chicken pineal
in 1994, novel opsins include: vertebrate ancient VA–opsin (expressed in a subset
of amacrine and horizontal cells), parapinopsin (in catfish parapineal organ),
exo–rhodopsin (in zebrafish pineal gland), encephalopsin (in amphibian deep
brain regions), Opn5 neuropsin (in mice eye, brain and testis), Opn4 melanopsin
(different tissue expression patterns in all vertebrates but constant in retinal
ganglion cells), peropsin (in mouse retinal pigment epithelium, RPE) and RGR
(RPE–retinal G protein–coupled receptor) [4, 9-10, 15, 17, 21-22].
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Nowadays, a renewed molecular phylogenetic classification of known opsins
comprises seven subfamilies: 1) vertebrate visual and non–visual opsins, 2) en-
cephalopsins, 3) invertebrate Gq–coupled opsins and melanopsins, 4) inverte-
brate Go–coupled opsins, 5) neuropsins, 6) peropsins, 7) RGR isomerases [22].

Molecular and functional diversity of opsins indicate that higher percentages
of these proteins deal with non–image forming systems. Indeed, in vertebrates,
retinal photoreception is not restricted to the rod/cone pathways but is involved
in non–image forming process [10]. So, the recent discovery of intrinsically pho-
toresponsive retinal ganglion cells (ipRGCs) has provided the morphological
correlate of non–visual phototransduction, namely non–rod non–cone photore-
ception [23], candidating melanopsin as the novel photopigment for this task
(though a role of isomerase was not excluded). Recent papers collectively show
that melanopsin is a photopigment more close to invertebrate opsins than a clas-
sical vertebrate rod–cone opsin [24]. Surprisingly, in primate Opn4–expressing
RGC cells projecting to the lateral geniculate nuclei (the brain structure relaying
image–forming information) send color and irradiance signals arising from dif-
ferent rod/cone inputs. Thus, image–forming and non–image–forming systems
are merged and melanopsin may contribute to conscious visual perception [25].
These outstanding achievements notch our current opinions on vision and will
influence future approaches to human light detection.

4 The Animal Model Hydra and Its Opsin–Based
Pigments

The cnidarian Hydra shows EOP since it has no conventional visual structures;
nevertheless single or clustered photosensitive cells have not yet been identified.
Its photosensitivity can be measured electrophysiologically as modulation of a
periodic behavior consisting of continuously alternating phases of body shorten-
ings and elongations [12]. These movements are due to the agonist/antagonist
actions of the myofibrils contained in the epitheliomuscular cells of both the
ectodermal and endodermal layers. Our previous studies proved that different
photic stimulation protocols are effective on the modulation of bioelectric cor-
relates of the animal’s periodic behavior [11]. Hydra’s behavioral action spec-
trum indicates red blindness and two peaks of response around 450 and 550 nm;
corresponding respectively to an inhibitory and an excitatory effect on the oc-
currence of the cyclic behavioral sequence [11]. By polyclonal antibodies against
squid rhodopsin, we identified an opsin–like protein (named by us HyRH) likely
localized in sensory nervous cells of the ectodermal layer [26].

To isolate the HyRH gene, we have designed pairs of degenerated primers
corresponding to the most conserved regions of known invertebrate Rhs. The
BLAST suite at NCBI/NLM (www.ncbi.nlm.nhi.gov/BLAST) was used for
bioinformatic screening of sequence data. Amplification of the target band of
250 bp was performed on Hydra vulgaris genomic DNA by conventional PCR
(polymerase chain reaction) (Fig. 3). The correspondence between the size of
the obtained fragment with that of the expected one will induce us to perform



232 S. Santillo et al.

Fig. 3. PCR amplification on Hydra vulgaris genomic DNA by degenerated rhodopsin
primers. Best amplifications (lanes 3-4) correspond to the better specificity/quantity
ratio. Lane 1: 100 bp DNA ladder. Lane 2: MgSO4 2.5mM. Lane 3: MgSO4 3mM.
Lane 4: MgSO4 3mM, DMSO 5%. Lane 5: MgSO4 3mM, DMSO 10%. Lane 6: MgSO4

3.5mM. Lane 7: MgSO4 4mM. Annealing temperature 51.5 oC.

the amplimer sequence and to design more specific probes to clone HyRH by
RT–PCR (reverse transcription PCR) and RACE (rapid amplification cDNA
ends).

Furtherly, our Hydra opsin(s) gene screening fits well the search for photopig-
ments triggering EOP, ongoing in non–image forming photoreceptors. Among
novel opsins, we focused on peropsin pigment (RRH), which is expressed in ver-
tebrate RPE and it may act as direct light–sensor or as photoisomerase [21].
Possibly, Hydra ectodermal molecular and functional elements producing EOP
processes could be phylogenetically close to those of vertebrate RPE.

The finding in Hydra genome of a sequence of 540 bp (GenBank CB073527),
reported as similar to the mouse RRH, strengthened our aim. We designed pairs
of RRH primers from this partial cDNA sequence, testing them on Hydra vulgaris
genomic DNA and cDNA after RT–PCR of the total RNA. We obtained good
evidence by a sharp amplification of the expected 312 bp fragment (Fig. 4).

This result has encouraged us to verify further light influences on the RRH
expression as supported by the fact that circadian rhythms and light regulate
mRNA expression of visual and non–visual photoisomerases [27]. Preliminary

Fig. 4. RT–PCR expression analysis of peropsin–like sequence of Hydra vulgaris at
different light adaptation settings (lanes 2,4,6) with RT β–actin, 344 bp, as endoge-
nous reference (lanes 3,5,7). Same sequence amplification on genomic DNA (lanes 8-9).
Annealing temperature 52 oC.
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experiments have been performed with total RNA extracted by animals adapted
for 3 days with different light cycles: L/D cycle (12:12 light–dark hours), L
cycle (24h light–on), D cycle (24h light–off). At first, no marked differences were
observed between the three groups with conventional PCR (Fig. 4). However,
to screen significant differences in the RRH mRNA expression, a necessary real
time quantitative PCR is in progress, also with animals adapted to normal and
altered circadian light conditions.

5 Conclusions and Future Work

We propose the cnidarian Hydra, thanks to possible molecular and functional
diversifications of its opsins, as a theoretical and experimental phylogenetic link
to higher photoreceptive systems and as putative common animal ancestor hav-
ing multiple opsin genes. The early identification in its EOP system of Rh and
RRH belonging to ectodermal/neural epithelia could support the hypothesis of
ancestor pigments bifurcating later into visual and non–visual functions.

Our findings call for molecular, anatomical and physiological investigations
concerning the localization of Hydra novel photopigments and photosensitive
cells, and their eventual correlations with invertebrate and vertebrate homo-
logues/analogues visual photoreceptors, inner retina non–visual cells and RPE
opsin–containing cells.1 Firstly, we will refine the Rh and RRH characterization
as well we will verify possible presence of melanopsin that is functionally closer
to invertebrate opsins than to vertebrate ones. Moreover, as Hydra cells show-
ing HyRh immunoreactivity seem to be of the ciliary type [5], we are aimed to
search: 1) by patch–clamp recordings from single putative photosensitive cells,
if cGMP and/or IP3 pathways mediate the visual cascade, 2) by immunohistol-
ogy using anti–cGMP and –IP3 antibodies, the intracellular phototransductive
players. Also, we plan to search NO–stimulated elements of the cGMP route by
protocols for the NADPH–diaphorase activity [28].

An ultimate release [29] shows an invertebrate–like phototransduction cas-
cade triggered by melanopsin. It emphasizes that the search for photosensory
non–visual mechanisms in vertebrates and invertebrates, and their interactions
with visual ones, is not matter of bizarre science but a new intriguing challenge.
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Abstract. A visual system not only needs to recognize a stimulus, it
also needs to find the location of the stimulus. In this paper, we present
a neural network model that is able to generalize its ability to iden-
tify objects to new locations in its visual field. The model consists of
a feedforward network for object identification and a feedback network
for object location. The feedforward network first learns to identify sim-
ple features at all locations and therefore becomes selective for location
invariant features. This network subsequently learns to identify objects
partly by learning new conjunctions of these location invariant features.
Once the feedforward network is able to identify an object at a new
location, all conditions for supervised learning of additional, location de-
pendent features for the object are set. The learning in the feedforward
network can be transferred to the feedback network, which is needed to
localize an object at a new location.

1 Introduction

Imagine yourself walking through the wilderness. It is very important that you
recognize the company of a predator, wherever the predator appears in your
visual field. Location invariant recognition enables us to associate meaningful
information with what we see (here: danger), independent of where we see it.
Hence location invariance is a very important feature of our visual system.

Nonetheless, location invariant recognition also implies a loss of location in-
formation about the object we have identified. Yet, information about where
something is in our environment is also essential in order to react in a goal-
directed manner upon what is out there.

We have previously proposed a neural network model of visual object-based
attention, in which the identity of an object is used to select its location among
other objects [1]. This model consists of a feedforward network that identifies
(the shape of) objects that are present in its visual field. In addition, the model
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also consists of a feedback network that has the same connection structure as
the feedforward network, but with reciprocal connections. The feedback network
is trained with the activation in the feedforward network as input [1]. By using a
Hebbian learning procedure, the selectivity in the feedforward network is trans-
ferred to the feedback network. We argue that this is a very natural and simple
way to keep the feedback network continuously up to date with ongoing learning
in the feedforward network.

How does this architecture allow the step to go from implicitly knowing
what to knowing where? Suppose the feedforward network identifies a circle in
its visual field. The feedback network carries back information about the identity
of this shape to the lower (retinotopic) areas of the model. In these areas, the
feedback activation produced by the circle interacts with feedforward activation
produced by the circle. The interaction between the feedforward network and
the feedback network (in local microcircuits) results in a selective activation at
locations in the retinotopic areas of the model that correspond to the location of
the circle. This activation can be used to direct spatial attention to the location
of the target [1].

Previous research has focused on location invariant recognition in feedfor-
ward neural networks [2,3]. Several models are proposed, in which information
processing is routed in a bottom-up manner to a salient location rather than to
other locations (e.g., see [4]). The goal of this paper is to explore the complemen-
tary task of finding, in a top-down manner, the location of what is recognized in
a location invariant manner in the visual field. The model of Amit and Mascaro
can perform this task [5]. They assume a replica module with multiple copies
of the local feature input that gives (gated) input to a centralized module that
learns to identify objects completely independent of location, and vice versa. We
provide an alternative mechanism for location invariant object recognition, by
which cells in the feedforward network not only become selective for location in-
variant features, but also for location dependent features. Next, we explore how
learning such location invariant object recognition in the feedforward network
transfers to location invariant learning in the feedback network in our neural
network model. This transfer is necessary in order to find something at a new
location.

We have built up learning in the feedforward network in such a way that
it initially learns to identify simple features (e.g., oriented lines, edges) at all
possible locations. After that, the feedforward network learns to identify ob-
jects at some possible locations. The rationale behind this learning procedure
is that learning to recognize an object may then partly involve abstracting new
conjunctions of known, location invariant features. This enables the feedforward
network to generalize its ability to identify an object at trained locations to
new locations. Simulations of the network confirmed this line of thought. These
simulations are first presented in this paper.

The second simulations presented here investigated how the ability of the
feedforward network to recognize an object at a new location relates to find-
ing an object at a new location, given the fact that learning in the feedforward
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network is built up in successive stages. The simulations demonstrate that rec-
ognizing an object at a new location does not automatically lead to finding that
new location of the object. However, we show that the recognition of an object
at a new location facilitates efficient, supervised learning of additional location
dependent features in the feedforward network. Once the improved selectivity for
the object at that location in the feedforward network is transferred to the feed-
back network, the interaction between the feedforward network and the feedback
network does enable the selection of the new location of the object.

2 Network Architecture

For the simulations we used a similar neural network model of (the ventral
pathway in) the visual cortex that was used in the simulation of object-based
attention in the visual cortex [1]. It basically consists of a feedforward network
that includes the areas V1, V2, V4, the posterior inferotemporal cortex (PIT),
the central inferotemporal cortex (CIT) and the anterior inferotemporal cortex
(AIT), and of a feedback network that carries information about the identity of
the object to the lower retinotopic areas in the visual cortex (V2 - PIT). The
model shares the basic architecture and characteristics of the visual cortex. The
receptive fields size of cells in an area increases, while climbing up the visual
processing hierarchy. Secondly, the connections between cells in the network are
determined so that the retinotopic organization is maintained throughout area
V1 to area PIT. Differently, area CIT and AIT have input connections from all
cells in the previous area. Cells in CIT and AIT receive information covering the
whole visual field (all positions). Every two successive areas are interconnected.
For example, area AIT only receives input from area CIT.

Figure 1 illustrates the architecture of the network schematically. From area
V1 to area PIT, cells are arranged in a two-dimensional array that makes up
the visual field. The number of layers in an area defines the number of cells per
retinotopic position (e.g., two from area V2 to area PIT). Multiple layers within
an area are not interconnected. Each layer in V1 codes for line segments of one
of four possible orientations. The input is set in area V1 by activating cells in
the four layers of cells. Area AIT functions as the output layer of the network.

3 Simulating Location Invariant Object Identification

The network was trained with backpropagation in three successive stages. In
the first stage, the network learned to identify oriented line segments (having
the length of two cells in the input layer) presented at any position within the
networks visual field. In the second stage, the network was trained to iden-
tify edges consisting of various combinations of the oriented line segments (see
figure 1) at any position within the networks visual field. In order to avoid
(potential) catastrophic interference, the oriented line segments learned in the
previous stage were also included in the training. Note that the nature of the
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V1

AIT

V2

V4

PIT

CIT

objects

oriented lines

edges

Fig. 1. The architecture of the network. The symbols above the cells in layer AIT show

the features that the cells were trained to identify.

collection of edges (two different combinations of each identical set of line seg-
ments) forces the network to abstract local relation information at a low level
in order to identify the edges correctly. Hence, throughout these two stages
of supervised training, the network learned to identify features of increasing
complexity. In the final stage, the network was trained to identify objects (see
figure 1) consisting of line segments and of one or more trained edges. Impor-
tantly, the network was only exposed to the objects at four possible locations (see
figure 2a). Again, the training set also incorporated features that were previously
learned (at all locations).

The first two training stages were chosen to generate a network, in which cells
in V4 and PIT are selective for a variety of simple and more complex features like
the cells in comparable areas of the monkey brain [6]. The training in two succes-
sive stages offered the network an opportunity to draw on formerly constructed
selectivity while encoding new, more complex information (i.e., bootstrapping).
Note that the exact features that cells in the network learn to abstract are not
set in advance, but develop as a result of learning. Furthermore, representation
in the network is distributed, due to the connection structure of the network [1].

Cells in CIT have input connections that cover the whole visual field. In
principle, during training these cells could become selective only for features
that appear in a subset of the visual field. However, the number of cells in area
CIT was not sufficient to allow such a specialization for location information. In
order to identify the oriented lines and edges at all locations, the cells in CIT
learned to abstract features largely independent of location information.

Interestingly, if cells in area CIT are selective for features largely independent
of location information after the first two training stages, then the network may
subsequently learn to identify the objects partly by learning new conjunctions
of such location invariant features. In other words, the network could shape the
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selectivity of some cells by building upon the location invariant selectivity of cells
that are already present. Such a mechanism would give the network the ability
to generalize the identification of the objects to locations where the objects are
never presented before.

4 Results of Location Invariant Object Identification

We trained the feedforward neural network according to the training scheme
described above. This was done successfully five times, each time resulting in
slightly different connection weights between the areas in the network.

Figure 2b shows the squared error of the networks output over the number of
passes that the network has gone through the training set, both for the second
and the third stage of training. The data for only one network are displayed
in the graph, but these data are well representative for other instances of the
network. As can be seen in the figure, the network very quickly learns to identify
the objects in the third stage, once it has learned to identify the oriented lines
and the edges in the previous stage.

After the training, the networks response was tested for each of the four
objects presented at nine possible locations. Four of the locations were identical
to the locations at which the objects appeared during training. In contrast, the
objects were never presented before at the other five locations (see figure 2a).
Given the connection structure of the network, more cells in the network receive
input from an object when it is presented in the center of its visual field than
when it is presented in a more peripheral location. Therefore, locations where
objects appeared during training and new locations are chosen in such a way
that on average the same number of cells in the network respond to an object
at each kind of location (i.e., trained or new), apart from the center location.
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Fig. 2. (A) The nine possible locations in the visual field where objects were presented

during testing. The network was exposed to objects at four locations during training

(white). Before testing, the objects had never been presented at the five other (gray)

locations. (B) Squared error of the networks output over the number of epochs during

training, for the second (2) and third (3) learning stage.
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Each panel in figure 3 shows the activation value of one cell in area AIT after
the processing of its selective object and the other objects, at each location. Each
cell clearly responds selectively to the object that it has been trained to identify.
Moreover, each cell is optimally active when its preferred object appears at one of
the trained locations, but it is also active, although to a lesser extend, when its pre-
ferred object appears at a new location. Particularly, the diamond and the square
(object 1 and 2) are identifiedmost strongly at new locations.The reduced response
for a preferred object at new locations compared to trained locations shows that the
network partly encodes location dependent features for the objects. This possibly
takes place lower in the processing hierarchy of the network. However, the network
is clearly able to generalize its identification of objects to new locations. This shows
that the network also abstracts new conjunctions of known location invariant fea-
tures in addition to location dependent features.

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

A
ct

iv
it

y

0 1 2 3 4 5 6 7 8

Location

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

A
ct

iv
it

y

0 1 2 3 4 5 6 7 8

Location

0=

1=

2=

3=

Fig. 3. Each panel shows the activation values of one cell in area AIT trained to

identify the object drawn above or under the graph, after presentation of each of the

4 objects at both trained 0, 1, 7, 8 and untrained 2, 3, 4, 5, 6 locations

5 Simulating Location Invariant Top-Down Visual Search

Figure 4b illustrates how the (partly) location invariant object identification
displayed by the feedforward network relates to the models ability to find the
location of an object between other objects, when this object appears at new
locations or trained locations in the visual field. In this second simulation the
model performed a top-down visual search task. In this task, a cue is presented
first. After that, the target object, matching the cue, appears in the visual field
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with three distracters (see figure 4a). The location of the cued object then has
to be selected. The network was tested on this visual search task repeatedly
with each of the four objects presented as the target. For each target object,
180 random search displays are presented (set as input) to the network. In the
model the task is simulated as follows.

In the simulation, a cue selectively activates a cell in area AIT of the feedback
network. Top-down activation in the feedback network results in the activation
of all other cells in lower areas of the feedback network that are selective for
features of that object. Next, the cued object and the other objects are set as
input at random, non-overlapping locations in the visual field of the feedforward
network. The feedforward network of the model processes all the objects simul-
taneously. After that, the interaction between the processing in the feedforward
network and in the feedback network is simulated by computing the covariance
between the activation of cells in the feedforward network and the activation of
cells in the feedback network [1].

For each object, the covariance values of all the cells selective for the object
in area PIT are summed up. To normalize the sum for each object, the sum
of covariance values for an object is divided by the number of cells, which are
selective for the object. The group of cells selective for one of the presented
objects that has the highest level of normalized covariance indicates the loca-
tion selected for the target. Note that area PIT still has a retinotopic orga-
nization and that cells in this area thus are also partly selective for location
information.
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6 Results of Location Invariant Top-Down Visual Search

Figure 4b illustrates the results of the simulation. For each of the four objects
as the target, the proportion of correct selections of the targets location in the
visual field is depicted separately for the trained locations, the new locations,
and the (new) center location of the target. The data are averaged over five
instances of the model. As can be seen in the figure, the network is better in
finding the targets location when its location is one of the locations at which
the network is trained to identify the target, than when its location is one of the
locations at which the network is not trained to identify the target. Apparently,
the networks ability to generalize its identification of an object to new locations
does not transfer automatically to the task of finding the location of an object
between other objects.

Part of the reason probably lies in the quality of the feedback connections that
are the basis for top-down attentional selection in the model. The connections
in the feedback network are trained in a Hebbian manner on all the activation
patterns in the feedforward network during training [1]. As a result, cells in the
feedback network that are selective for trained locations code more elaborate
information about an object than cells that are selective for new locations (see
figure 3). That is, at trained locations, cells in the feedback network are selective
for both location invariant features and for location dependent features, just like
cells in the feedforward network. Instead, at new locations, cells in the feedback
network are at most selective for location invariant features.

Furthermore, to retrieve information about the location of an object at new lo-
cations, the reduced object selectivity in the feedback network has to interact with
the activation in the feedforward network, which is also less selective for an object
at new locations than for an object at trained locations. Hence, the limitations in
the feedback encoding of an object at new locations and the limitations in the feed-
forward encoding of an object at new locations aggravate each other.

Despite this multiplicative effect of a less elaborated encoding of an object at
new locations, we would still expect the network to select the location of the target
in a visual search task somewhat above chance level. Figure 4b points out that this
is, on average, not the case in our simulation. It is possible that cells in the network
that respond to multiple objects present in the visual field (i.e., cells with large
receptive fields), degrade the already basic, generalized feedforward encoding of
the target at a new location too much for the model to put its top-down selection
mechanism into effective use [7]. Nevertheless, the network selects object 1 and 2
at new locations between other objects above chance level. Note that these two
objects are precisely the objects, which the feedforward network already identified
most strongly at new locations (see figure 3).

7 Bridging the Gap Between Recognition and Localization

In summary, even when the network recognizes an object at a new location, this
does not mean that it can immediately find the location of that object. Obviously,
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in real life it is very important that we rapidly learn to bridge this gap. What is the
mechanism that may constitute that bridge?

Our simulations demonstrate that an object at a new location can be identified.
All requirements for supervised learning are therefore present; an object is present
at a new location and it is recognized. Figure 2b shows that, in supervised learning,
the feedforward network can learn to abstract additional location dependent fea-
tures of objects relatively fast. As a result the feedforward network becomes more
selective for the object at that new location. This increased selectivity of the feed-
forward network transfers to the feedback network by means of the Hebbian learn-
ing in the feedback network [1]. After this, the interaction between the feedforward
network and the feedback network will enable the localization of the object.

A similar result has emerged in a study, in which subjects had to search for a tri-
angle of a particular orientation between triangles of another orientation [8]. The
ability of the subjects to identify the target between the other objects improved
dramatically over several days of training, but this learning was localized to a par-
ticular region of the visual field, namely the area used for training.This resultmight
indicate that representations of the trained object are build separately for different
positions across the cortical area [8].

It is crucial for the mechanism that we propose that the feedforward network
learns in a build up manner, in which more complex features can partly be learned
from more simple, location invariant, features. This allows the network to general-
ize its ability to identify an object to new locations and triggers more elaborated,
location dependent learning that allows the network to find the object at new lo-
cations as well.

8 Discussion

Our neural network model predicts that the generalization to new locations by the
visual system is more restricted when we have to find an object between other ob-
jects than when we have to recognize an object. In line with the second simulation,
and with the study of Sigman and Gilbert [6], we hypothesize that when we search
for an object between other objects, the abstraction of new location dependent fea-
tures of an object may be essential to make the search more reliable. It might also
speed up the search process.

We speculate that a visual system can rapidly abstract additional, location de-
pendent features that are needed to reliably find an object at new locations, once
it recognizes an object to some extent. Learning new, location dependent features
proceeds in parallel to learning new conjunctions of known location invariant fea-
tures. It possibly takes place mostly lower in the visual processing hierarchy. Our
suggestions relate to Ahissar and Hochstein’s Reverse Hierarchy Theory (RHT)
[9], although RHT specifically focuses on perceptual learning, and asserts that vi-
sual perceptual learning gradually progresses backwards from high-level areas to
the input levels of the visual system.

A visual system may generalize its recognition of an object to new locations,
when it learns to identify the object partly by means of new conjunctions of loca-
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tion invariant features for which cells of the system are already selective. Simula-
tions demonstrated this principle in our neural network model. Such learning may
take place higher up the visual processing hierarchy. Our neural network model
learned to recognize objects at multiple locations before testing its ability to gen-
eralize recognition to new locations.Yet, the neural networkmodelmayhave shown
comparable location invariant object recognitionwith fewer trained locations.Nev-
ertheless, it is very likely that we learn to recognize an object at multiple locations,
even during a single observation, due to movement of the object or ourselves (e.g.,
eye-movements, head movements, etcetera).

The neural networkmodel localizes objects in disjoint windows, like some other
models of visual search [5]. In the future, the selection of one of multiple, overlap-
ping disjoint windows may be substituted by a WTA process, which localizes the
location with the highest activation in the retinotopic areas of the model after the
interaction between the feedforward and the feedback network.

The neural network model is not yet very robust to clutter. Scaling up its size
and changing training to include a larger number of features and objects, will make
its cells selective for a larger collection of both location dependent and location in-
variant features. In addition, providing multiple examples of an object with a real-
istic amount of within-object variability will strengthen the need to learn the most
informative features for discriminating between that object and other objects [5].
Together these extensions could result in sparser object representations, helping
the neural network model to cope with clutter.
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Abstract.  In recent years, issues of inattention blindness and change blindness 
have thrown doubt on theories of vision that assume that the visual signal is 
inwardly represented for further recognition and processing.  The aim of this 
paper is to review so called enacted theories of vision and argue that they are 
too severe in terms of removing inner representations from the argument and 
removing the possibility of mental imagery.  This is followed by an exposition 
of an axiomatic approach we have developed to explain issues of visual 
consciousness and show how this, while respecting enacted theories provides a 
new model of visual awareness which not only attempts to characterise the 
natural version, but may inspire the design of machinery. 

1   Introduction 

An often-seen film of an experiment  by Simons and Chabris [1] shows a group of 
people bouncing a ball between them.  The audience are asked to count the number of 
times a particular person bounces the ball.  The astonishing event is that a person in a 
gorilla suit walks across the playing area, but only about 20% of the observers 
actually notice it.  When shown the film again and released from the counting task, 
the audience laugh in disbelief. This is inattention blindness 

Another film from the same laboratory shows Simons approaching an unsuspecting 
target individual on campus and asking him for directions.  While the target is in full 
flow, a group of people carrying a door separate Simons from the target and stealthily 
replace Simons by Chabris. There is little physical similarity between the two.  However 
the target carries on with his explanation unperturbed.  When he is finished, Chabris 
asks the individual whether he had noticed anything odd.  Yes, is the answer, he noticed 
being disturbed by people carrying a door.  Then Simons makes his appearance and the 
target in some disarray suddenly realises what had gone on. This is change blindness. 

Similar experiences involve the projection of still scenes, separated by a blank, in 
which vast areas of the scene are removed (New York skyline, the reflection of a 
building in a lake etc.) and this goes totally unnoticed by most of the audience.  
Strangely, if the separating blank is removed, the change becomes obvious.  Then, 
without a blank, Kevin O’Regan of the Experimental Psychology Research Centre at 
the René Descartes University  shows an image of a woman and a car in a busy street 
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and asks whether, over a two minute period, anything has changed.  Most viewers do 
not notice that the colour of the car has slowly changed from bright red to bright blue 
under their very eyes. The car occupies about 30% of the screen. 

Kevin O’Regan and Alva Noë  based a theory of vision on the idea that change 
blindness and inattentional blindness should not be ‘explained away’ as aberrations 
due to careless attention in an otherwise rich and accurate perceptual system.  They 
published a seminal paper which drew both criticism and support for proposing that 
‘the way we see’ should undergo a radical revision [2]. This has become known as the 
enacted or sensorimotor theory of vision which is reviewed in this paper and attempts 
to understand better the role of attention which appears to be the thief that robs our 
vision of gorillas and other major changes in the world.   

A major objection to this theory is that because it assumes an automatic link 
between visual input and motor responses it asserts that the world itself is the memory 
of the system which if not attended generates the blindnesses mentioned above. This 
makes it hard to explain visual imagery and imagination.  Here I summarise our own 
axiomatic neuromodelling approach that includes visual consciousness and show that 
it provides an extention to enacted theory while removing the inadequacies. 

2   Enacted Vision: A Summary  

Specifically, O’Regan and Noë set out to address two puzzles [3]: 

“ … how can we see at all if, in order to see we must first perceptually 
attend to that which we see? …” 

And 

“ … if attention is required for perception, why does it seem to us as if we 
are perceptually aware of the whole detailed visual field when it is quite clear 
that we do not attend to the whole detail …” 

The first step in their argument is to distinguish between being perceptually 
sensitive to sensory input and attending to it so as to bring it into awareness.  The 
example given is that we can drive a car without attending to all the details of the 
road.  But should a child suddenly jump into the road, we may well slam on the 
brakes before actually becoming conscious of what has happened.  Noë and O’Reagan 
call this kind of automatic link between perception and action  the rules of 
sensorimotor contingency. These are rules that are built into living systems like the 
rules for homing in on a visual target might be in a guided missile.  The organism is 
said to have mastery of the sensorimotor contingency rules if it can move itself or its 
sensory apparatus (e.g. eyes) to compensate for the peculiarities of the apparatus 
itself.  For example, the superior colliculus that controls eye movement will cause the 
eyes to saccade exactly to the right spot in the world where a light might have just 
flicked on, despite the distortions and blind spots found on the retina. 

Attention then, is the process of breaking into and controlling this sensorimotor 
activity. So one can be perceptually active without being aware, but one cannot be 
aware without being perceptually active.  This solves the first puzzle: attention is a 
result of the sensorimotor contingency and perception is a kind of access of or 
‘breaking into’ this process even though much of the detail of how ‘breaking into’ 
works, is missing. The second puzzle is well illustrated in pictures such as  fig. 1. 



 Enacted Theories of Visual Awareness: A Neuromodelling Analysis 247 

 

  
 

Fig. 1. The rabbit figure on the left feels almost as present as the one on the right despite being 
behind blobs 

In looking at the left version of the picture, although we cannot see the detail, the 
rabbit appears as an entity.  Noë and O’Reagan argue that it is the sensorimotor 
contingency that gives us the feeling that ‘if only I could get out there and remove the 
spots, I would see the whole rabbit’.  And this, they argue, happens when we look 
around at anytime.  Although our fovea is tiny we know that once having seen bits of 
the world we can get back to them at any time.  So the world provides us with all the 
short-term memory we need to achieve this sensation of rich detail.  It never needs to 
be reconstructed in the head: we are just masters of a lot of sensorimotor 
contingencies which leads us to appreciate the richness that is out there in the world. 

Now, is it the case therefore, that having a rich world in our head despite the 
inaccuracy of our sensory equipment is a ‘grand illusion’?   Not so, say O’Reagan and 
Noë.  Most of us would not subscribe to the richness being in our heads (illusion) but 
realise that it’s only out there (no illusion).  The notion of a grand illusion is, 
therefore, wrong. In a sense it could be said that the world serves as the brain’s short 
term memory.  The sensation of richness comes from a sense of ability that if we want 
to access detail, it’s out there for us to get it, no need to keep it in the head. 

The major difficulty with this theory is that it does not allow for the occurrence of 
mental imagery.  As  this is an aspect of consciousness , I introduce below our 
axiomatic theory of consciousness particularly in the way that impinges on an 
understanding of visual awareness and imagination. 

3   Axioms of Being Conscious 

In this section I summarise  the five primary pillars on which the design and 
functioning of a materially conscious machine can be based.  I call these ‘axioms’  
referring to assumed truths that may not be proven, but which is sufficiently evident 
to support a theory.   These are the five primary elements of my sensation which I 
discover by looking inside myself, that is,  by introspecting. The details of this 
approach are discussed at length in a recent book [4].  The use of introspection 
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becomes justified as, when it comes to modelling inner sensation, behaviour becomes 
the untrustworthy parameter as the same behaviour can be due to various thoughts. 
Then ‘thought’ has to be addressed directly.  The scientist therefore is stuck with his 
or her own inner sensation as the starting point for an enquiry.  

3.1   A list of Axioms 

The five axioms, the five different kinds of thought which are important to me and I 
feel need distinguishing are the following: 

1. I feel that I am a part of, but separate from an ‘out there’ world. 
2. I feel that my perception of the world mingles with feelings of past 

experience. 
3. My experience of the world is selective and purposeful. 
4. I am thinking ahead all the time in trying to decide what to do next. 
5. I have feelings, emotions and moods that determine what I do. 

This is by no means an exhaustive or, indeed, an original list.  It  is just an initial 
one, that many others have identified and may be added to in the future.  But this is 
enough for the time being.  

3.2   Axiom 1 :  The ‘Self’ in a Real World Out There 

To make some headway, let me concentrate on one aspect of being conscious – the 
visual sensation of me being in the middle of an out-there world.  Given that we 
believe in a neural activity which is identical to sensation,  how could this happen?  
Why does the neural activity have this property of  a sensation of me in an out-there 
world rather than some funny buzzes in my head or some sort of a headache?   

I am staring at a vast white wall.  Suddenly a little black fly lands on the wall, right 
in front of me. How do I know this? The tiny change in the world out there must have 
caused a tiny change in the Neural Activity, which is identical with my having the 
sensation of the little fly on the wall.  It is possible that if the fly is tiny enough, the 
transmission across my visual apparatus is just inadequate to change Neural Activity 
at all.  I would then not ‘see’ the fly on the wall at all.  So, it is possible to think in 
terms of minimal visual events which call for minimal neural activity.  That is a 
minimal visual event is that event which, were it to be smaller or less intense, it would 
not be sensed at all.  Now imagine the fly shifting very rapidly slightly to the right.  In 
slow-motion terms, the fly disappeared from where it was and reappeared somewhere 
nearby.  I am conscious of this change.  What this means is that the minimal neural 
activity for the new position of the fly must also be a new and unique neural activity. 

Now, say, another fly, the same size as the last one lands next to the first one, but 
in the same position where the first one originally started.  I now sense the two flies 
together as  a separate visual event, but one which I sense as being composed of the 
first two.  One way of achieving this is for the minimal events and the composed 
event just to be the firing of neurons in positions that faithfully reproduce the events 
in the world out there as would occur on a photosensitive surface. It would even mean 
that vast visual events, a waterfall, fireworks, my dog and the  visitor who has just 
 



 Enacted Theories of Visual Awareness: A Neuromodelling Analysis 249 

 

rung my doorbell could be uniquely represented in my neural system. But this would 
not be sufficient – what’s missing is the ‘out-thereness’ of these neural 
representations of flies. 

Out Thereness: Depiction in the Brain 
Perceiving the flies on the wall or waterfalls is different from just seeing these things 
as if they were photographs. Somehow or other, the neural representations, to be 
identical to my perceptual sensation, must be identical to this feeling of space I have 
around me – a space in which I can move and influence things, a space which 
accommodates me in  the centre of it and gives me what I call my point of view. 

Looking closely at what happens in the brain gives us a good clue as to how this 
feeling of space might arise. First, the retina at the back of the eye is not like a 
photographic plate in one major respect.  It only records accurately (by neural firing) 
a very small part of the world out there.  There is an area in the centre of the retina 
called the fovea that has a high density of neural sensors (cells that fire in response to 
the intensity of the light falling on them).  If you stretch out your arm in front of you 
and look at your thumb, the fovea records accurately an area about the size of your 
thumbnail.  The rest of the retina records light patterns, in much less detail, both in 
colour and shape. This is called the perifovea. 

Now, say I am fixating on a fly with my fovea, and another fly lands nearby, the 
event in the perifovea, will cause my eye to move to the new event to record it 
accurately.  By this time the first event is no longer accurately recorded in the retina, 
but it is in my sensation.  This means that neurons in my visual system beyond the 
retina must not only receive signals from the fovea, but also of where the fovea is and 
how it has moved.  Without going into details of neuroanatomy here it is well known 
that such areas exist in the brain.  That is, my neural activity for visual consciousness 
relies as much on what the fovea records as where the  fovea is and how it moves. 

Not only this, but when objects are closer or farther, this too is recorded as a result 
of the muscular mechanisms for eye convergence and focus.  That is neurons 
responsible for giving me my sensation receive signals from muscles involve in eye 
positioning and shape. It is even known that neurons that drive muscles used in 
touching a seen object or are just preparing to move a finger to touch it broadcast 
firing signals that influence the firing of neurons that create sensation.  No wonder 
that my visual sensation of the world out there is much richer than a photograph - its 
neural identity is extraordinarily rich.  We have called this inner identity of neural 
activity a depiction. We chose depiction to get away from the word representation 
because of the richness that the neural activity implies.  A photograph is a 
representation and, in computing, just symbols could be used to represent objects in 
the world (F for fly or F2 for another fly).  Representations therefore have a 
functional character about them while I intend depiction to mean the full rich material 
quality that is required for being conscious. 

Evidence: Locking 
Is all this reliance on depiction just a theory or is there evidence that it actually 
happens in living conscious organisms? In fact, the evidence is overwhelming and 
continually being discovered.  As I have suggested, depiction occurs because some 
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cells are selected to fire only if muscles are being active in a particular way.  In 
neurology, this selection process is called ‘locking’. 

Locking was first discovered as ‘gaze locking’ in an area of the brain called V3A 
which  represents  the form of visual stimuli   This was the pioneering work of 
Galletti and Battaglini from  the University of Bologna [5].  They found that certain 
cells in monkeys would respond to small visual stimuli, but only if the eyes of the 
monkey were pointing in a particular direction. If the monkey would change its 
direction of gaze, different cells would respond to the same stimulus.  

The same laboratory went on to discover even more evidence of locking.  For 
example, neurons in visual area V6 (devoted to space representation) will only fire if 
certain arm muscles are engaged in moving the arm in a particular way .  Other 
neurons in another part of the visual system are locked to neck muscle action.  The 
fashion for looking for locked neurons has spread to other laboratories and such 
neurons have been found in profusion throughout the cerebral cortex (i.e. the part that 
is deeply implicated in making us conscious). 

The Centrality of Axiom 1 
The ability to internalise the out-there world is the central feature of consciousness: it 
is a kind of pivot on which all else depends.  We should bear this in mind when 
considering the other axioms and their implied mechanisms. 

3.3   Axiom 2: My Experience of the World Out There 

Staying again with visual sensation, it is clear that, if I close my eyes, the visual world 
does not go away: I can imagine what things look like, that is, what they looked like 
at some time in the past.  The sensation is not quite as vivid as when I am actually 
looking at something, but there nonetheless. 

These ‘visions’ need not go away when I do open my eyes.  Indeed they are part of 
my visual interaction with the world out there.  I often loose my keys.  When looking 
for them under cushions or behind the toaster I form a mental image of what they will 
look like when I do see them. Should I see a different bunch of keys, the differences 
between the depiction of these and the mental image are intensely, almost painfully, 
felt. When seeing a well known face, it is known that I can form a sufficiently 
appropriate mental image of the person even before my fovea has had a chance to 
look at every feature. That is, the mental image snaps in.   

There is another aspect to these inner sensations: they can construct something we 
may never have seen or experienced.  Reading Shakespeare’s Macbeth, the full 
impact of Birnam Wood descending on Dunsinane, is generated in our visual 
sensation even if we have never seen the play.  This is a case where visions are 
generated by words, but visions could be generated by any of the sensory modalities:  
the smell of freshly baked bread can trigger scenes from childhood, touching a slimy 
surface in the dark can create nightmarish visions of unpleasant gutters. 

The material implication of these inner visions and memories is, in broad terms, 
quite simple.  In detail it is fascinating and difficult.  The broad principle is that of  
feedback or re-entry in depictive neural structures.   Having a mental image of 
something that has happened in the past has a strong material implication:  closed 
information paths in depictive networks must exist which can sustain depictive firing 
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patterns: the state of an automaton or state machine. So much for the mechanism of 
sustaining images, but where does what we imagine come from? How could it be that 
having seen examples of black dogs and white cats, we could imagine what a white 
dog or a black cat might look like even though we may never have seen one. The fact 
that we can do this implies that blackness and whiteness might be depicted and 
learned in different parts of the mechanism from, say, shape.  Indeed, it is well known 
that, in the brain, different areas of the visual cortex become independently active for 
colour, shape and motion. 

Then whiteness or any other colour-ness, is  learned to be a stable depiction and 
associated with words  in one part of the cortex  while doggy-ness  or catty-ness is 
learned in another.  Then  these learned features will be depicted independently if 
triggered by appropriate words even if the combination has never been seen before. 

Finally, if depictions such as colour and shape happen in different parts of the 
brain, how is it that a black cat, say,  feels like a single sensation?  This is the 
celebrated binding problem.  

Unwinding the Binding Problem 
All sorts of solutions have been proposed to the binding problem.  Crick and Koch, for 
example, first maintained that a signal with a firing rate of 40 pulses per second links 
any disparate activities that bind into one sensation [6].   They now prefer to talk of cell 
assemblies that ‘coalesce’ into single sensations through long-routed connections [7].  

My colleague Barry Dunmall and I have suggested [8] that binding is a direct result 
of the muscular locking that I mentioned earlier in this paper. Going back to the fly on 
the white wall imagine that the fly could be red or blue.  What happens  when the fly 
is red?  To simplify the rather complex way that colour and shape are represented in 
the visual cortex, I shall just call these two areas C and S. Whether the fly is red or 
blue, it will cause a group of cells to fire in S, and these cells are locked by the 
position of the fly on the wall.  The fly, if only S were present, would feel like a blob 
in a particular out-there position.  In C, however, two different groups of neurons 
would be activated one for the blue fly and the other for a red one.  But whether blue 
or red they would all be locked by the position of the fly on the wall.  The fact that 
this feels like a coloured blob in exactly the same place on the wall as the activity in S 
is due to the fact that, due to locking,  the two activities are controlled by where in the 
world is the event that is causing them.  This is the beauty and the cause of richness of 
the  depictive process – the neurons causing a single sensation could be dispersed 
among different specialised parts of the brain.  

Binding in Imagination 
Of course, the binding problem applies to the basic depictive process of axiom 1.  
How does it affect axiom 2: imagination?    The depictive areas in which I have 
suggested feedback creates the ability to reconstruct visual images (say) occur 
physically beyond the locking process.  That is, what is remembered are ‘out there’ 
depictions.  The only odd thing is that during a proper recall of an out-there events, 
many depictive areas are required to deliver their memories at once.  This process is 
not perfect. It is quite possible to be in a situation where we remember the shape of, 
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say, a hat that the Queen was wearing in a newsreel of Ascot last week but cannot 
remember its colour, or vice versa – remember the colour and not the shape.  

3.4   Axiom 3: Attention: Out to Get Experience 

So far, I have spoken of worlds out there as if the conscious organism just blunders 
around in them.  Nothing is further from  the truth.  Selecting what we experience in 
the world and how we think about the world in our imagination, requires some 
selection mechanisms.  This, in neurology and psychology, is called  ‘attention’. 

In recent years attention has advanced in importance as a vital aspect of 
consciousness. Our tendency to attend to some things and not others determines what 
eventually enters our consciousness – the topic of this paper.  There we shall see that, 
in vision in particular, specific brain areas such as the ‘superior colliculus’ are 
involved in the attentive selection of eye position for the most efficient extraction of 
meaning from complex images.  Suffice it to say here that we have already noted that 
movement of the fovea contributes to depiction.  Attention appears to call for 
important axiomatic mechanisms: it has been hailed by several investigators as the 
“Gateway to Consciousness”.  We return to this in the next section of the paper.  For 
completeness, we now consider the remaining two axioms. 

3.5   Axiom 4: Thinking Ahead 

Thought is not just a process of having static depictions.  It is a highly dynamic process.  
We are constantly thinking ahead, considering alternatives and, every now and then, 
deciding what to do next. What are the material implications of this possibility. 

It is the simple property of a recursive net that it can remember sequences as well 
as the stationary patterns we have seen above.  As before, the neurons repeat at the 
output axon the state of the input synapse. It helps to realise that there is always a 
slight delay between a change in input (say of duration t) and the corresponding 
change of output.   

Say that I am looking at a pencil on my desk and deciding that I want to pick it up.  
This thought is a sensation of my actually doing it in my head, before I do it for real.  
My depictive areas are producing a kind of depicted movie in my head in anticipation 
of the real act.  This comes from the fact that the depictive areas can learn appropriate 
depictive sequences as part of the build-up of experience as a sequence of depictive 
states.  That is, as a child I learn to pick things up by trial and error.  When I succeed 
reliably, my visual, tactile and muscular neurons have, together, learned to go from 
state to state by the same axiom 2 mechanism that allows them to remain stable in one 
state.  There is very little technical difference between learning sequences and 
learning single stable states.  So thinking ahead has to do with the system running 
through depictive sequences that are possible from the current state. But if there are 
many possibilities how are these controlled? What is it to want to execute one of the 
possible plans?  This leads to axiom 5.   

3.6   Axiom 5:  Emotions – The Guardians of Thought 

One of the criticisms levelled at those who speak of  conscious machines is that there 
is one element of humanity that machines cannot have:  feelings and emotions. I 
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would argue that as these seem to be essential to being a conscious human being they 
must be essential to a model conscious machine.  I would be very suspicious of the 
value of a machine model of being conscious were it not to have mechanisms that 
play the role of emotions in living organisms. 

In the first instance emotions are related to the evaluation of depictive input.  
Children  not more than a few hours old will show signs of fear (facial expression 
and a retreating action) if a large object moves towards them. The same occurs if 
the child is allowed to move freely over a glass surface that appears to stretch over a 
precipice. The child avoids the precipice and shows signs of fear. On the other hand 
the child shows contentment on being fed when hungry.  So, basic emotions such as 
fear and pleasure, are neural activities that appear to be pre-wired at birth.  They 
have obvious survival value. Other emotions in this innate group are anger, surprise, 
disgust and love. 

Other emotions and feelings are developed during perceptual life. Feeling hurt after 
being rebuked or being jealous of the attention someone else is getting are examples 
of a vast group of such subtle phenomena.  On the basis that every scrap of our 
sensation is due to some neural firing patterns, I would expect such patterns to have 
distinct characteristics that both adapt to be attached to perceptual depictive events as 
well as imagined events.  As planning proceeds according to the mechanisms of 
axiom 4, predicted states of the world trigger emotional neural firing which 
determines which plans are preferred for execution and which might lead to unwanted 
consequences.   

Volition and emotion are areas that have proved to be controversial. Not only does 
the question of free will have a theological and philosophical theory, but in modern 
neurology some doubts have arisen as to whether we are in wilful control of all our 
actions.   

4   Axioms and Enacted Vision 

The O’Regan and Noë enacted sensorimotor contingency is discovered in several 
ways in the axiomatic, depictive descriptions set out above.  The most obvious place 
is the mechanism of eye movement that involves the superior colliculus mentioned 
earlier.  It is known that this, in a totally unconscious way, moves the fovea of the eye 
to places where things are happening  (changes, movements, edges and so on …) 
which may be detected in the perifovea.  But that is not all that causes the eye or, 
indeed, the head or body to move to bits of world that require attention:  a sudden 
sound, the memory of having left the gas on in the kitchen, needing to check whether 
what is thought to be a familiar face, has correspondingly familiar features.  Further, a 
strategy that involves memory and planning (axioms 2/4) can constrain foveal 
attention (e.g the ball rather than the gorilla). Note that here I speak of ‘external’ 
attention mechanisms that correspond to sensorimotor contingencies.  Whatever this 
mechanism might be, the results of attending are left in axiom 1 depictive machinery 
for a while.  
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Fig. 2. A minimal architecture with axiomatic/depictive properties.  The perceptual module 
directly depicts sensory input and can be influenced by bodily input such as pain and hunger.  
The memory module implements non-perceptual thought for planning and recall of experience. 
The memory and perceptual modules overlap in awareness as they are both locked to either 
current or remembered world events The emotion module evaluates the ‘thoughts’ in the 
memory module and  the action module causes the best plan to reach the actions of the 
organism. 
 
 

We recall that axiom 1 machinery is depictive by virtue of the fact that it ‘knows’ 
(i.e. encodes) the muscular effort that is being exerted in order to achieve a foveal 
position of the eyes.  It is a mass of neurons that ‘put things in place’, but not for any 
length of time. It may be best to refer to fig. 2.   The perceptual module is active all 
the time and keeps a fading trace of experience which is accessible for a while, but 
does not necessarily lay down retrievable memories in the memory module. 

It is possible then to interpret the ‘breaking in’ through attention as a facilitation of 
the transfer of depictions from the perceptual module (axiom 1) to the memory 
module (axiom 2) where it will be a much paler version of what may briefly have 
been accurately depicted in the perceptual module, but where it will have a much 
more enduring and accessible existence.  Then, according to axiom 3, the true 
function of attention is to control this facilitation.  This requires a great deal more 
research and thought as to how such mechanisms work in the brain or even how they 
might work in a robot. However, it provides a basis for incorporating the ideas of 
sensorimotor contingencies into a broader framework that does not exclude the 
consciousness of mental imagery. This may be focussed as follows. 
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4.1    Axiomatic Puzzle Solving 

The First Puzzle: Attention Without Seeing? 
In this section we show how the axioms deal with the two puzzles outlined by 
O’Reagan and Noë.  First one needs to address how it is that we can we see at all if, in 
order to see we must first perceptually attend to that which we see?  

As stressed above, the key axiom here is 3 – attention.  Attention is easily said but 
it is a complex concept and it may be found at many levels.  First, as said above, the 
eye-moving superior colliculus can be influenced from a variety of sources some of 
which can be active ahead of depiction in axiom 1 and 2 mechanisms.  It is quite true 
that in order to see, the basest mechanisms must be at work. As mentioned earlier, the 
effects of change, motion, edges are all automatic and pre-depictive.  However, 
without them, according to axiom 1, depiction cannot happen.  Second, deeper 
strategies for seeing are then triggered by the developing depiction.  For example 
when a face is flashed suddenly on a previously blank screen, the foveal gaze will 
automatically be drawn to areas with much detail, such as an eye or the corner of a 
mouth. This will then be depicted causing the strategy of looking for base features to 
be switched to a higher level.  Further saccades to where one might expect to find 
important  features, such as the other eye or the mouth become controlled from 
Axiom 2 mechanisms which are perceived even if the drive to find facial features may 
be somewhat automatic – like driving.  There are even higher levels of search, for 
example, were a pair of twins distinguished by a little mole, having decided I am 
looking at one of the two, the search for the mole becomes a conscious affair driven 
strongly by the axiom 2 machinery.   

Even ambiguous figures such as the well known “duck/rabbit”, depend on 
hypothesis generation in Axiom 2 mechanisms (Fig. 3) .  Hypothesis, ‘it’s a duck’ 
causes the eyes to choose switching the gaze between the eye of the image and its 
beak with the occasional saccade to the wiggle at the back of the head.  Should the 
hypothesis be, ‘it’s a rabbit’ the saccades become more frequent from eye to wiggle 
(seen as a mouth now) with the odd glance at the ‘ears’.  The reason this is an 
ambiguous illusion is that the low level attention triggers a hypothesis for a higher 
level interpretation (duck or rabbit) which then controls the higher level attention to 
execute a defined set of saccades. 

 
 
 
 
 
 
 
 
 
 

Fig. 3.  Duck or Rabbit?  
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But a tiny perturbation can switch the whole system to settle into the alternative set 
of saccades.  So the answer to the first puzzle is that perceptual (i.e. conscious) 
attention is not  necessary to begin to build up a depiction: the process of base 
attention is innately automatic. Then as the depiction is being built, and perception is 
developing, perceptual attention sets in, which allows the developing depiction in 
axiom 1 mechanisms to allow hypotheses to emerge in axiom 2 memory mechanisms. 
I find it hard to describe this as a process of ‘breaking in’, more a question of the 
sensorimotor contingency stimulating depictive knowledge. 

The Second Puzzle: Why Are We Unaware of Not Attending to Input? 
The second peculiarity that is addressed by O’Regan and Noë is that if attention is 
required for perception, why does it seem to us as if we are perceptually aware of the 
whole detailed visual field when it is quite clear that we do not attend to the whole detail? 

The second attentional mechanism mentioned above, where the depictive mechanism 
(ax. 2 machinery) drives attention to fill important gaps in depiction, clearly stops at 
some point where sufficient detail is present in the depiction.  This is pretty rich and 
satisfying even if all the available detail may not be included.  In fact this theory 
explains why we are not so bothered by the black blobs over the rabbit and why the 
‘presence’ of the rabbit (fig. 1) is similar for the left and right images.  The detail in each 
of the images causes very similar attention strategies to be unleashed, and these are due 
to the rabbit rather than the blobs.  As indicated by the axiomatic/depictive theory it’s 
the interplay between the mechanisms of the fist three axioms that give us the sense of a 
rich world. It may not be complete, but what is there is sufficient for our needs and 
therefore satisfying even if not all gorillas are accounted for or, helpfully, if blobs don’t 
get in the way of what really draws our attention. 

5   Current Research: The Necker Cube 

A simple and well-known ambiguous figure is the Necker cube shown in fig. 4.  The 
peculiarity of this figure is that the same sensory input gives rise to two sensations: one 
where X appears to be in front of Y and the other with Y in front of X.  It turns out that 
this  simple ‘illusion’ has a  unique, 170-year  history of attempts at explanation [9] 
which range over the psychophysical, the neurological and the cognitive.  The 
significance of this in models that involve axiomatic approaches to enacted vision is that 
it points to an ambiguity in the unconscious, sensorimotor contigency mechanisms and 
provides cues as to how this enters conscious perception [10].    

 
 
 
 
 

 
 

Fig. 4. The Necker cube looks like a wire frame that sometimes has point X in front and 
sometimes point Y 

X 

Y
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Experiments show that while fixing eye gaze on strategic corners of the cube has 
some effect on the periods spent in one of the two sensations it is impossible 
consciously to stop the reversals altogether.  This indicates that it is necessary to 
elaborate the structure of fig. 4 to distinguish between dorsal and ventral processing 
streams and check hypotheses about how  the dorsal, through having direct 
unconscious access to motor cortices (action module) that would drive a limb to touch 
the frame (sensorimotor contingency) also impacts on the ventral, conscious 
perception of the frame (perception and imagination modules).  This is current work 
which should throw more light on enacted vision. 

6   Conclusion: A New Generation of Computer Vision Systems? 

Enacted vision ideas herald a new age in both the understanding of vision in living 
organisms and the design of artificial vision systems, particularly the design of 
visually competent robots.  It is the contention of this paper that in its initial 
formulation by O’Regan and Noë, the existence of an independent sensorimotor 
contingency is too severe, and should be treated alongside models such as the 
depictive/axiomatic scheme summarised in this paper.  In terms of visually driven 
robot design this is likely to improve the distinction between inbuilt or learned 
reactive mechanisms (the sensorimotor contingency) and acquired experience, that is 
the visual consciousness of the system. 
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Abstract. This work is about the central role of “expectations” in mental life 
and in purposive action. We will present a Cognitive Anatomy of expectations, 
their reduction in terms of more elementary ingredients: beliefs and goals. 
Moreover, those ingredients will be considered in their ‘quantitative’ 
dimension: the value of the Goal, the strength of the Beliefs. We will base 
several predictions on this analytical decomposition, and sketch a theory of 
hope, fear, frustration, disappointment, and relief, strictly derived from the 
analysis of expectations. Eventually, we will discuss how can we capture the 
global subjective character of such mental states that we have decomposed; 
how to account for their gestaltic nature. 

1   Premise: The Anticipatory Nature of Mind 

Basically mind is for “anticipation” [1], or – more precisely – for building and 
working upon “anticipatory representations” [2] [3] [4]. A real “mental” activity and 
representation starts to be there when the organism is able to endogenously (not as the 
output of current perceptual stimuli) produce an internal perceptual representation of 
the world (simulation of perception). Which is the origin and the use of such strange 
ability? There are several uses or functions but many (if not all) of them are 
anticipatory. For example, the organism can generate the internal “image” for 
matching it against perceptual inputs while actively searching for a given object or 
stimulus while exploring an environment; or can use it as prediction of the stimulus 
that will probably arrive, as in active ‘recognition’. It can use the perceptual 
expectation like in Anticipatory Classifiers, for implicitly monitoring the ‘success’ of 
the rule-based, reactive behavior, and as criteria for reinforcing or not the rule. But it 
can also entertain a mental representation of the current word just for working on it, 
modifying this representation for virtually ‘exploring’ possible actions, events, 
results: “what will/would happens if…?”.  

This precisely is “intelligence”: not just the capacity to exhibit complex adaptive 
behaviors (like in social insects or in spiders), nor the capacity to solve problems 

                                                           
* European Projects MindRaces N°511931- EC's 6th Framework Programme, IST priority- 

Unit: Cognitive Systems http://www.mindraces.org/; & European HUMAINE network 
http://emotion-research.net/. 
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(for example by stupid and blind trial and errors!), but the capacity to solve a 
problem by working on an internal representation of the problem, by acting upon 
‘images’ with simulated actions, or on ‘mental models’ or ‘symbolic 
representations’ by mental actions, transformations (‘reasoning’), before performing 
the actions in the world. The architect designs in her mind (and on a piece of paper) 
her building before building it; this is not the case of a spider although what it will 
build will be very complex (and - for us - beautiful).  

Those mental representations that characterize the mind and the mental work are 
mainly for anticipation: before the stimulus to be matched (prediction), before the 
action to be executed (project), etc. This means that the ability that characterizes and 
defines a “mind” is that of building representations of the non-existent, of what is not 
currently (yet) “true”, perceivable.  

This clearly builds upon memory, that is the re-evocable traces of previously 
perceived scenes; usually is just past “experience” evoked and projected on the future. 
But this is only the origin. A fully developed mind is able to build never-seen scenes, 
new possible combinations of world elements never perceived; it is a real building 
and creation (by simulation) not just memory retrieval.  

Moreover, the use of such internally and autonomously generated representations 
of the world is not only “epistemic”, for knowledge of the past, the present, the 
future: that is memory, perception, prediction and expectations. Those 
representations can have a radically different function: they can have motivational, 
axiological, or deontic nature; saying us not how the world is, was, will be; but how 
the world should be, how the organism would like the world to be. That is these 
representations can be used as goals driving the behavior. While an adaptive 
organism tends to adjust its epistemic representations (knowledge; beliefs) to the 
“reality”, to make their fidelity to the world as much as possible; on the opposite an 
effective goal-directed system try to adjust the “objective” external world to its 
endogenous representation! To change the world (through the “action” which in fact 
is goal-directed behavior) and make it the more close as possible to its internally 
creative mental picture (that could be a picture of something never already 
existing)! This really is a “mind”: the presupposition for hallucinations, delirium, 
desires, and utopias.  

Like “signs” are really signs when they can be used for deception and lie, not when 
they just are the non-autonomous index of reality, propagating from it; analogously, 
mental representations (that in fact - as any “representation” - are complex “signs”) 
are really there were they can be false and independently generated from reality. The 
use of this is not only prediction (by definition the future is currently not-true) but 
also more importantly for the purposive character of the behavior, for internal explicit 
goal representation. 1 

                                                           
1 In this perspective the “homeostatic” view of goals and of their cybernetic, feed-back 

machinery is a bit misleading. “Homeo-stasys” gives the idea of maintaining and restoring an 
existing state that can be disturbed; but in fact the cybernetic model and the notion of goal 
refer also to the instauration of states that have never been there! This is why the notion of 
“purposive” behavior is much better, although definitely founded on the same model.  
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1.1   Steps in Anticipation: Anticipatory Behaviors vs. Anticipatory 
Representations 

Any purposive behavior (in strict sense), any goal-directed system is necessarily 
anticipatory, since it is driven by the representation of the goal-state (set-point) and 
activated by its mismatch with the current state of the world [5] [6]. But not any 
anticipatory behavior, and even not necessarily any behavior based on anticipatory 
representations is goal-directed [2].  

As for the claim relative to the fact that not any anticipatory behavior [7] is based 
on explicit cognitive representations of future relevant/concerning events, that is on 
expectations, one should consider many instances of ‘implicit’ or merely behavioral 
anticipation or preparation, where the agent simply ‘reacts’ to a stimulus with a 
behavioral response (conditioned/learned or unconditioned/inborn) but in fact  
the response is functional, apt to some incoming event. The stimulus is some sort  
of ‘precursory sign’ and the response in fact is preparatory to the ‘announced’ 
event: 

 

Precursory stimulus   Preparatory behavior   Event 
 (e.g. noise)    (e.g. jump)  (e.g. approaching predator) 
 

In this case there is no explicit ‘mental’ representation of the future event. It is just 
a case of what we propose to call ‘merely anticipatory behavior’. A Stimulus St is 
exploited (thanks to selection or learning) as the precursor and the ‘sign’ of a 
following event Ev, and it is adaptive for the organism to respond immediately to St 
with a behavior which in fact is just the ‘preparation’ to the forthcoming Ev; the 
advantage is that the organism is ‘ready’, ‘prepared to’ Ev. But this does not require a 
‘mental’ anticipated explicit representation of Ev, that is the prediction, or better the 
‘expectation’ that Ev will occur. 

1.1.1   Surprise  
The first level of cognitive anticipation is the retrieval from memory of previous 
perceptual experience to be compared with the incoming perceptual input (some sort 
of procedural ‘prediction’). The use of this perceptual anticipation is multiple.  

On the one side it is applied not only to action but also to the processes of the 
world and it is for monitoring the course of the events. Its function seems to be 
detecting unusual events that might require additional epistemic processing (for 
example attention) or a fast reaction. One might claim that even before this clearly 
any form of pattern matching (where the pattern is either inborn or learned) is an 
implicit form of anticipation since it should be based on past experience and -more 
importantly- should fit some features of the environment, should be adapted to it, 
thus implicitly expecting and predicting given features in the environment [8]. 
Beyond this, there are true predictions activated by premonitory signs that 
‘announce’ a given event. 

The function of this systematic monitoring of the world is also of continuously 
updating and readjusting the world representation, to see whether predictions are 
correct and pertinent and the world can be ‘assimilated’ to current schemata or if it is 
the case to have some ‘accommodation’ of them (Piaget).  
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On the other side, the internal simulation of the next percept is fundamental for 
teleonomic behavior; during the action it is crucial to compare the perceptual 
feedback (both proprioceptive and external) with some representation of the expected 
state of the body and of the world. Indeed, we can argue that whenever an agent 
executes an action there is at least an automatic not intentional perceptive test on the 
success of the action. This idea is supported from empirical research and is a building 
block in neuro-psychology inspired computational models of action control (see [9] 
for a review): the importance of sensory feedback for the adjustment of the goal-
directed motor behaviour in phase of action execution. Only this match or mismatch 
(after the test) can say to the agent if there is something wrong. [10] 

This kinds of sensory-motor expectations already allows some form of ‘surprise’, 
the most peripheral one, just due to perceptual mismatch; a first-hand surprise. 
‘Surprise’ is the automatic reaction to a mismatch. It is:  

- a (felt) reaction/response 
- of alert and arousal 
- due to an inconsistency (mismatch, non-assimilation, lack of integration) between 

incoming information and our previous knowledge, in particular an actual 
prediction or a potential prediction; 

- invoking and mobilizing resources at disposal of an activity for a better epistemic 
processing of this 'strange' information (attention, search, belief revision, etc.), 

- aimed at solving the inconsistency, 
- and at preventing possible dangers (the reason for the alarm) due to a lack of 

predictability and to a wrong anticipation. 

The deeper and slower forms of surprise are due to symbolic representations of 
expected events, and to the process of information integration with previous long-
term knowledge. This is surprise due to implausibility, un-believability of the new 
information. [11] 

In this work we mainly focus on true predictions (based on inference, reasoning, 
mental models) (although they can also be mental ‘images’ in sensory format), and 
on their combination with explicit goals to produce the specific mental object called 
‘Expectation’.  

Low level ‘predictions’ are based on some form of ‘statistical’ learning, on frequency 
and regular sequences, on judgment of normality in direct perceptual experience, on the 
strength of associative links and on the probability of activation [12].  

High level predictions have many different sources: from analogy (“The first time 
he was very elegant, I think that he will be well dressed”) and, in general, inferences 
and reasoning (“He is Italian thus he will love pasta”), to natural laws, and – in social 
domain - to norms, roles, conventions, habits, scripts (“He will not do so; here it is 
prohibited”), or to “Theory of Mind” (“He hate John, so he will try to…”; “He 
decided to go in vacation, so he will not be here on Monday”). 

1.1.2   Proto-Expectations  
As for anticipatory-representation-based behaviors that are not strictly goal-directed 
(intention like) let us briefly discuss also a weaker and more primitive form of 
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‘expectation’; the anticipatory representation of the result of the action in 
‘Anticipatory Classifiers’ (AC) [13] [7]. In our interpretation, they are not simply 
‘predictions’. They represent a forerunner of true Expectations because the agent is 
not unconcerned, but it actively checks whether the prediction is true, because the 
result is highly relevant, since it satisfies (or non-satisfies) a drive, and provides a 
reward. But on the other side, for us – in their basic form- they can (and should) be 
distinguished from true ‘goal’ in the classical ‘purposive behavior’ sense [5] [6]. 

As we just said Expectations should be distinguished from various forms of mere 
anticipation and of behavioral preparation. These are the implicit and procedural 
forerunners of true cognitive expectations. These are pseudo-expectations: the agent 
behaves “as if” it had an expectation. Consider for example unconditioned salivation 
in Pavlov experiments. This is just a preparatory reaction for eating. It is based on a 
current stimulus eliciting a response that is useful (a condition) for a future behavior: 
preparation. Consider automatic coordination (either inborn or learned) in swallowing 
or walking, or in dodging a flying rock. Finally, consider our implicit and procedural 
trust that the ground will not sink under our feet, or that water is liquid, and snow 
cold, etc. In some case there is no representation at all; but simply a default behavior 
or procedure: the expectation is the lack of special control (ex, of the ground).  

However, in other cases there is the anticipatory representation internally 
generated, simulated, of a sensation (perceptual input) which will be compared with 
the actual one. This is very close to an Expectation (at least to its Prediction 
component); however, there is no necessarily an explicit real Goal initiating the 
process, searching for the action, and a purposive-behavior feedback, for monitoring 
and adjusting the action. A simple AC is enough. An AC can just remain a production 
rule, a classifier, something close to a stimulus-response link, that has also (in the 
right part) some representation of the predicted/learned result.  

 

Cond ==> Act + ExpResult 
 

This representation is compared against the actual result: if it matches (correct 
expectation) the links (between Cond and Act and between Act and ExpResult) will 
be reinforced; if it does not match (wrong prediction) the rule will be weakened.  

We assume that this (which for us too is the device underlying Skinner’s 
‘instrumental learning’ [1]) in not necessarily yet ‘purposive behavior’ and that the 
expected result (ExpResult) is not really a Goal (like in the TOTE model). The 
behavior is data/input driven, rule-based, not explicitly ‘purposive’, not top-down 
elicited and guided by the representation of its Goal, and cannot be creative and new, 
cannot start a problem-solving activity [2]. 

In this paper we will model only explicit anticipatory representations, and in 
particular Expectations in strong sense, and their role in a goal-directed mind and 
intentional behavior. We will present a Cognitive Anatomy of Expectations, their 
reduction in terms of more elementary ingredients: beliefs and goals; and their 
‘strength’. We will base several predictions on this analytical decomposition. We will 
present a theory of hope, worries, frustration, disappointment, relief, ready for 
artificial creature: could robots and software agents move from low level form of 
anticipation, surprise, etc. to explicit expectations and related mental states?  

Let us start by disentangling simple predictions from true expectations. 
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2   Cognitive Anatomy of Expectations  

2.1   Prediction vs. Expectation 

‘Expectation’ is not synonymous of ‘prediction’ or ‘forecast’; they have a common 
semantic core (a belief – more or less certain 2– about  the  future 3) and thus a 
partially overlapping extension. We consider a forecast [3] [4] as a mere belief about 
a future state of the world and we distinguish it from a simple ‘hypothesis’. The 
difference is in term of degree of certainty: a hypothesis may involve the belief that 
future p is possible while in a forecast the belief that future p is probable. A forecast 
implies that the chance threshold has been exceeded (domain of probability). 
According to the agent’s past experience or knowledge of physical or social rules and 
laws p should happen (in an epistemic sense). 4 

Putting aside the degree of confidence (we need a general term covering weak and 
strong predictions), one might say that EXPECTATION  PREDICTION, or better 
that both of them imply a representation of a possible future: a possible Belief about 
the future. But they also have different features. The primary difference is that in 
‘expectation’ (but not necessarily and conceptually in ‘prediction’) there is also a 
motivational component; some Goal of the subject X is involved. X is ‘concerned’: 
she didn’t just ‘predict’ and be indifferent to the event or mindless. Let’s carefully 
analyze this motivational and active component. 

2.1.1   Epistemic Goals and Activity 
First of all, X has the Goal to know whether the predicted event or state really 
happens (epistemic goal). She is ‘waiting for’ this; at least for curiosity. This concept 
of ‘waiting for’ and of ‘looking for’ is necessarily related to the notion of expecting 
and expectation, but not to the notion of prediction.  

Either X is actively monitoring what is happening and comparing the incoming 
information (for example perception) to the internal mental representation; or X is 
doing this cyclically and regularly; or X will in any case at the moment of the future 
event or state compare what happens with her prediction (epistemic actions) [14] [15]. 
Because in any case she has the Goal to know whether the world actually is as 
anticipated, and if the prediction was correct. Schematically 5: 

                                                           
2 In some Dictionary ‘Expectation’ is defined as: “1. a confident belief or strong hope that a 

particular event will happen” (Encarta® World English Dictionary © 1999 Microsoft 
Corporation). Notice also the positive connotation of the expected event (hope), while in fact 
also ‘negative or bad’ expectations are possible (worries). Notice also the second definition: 
“2. a mental image of something expected, often compared to its reality” where both the 
nature of an explicit mental representation, and the monitoring/epistemic activity are 
correctly identified.  

3 Also predictions and expectations about the past are possible but only in the sense that one 
will come in the future to know something about the past and has some hypothesis and wish 
on that. 

4 Consider for example the definition of ‘forecasting’: “to predict or work out something that is 
likely to happen…” (Encarta® World English Dictionary © 1999 Microsoft Corporation.)  

5 We will not use here a logical formalization; we will just use a self-explanatory and synthetic 
notation, useful for a schematic characterization of different combinations of beliefs and 
goals. For a real formalization of some of these mental attitudes see [4]. 
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Expectation x p  
Bel x at t’ that p at t” (where t” > t’) 
Goal x from t’ to t”’ KnowWhether x p or Not p at t” (t’”  t”) 

 

This really is ‘expecting’ and the true ‘expectation’. 

2.1.2   Content Goals  
This Epistemic/monitoring Goal is combined with Goals about p: the agent’s 
need, desire, or ‘intention that’ the world should realize. The Goal that p is true 
(that is the Goal that p) or the Goal that Not p. This is really why and in which 
sense X is ‘concerned’ and not indifferent, and also why she is monitoring the 
world. She is an agent with interests, desires, needs, objectives on the world, not 
just a predictor. This is also why computers, that already make predictions, do not 
have expectations6. 

When the agent has a goal opposite to her prediction, she has a ‘negative 
expectation’; when the agent has a goal equal to her prediction she has a ‘positive 
expectation’ (see § 3.1). To be true a Goal equal to the prediction in Expectation is 
always there, although frequently quite weak and secondary relatively to the main 
concern. In fact, when X predicts that p and monitors the world to know whether 
actually p, she has also the Goal that p, just in order to not disconfirm her 
prediction, and to confirm to be a good predictor, to feel that the world is 
predictable and have a sense of ‘control’. (see § 3.2). We are referring to 
predictability, that is, the cognitive component of self-efficacy [16]: the need to 
anticipate future events and the consequent need to find such anticipation validated 
by facts. This need for prediction is functional in humans in order to avoid anxiety, 
disorientation and distress. Cooper and Fazio [17] have experimentally proved that 
people act in order to find their forecasts (predictions) validated by facts and feel 
distressed by invalidation. 

3   Defining Expectations 

In sum, Expectations are axiological anticipatory mental representations, endowed 
with Valence: they are positive or negative or ambivalent or neutral; but in any case 
they are evaluated against some concern, drive, motive, goal of the agent. 

In expectations we have to distinguish two components:  

• On the one side, there is a mental anticipatory representation, the belief about a 
future state or event, the “mental anticipation” of the fact, what we might also 
call the pre-vision (to for-see).  

The format of this belief or pre-vision can be either propositional or imagery (or 
mental model of); this does not matter. Here just the function is pertinent. 

• On the other side, as we just argued, there is a co-referent Goal (wish, desire, 
intention, or any other motivational explicit representation). 

                                                           
6 For example, computers make weather ‘forecasts’ but it would be strange to say that they 

‘have expectations’ about the weather. Currently they are ‘unconcerned’. 
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Given the resulting amalgam these representations of the future are charged of 
value, their intention or content has a ‘valence’: it is positive, or negative, and so on.  

• Either, the expectation entails a cognitive evaluation [18]. 

In fact, since the realization of p is coinciding with a goal, it is “good”; while if 
the belief is the opposite of the goal, it implies a belief that the outcome of the 
world will be ‘bad’. 

• Or the expectation produces an implicit, intuitive appraisal, simply by activating 
associated affective responses or somatic markers [18]; or both; 

• Or the expected result will produce a reward for the agent, and – although not 
strictly driving its behavior, it is positive for it since it will satisfy a drive and 
reinforce the behavior.7 

We analyze here only the Expectations in a strong sense, with an explicit Goal; but 
we mentioned Expectations in those forms of reactive, rule-based behaviors, first in 
order to stress how the notion of Expectation always involves the idea of a valence 
and of the agent being concerned and monitoring the world; second, to give an idea of 
more elementary and forerunner forms of this construct. 

3.1   Positive and Negative Expectations 

Expectation can be: 

• positive (goal conformable): (Bel x pt’)t<t’ & (Goal x p t’)  
• negative (goal opposite): (Bel x p t’)t<t’ & (Goal x ¬pt’) 
• neutral: (Bel x pt’)t<t’ & ¬(Goal x pt’) & ¬(Goal x ¬pt’) 
• ambivalent: (Bel x p t’)t<t’ & (Goal x pt’) & (Goal x ¬pt’) 

3.2   To Be Happy or to Be a Good Predictor? 

To be more subtle, given the Epistemic Goal that we have postulated in any true 
Expectation, one might say that in negative expectations always there is a minor 
conflict, since X on the one side desires, wishes that p [G1: (Goal x p)], but since she 
is induced (by some evidence or experience) to forecast that Not p, she also has the 
opposite goal [G2: (Goal x ¬p)]. However, this goal usually is not so relevant as the 
first objective, since it is just in order to confirm X to be a good predictor or that the 
world is predictable enough; it is just a by-product of control mechanisms and meta-
goals. If the negative expectations result to be wrong, X is happy as for G1, but G2 is 
frustrated. Vice versa, if the negative expectation has been right, X is unhappy as for 
G1, but can have some ‘comfort’ because at least she is a good predictor, expert of the 
world. In positive expectations, since the G1 and G2 converge (that is X has the Goal 
that p both for intrinsic reasons, and for confirming her prediction and competence), 
when the prediction is wrong the frustration is appraised without compensation. 

                                                           
7 We mention this because it is the case of proto-expectations or expectations in ‘Anticipatory-

Classifiers’ based behaviors, strictly conceived as reactive (not really goal-driven) behaviors, 
but based on anticipatory representation of the outcomes. 
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4   Expectations and Intentional (Goal-Driven) Behavior 

Intentional and in general goal-driven action requires and implies Expectations in 
strict sense, but not the other way around. Expectations are broader that intentional 
(or goal-directed) actions, they are not necessarily related to action; since even 
goals are not necessarily related to action.8 First of all, there are Expectations also 
for goals we are not actively pursuing. Second, not all goals imply expectations. 
Inactive goals, or already realized goals, or discarded goals do not bring any 
expectation.  

4.1   Expectation Without Intention and Pragmatic Action 

Only active and non-realized goals build Expectations. This covers two kinds of 
goals:  

A) Active achievement goals 9: goals to be achieved by the subject’s action; to be 
brought about; it is not simply a matter of waiting for them. 

B) Self-realizing achievement goals; the agent has nothing to do for achieving 
them (X has just to wait) since they are realized by other agents and she can just 
delegate [19] this realization to them. The delegated ‘agent’ can either be “nature” 
and some natural process, and usually X can do nothing at all because the desired 
state only depends on the world (“tomorrow be a sunny day”; “to grow and become a 
woman”); or can be a social agent Y like X, acting in a common world. For example, 
Y stops the bus as desired by X, and X relies on this. 

Having such a goal may perfectly produce an Expectation (positive or negative) 
when there also is a prediction about the desired event. X is just expecting, while 
doing nothing for realizing the Goal, but doing something for monitoring the world. If 
I wish that tomorrow will be sunny (since I plan for a trip in the country) and I believe 
it (positive expectation: hope), I can do nothing for it being sunny, but when I wake 
up in the morning I check whether it is sunny or not. Let’s call these ‘passive 
expectation’ while calling ‘active expectations’ those related to intentional pragmatic 
actions and active pursuit of the Goal. Obviously a passive expectation can become an 
active one during the evolution of the events. 

4.2   Expectations in Intentions 

As we said, no Intention is possible without Expectation, but this is not a new 
irreducible primitive, to be added for example in the BDI (Beliefs, Desires, 
Intentions) framework [20] [21]. It can and must be recollected to beliefs and goals. 
And it is a molecule, not a set of atoms; a mixed attitude: in part epistemic, in part 
 

                                                           
8    Although we are pushed – especially in English – to conceive ‘goals’ as ‘objectives’, 

  ‘targets’ of some action. 
9  For a complete analysis we should also take into account the distinction between achievement  

  and maintenance goals (see [19]). 
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motivational.10 In fact in order to deliberate to act and to commit to a given course of 
action [23] one should believe a lot of things (that it is to be preferred, that is not self-
realizing or already realized, to have a plan, to be able and in condition for executing 
the actions, etc.). Among those beliefs supporting intentions [24] some crucial ones 
are the beliefs about the expected effects of the actions (that motivated its choice) and 
the expected achievement. One cannot intend to do action α in order to achieve p if 
she does not believe that after action α is executed p will be true. Thus any Intention 
presupposes and entails a ‘positive’ Expectation. 

More precisely, also a weak positive expectation is compatible with intentional 
behavior. At least one has not to believe that ¬p; otherwise her act would be 
completely irrational (subjectively useless). Thus there is a Weak Expectation, when 
X has the Goal (and in this case the Intention) that p and does not believes that not p 
in the future: ¬ (Bel x ¬ (p t’))t<t’ & (Goal x p t’);  

X is ‘attempting’, intentionally trying to realize p.  
In any case in intentional action it is excluded a negative certain expectation 

(Bel x ¬ (p t’))t<t’ & (Goal x p t’) 
We mean: acting with the certainty to fail. It would be fully irrational. 

5   The Quantitative Aspects of Mental Attitudes and of Their 
Emergent Configurations 

As we have just seen, decomposing in terms of beliefs and goals is not enough. We 
need ‘quantitative’ parameters. Frustration and pain have an intensity, can be more or 
less severe; the same holds for surprise, disappointment, relief, hope, joy, ... Since 
they are clearly related with what the agent believes, expects, likes, pursues, can we 
account for those dimensions on the basis of our (de)composition of those mental 
states, and of the basic epistemic and motivational representations? We claim so. 

Given the two basic ingredients of any Expectation (as we defined it as different 
from simple forecast or prediction) Beliefs + Goals, we postulate that: 

P1: Beliefs & Goals have specific quantitative dimensions; that are basically 
independent from each other. 

Beliefs have strength, a degree of subjective certainty; the subject is more or less 
sure and committed about their content [25].  

Goals have a value, a subjective importance for the agent. 
This gives us four extreme conditions (but in fact those variations are continuous 

and one should model precisely this continuity): 

                                                           
10 In AI there have been other attempt to insert Expectations among the necessary mental 

ingredients of a BDI like agent [22]. The difference is not only that we derive several 
“psychological” assumptions and consequences from our model, but also that we do not 
introduce Expectations as an additional primitive. We prefer to build these mental states on 
former ingredients (beliefs and goals/intentions) in order to have mental states that preserve 
both properties, epistemic and conative. Expectations have a specific functional role in 
practical reasoning that is better understood when those mental states are defined in a 
compositional fashion. 
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BELIEF

high credibility | low credibility
(pretty sure) | (perhaps)

high value |
(very important) 1 | 2

GOAL  ___________________________________ |_____________
low value |
(marginal) 3 | 4
____________________________________|______________  

To simplify, we may have very important goals combined with uncertain 
predictions; pretty sure forecasts for not very relevant objectives; etc.  

Thus, we should explicitly represent these dimensions of Goals and Beliefs: 

Bel
%

 x pt;  Goal
%

 x pt 

Where % in Goals represents their subjective importance or value; while in Beliefs 
% represents their subjective credibility, their certainty. 

An Expectation (putting aside the Epistemic Goal) will be like this:  
 

Bel
%

 x pt & Goal
%

 x [¬] pt 
 
The subjective quality of those “configurations” or macro-attitudes will be very 

different precisely depending on those parameters. Also the effects of the invalidation 
of an expectation are very different depending on: 

a) the positive or negative character of the expectation; 
b) the strengths of the components. (See § 6.) 
 

We also postulate that:  
 

P2: The dynamics and the degree of the emergent configuration, of the Macro-
attitude are strictly function of the dynamics and strength of its micro-
components. 

 

For example anxiety will probably be greater in box 2 than in 1, inferior in 4, 
nothing in 3. Box 2 (when the expectation is ‘positive’) produces an intense hope; and 
so on. Let us characterize a bit some of these emergent macro-attitudes. 

5.1   Hope and Fear 

‘Hope’ is in our account [3] [4] a peculiar kind of ‘positive expectation’ where the 
goal is rather relevant for the subject while the expectation (more precisely the 
prediction) is not sure at all but rather weak and uncertain. 

 

Bel
low

 x pt & Goal
high

 x pt 
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We may also have – it is true - ‘strong hope’ but we explicitly call it ‘strong’ 
precisely because usually ‘hope’ implies low confidence and some anxiety and 
worry. In any case, ‘hope’ (like explicit ‘trust’) can never really be subjectively 
‘certain’ and absolutely confident. Hope implies uncertainty. 

Correspondingly one might characterize being afraid, ‘fear’, as an expectation of 
something bad, i.e. against our wishes: 

 

Bel
%

 x pt & Goal
%

 x ¬pt 
 

but it seems that there can be ‘fear’ at any degree of certainty and of importance.11 
Of course, these representations are seriously incomplete. We are ignoring their 

‘affective’ and ‘felt’ component, which is definitely crucial. We are just providing 
their cognitive skeleton [26]. 

5.2   Expecting Artificial-Agents 

One reason for such a quite abstract, essential (and also incomplete) analysis is that 
this can be formalized and implemented for artificial creatures. Computers and robots 
can have different kinds of Expectations: low level perceptual expectations for 
monitoring the world; proto-intentions for monitoring the action and reinforcing it by 
learning; and high level explicit expectations. They are in fact able of making 
predictions on the physical world and on the other (also human) agents. They can do 
this on various bases (from inference and analogy to statistical learning, from laws 
and norms to mind reading and plan recognition) as we do; and they can have true 
‘purposive’ behavior, intentional actions guided by pre-represented goals. Thus, they 
can entertain true Expectations. It would be necessary to also represent and use the 
strength and credibility of Beliefs (based on sources and evidences) [24] and the value 
of the Goals (on which preferences and choices should be based). Given this and 
various kinds of Epistemic actions, one might model surprise, disappointment, relief, 
hope, fear, etc. in robots and software agents.  

Which should be the advantage of having machines anxious like us?  
Seriously speaking, we believe that these reactions (although unfelt and 

incomplete) would be very adaptive and useful for learning, for reacting, for 
interacting with the user and with other agents. (See § 8.) 

5.3   Analytical Decomposition and the Gestalt Character of Mental Attitudes 

Moreover, a hard problem for symbolic (and analytic) cognitive science deserves to 
be underlined: the mental Gestalt problem. Disappointment, expectation, relief, etc. 

                                                           
11 To characterize fear another component would be very relevant: the goal of avoiding the 

foreseen danger; that is, the goal of Doing something such that Not p. This is a goal 
activated while feeling fear; fear ‘conative’ and ‘impulsive’ aspect. But it is also a 
component of a complete fear mental state, not just a follower or a consequence of fear. This 
goal can be a quite specified action (motor reaction) (a cry; the impulse to escape; etc.); or a 
generic goal ‘doing something’ (“my God!! What can I do?!”) [27]. The more intense the 
felt fear, the more important the activate goal of avoidance [26].  
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seem to be unitary subjective experiences, typical and recognizable "mental states"; 
they have a global character; although made up of (more) atomic components they 
form a gestalt. To use again the metaphor of molecules vs. atoms, the molecule (like 
‘water’) has emergent and specific properties that its atoms (H & O) do not have. 
How can we account for this gestalt property in our analytic, symbolic, 
(de)composition framework? We have implicitly pointed out some possible solution 
to this problem. For example: 

− A higher-level predicate exists (like ‘EXPECT’) and one can assume that 
although decomposable in and implying specific beliefs and goals, this 
molecular predicate is used by mental operations and rules.  

− Or one might assume that the left part of a given rule for the activation of a 
specific goal is just the combined pattern: belief + goal; for example, an 
avoidance goal and behavior would be elicited by a serious negative expectation 
(and the associated ‘fear’), not by the simple prediction of an event.  

− One might assume that we "recognize" - or better “individuate” (and 
“construct”)- our own mental state (thanks to this complex predicate or some 
complex rule) and that this "awareness" is part of the mental state: since we 
have a complex category or pattern of "expectation" or of "disappointment" we 
recognize and have (and feel) this complex mental state.  

This would create some sort of "molecular" causal level. However, this might seem 
not enough in order to account for the gestaltic subjective experience, and reasonably 
something additional should be found in the direction of some typical "feeling" 
related to those cognitive configurations. Here we deal with the limits of any 
disembodied mind (and model) (See § 8.). 

6   The Dynamic Consequences of Expectations 

As we said, also the effects of the invalidation of an expectation are very different 
depending on: a) the positive or negative character of the expectation; b) the strengths 
of the components. Given the fact that X has previous expectations, how this changes 
her evaluation of and reaction to a given event? 

Invalidated Expectations 
We call invalidated expectation, an expectation that results to be wrong: i.e. while 
expecting that p at time t’, X now beliefs that NOT p at time t’. 

 (Bel x pt’)t<t’ < == > (Bel x ¬pt’)t”>t 

This crucial belief is the ‘invalidating’ belief.  

• Relative to the goal component it represents “frustration”, “goal-failure” (is 
the frustrating belief): I desire, wish, want that p but I know that not p. 

FRUSTRATION: (Goal x pt’) & (Bel x ¬pt’) 
• Relative to the prediction belief, it represents ‘falsification’, ‘prediction-

failure’: 

INVALIDATION: (Bel x pt’)t<t’& (Bel x ¬pt’)t”>t 
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 (Bel x pt’)t<t’ represents the former illusion or delusion (X illusorily believed at time t 
that at t’ p would be true).  

This configuration provides also the cognitive basis and the components of 
“surprise”: the more certain the prediction the more intense the surprise. Given 
positive and negative Expectations and the answer of the world, that is the frustrating 
or gratifying belief, we have: 

    P   ¬P 
Bel x p & Goal x p 

 
no surprise + achievement surprise + frustration 

   disappointment 

Bel x ¬p & Goal x p 
 

surprise + non-frustration   
    relief 

no surprise + frustration 

6.1   Disappointment 

Relative to the whole mental state of “positively expecting” that p, the 
invalidating&frustrating belief produces “disappointment” that is based on this basic 
configuration (plus the affective and cognitive reaction to it): 

DISAPPOINTMENT: (Goal% x p t’)t &t’ & (Bel% x p t’)t & (Bel% x ¬p t’)t’ 

At t X believes that at t’ (later) p will be true; but now – at t’ – she knows that Not 
p, while she continues to want that p. Disappointment contains goal-frustration and 
forecast failure, surprise. It entails a greater sufferance than simple frustration [28] 
for several reasons: (i) for the additional failure; (ii) for the fact that this impact 
also on the self-esteem as epistemic agent (Badura’s “predictability” and related 
“controllability”) and is disorienting; (iii) for the fact that losses of a pre-existing 
fortune are worst than missed gains (see below), and long expected and surely 
expected desired situation are so familiar and “sure” that we feel a sense of  
loss.  

The stronger and well grounded the belief the more disorienting and restructuring 
is the surprise (and the stronger the consequences on our sense of predictability). The 
more important the goal the more frustrated the subject. 

In Disappointment these effects are combined: the more sure the subject is about 
the outcome & the more important the outcome is for her, the more disappointed the 
subject will be.  

• The degree of disappointment seems to be function of both dimensions and 
components 12. It seems to be felt as a unitary effect. 

“How much are you disappointed?” “I’m very disappointed: I was sure to succeed” 
“How much are you disappointed?” “I’m very disappointed: it was very important for me” 
“How much are you disappointed?” “Not at all: it was not important for me” 
“How much are you disappointed?” “Not at all: I have just tried; I was expecting a failure”. 

                                                           
12 As a first approximation of the degree of Disappointment one might assume some sort of 

multiplication of the two factors: Goal-value * Belief-certainty. Similarly to ‘Subjective 
Expected Utility’: the greater the SEU the more intense the Disappointment. 
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Obviously, worst disappointments are those with great value of the goal and high 
degree of certainty. However, the surprise component and the frustration component 
remain perceivable and function of their specific variables.  

6.2   Relief  

Relief is based on a ‘negative’ expectation that results to be wrong. The prediction is 
invalidated but the goal is realized. There is no frustration but surprise. In a sense 
relief is the opposite of disappointment: the subject was “down” while expecting 
something bad, and now feel much better because this expectation was wrong. 

RELIEF: (Goal x ¬pt’) & (Bel x pt’) & (Bel x ¬pt’)13 
 

• The harder the expected harm and the more sure the expectation (i.e. the more 
serious the subjective threat) the more intense the ‘relief’.  

More precisely: the higher the worry, the treat, and the stronger the relief. The 
worry is already function of the value of the harm and its certainty.  

Analogously, joy seems to be more intense depending on the value of the goal, but 
also on how unexpected it is. 

A more systematic analysis should distinguish between different kinds of surprise 
(based on different monitoring activities and on explicit vs. implicit beliefs), and 
different kinds of disappointment and relief due to the distinction between 
‘maintenance’ situations and ‘change/achievement’ situations. In fact expecting that a 
good state will continue is different from expecting that a good state (that currently is 
not real) becomes true; and it is different worrying about the cessation of a good state 
vs. worrying about the instauration of a bad event. Consequently, the Relief for the 
cessation of a painful state that X expected to continue, is different from the Relief for 
the non-instauration of an expected bad situation. Analogously: the Disappointment 
for the unexpected non-prosecution of a welfare state (loss) is psychologically rather 
different from the non-achievement of an expected goal.  

FORECAST that P 

     currently P currently Not P
    (expected  (expected 
     continuation)                              instauration)

GOAL P     Disappointment             Disappointment
loss 1 missed gain  2

ACTUALLY
Not P

GOAL Not P Relief             3  Relief           4
cessation, alleviation escaped danger

 

                                                           
13 Or – obviously - (Goal x pt’) & (Bel x ¬pt’) & (Bel x pt’). 
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More precisely (making constant the value of the Goal) the case of loss (1) is 
usually worst than (2), while (3) is better than (4). This is coherent with the theory of 
psychic suffering [28] that claims that pain is greater when there is not only 
frustration but disappointment (that is a previous Expectation), and when there is 
‘loss’ (1), not just ‘missed gains’ (2), that is when the frustrated goal is a maintenance 
goal not an achievement goal.  

7   The Implicit Counterpart of Expectations 

Since we introduce a quantification of the degree of subjective certainty and 
reliability of Belief about the future (the forecast) we get a hidden, strange but nice 
consequence. There are other implicit opposite beliefs and thus implicit Expectations.  

For “implicit” beliefs we mean here a belief that is not ‘written’, contained in any 
‘data base’ (short term, working, or long term memory) but is only potentially known 
by the subject since it can be simply derived from actual beliefs. For example, while 
my knowledge that Buenos Aires is the capital city of Argentina is an explicit belief 
that I have in some memory and I have just to retrieve it, on the contrary my 
knowledge that Buenos Aires is not the capital city of Greece (or of Italy, or of India, 
or of …) is not in any memory, but can just be derived (when needed) from what I 
explicitly know. Until it remains implicit, merely potential, until is not derived, it has 
no effect in my mind; for example, I cannot perceive possible contradictions: my mind 
is only potentially contradictory if I believe that p, I believe that q, and p implies Not 
q, but I didn’t derive that Not q. 

Now, a belief that “70% it is the case that p”, implies a belief that “30% it is the 
case that Not p”14. This has interesting consequences on Expectations and related 
emotions. The Positive Expectation that p entails an implicit (but sometime even 
explicit and compatible) Negative Expectation: 
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This means that any hope implicitly contains some fear, and that any worry 
implicitly preserves some hope. But also means that when one get a ‘relief’ because a 
serious threat strongly expected is not arrived and the world is conforming to her 
desires, she also get (or can get) some exultance. It depends of her focus of attention 
and framing: is she focused on her worry and evanished treat, or on the unexpected 
achievement? Vice versa when one is satisfied for the actual expected realization of 
an important goal, she also can get some measure of relief while focusing on the 
implicit previous worry. 

                                                           
14 We are simplifying the argument. In fact it is possible that there is an interval of ignorance, 

some lack of evidences; that is that I 45% evaluate that p and 30% that Not p, having a gap 
of 25% neither in favor of p nor of Not p [29] [30].  
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Not necessarily at the very moment that one feels a given emotion (for example 
fear) she also feels the complementary emotion (hope) in a sort of oscillation or 
ambivalence and affective mixture. Only when the belief is explicitly represented and 
one can focus – at least for a moment – her attention on it, it can generate the 
corresponding emotion.  

8   Concluding Remarks 

This analysis obviously is very simplistic, and reductionist. It misses a lot of important 
psychological aspects. As we mentioned, an important missed point is the fact that those 
mental states (especially when ‘affective’) are usually joined with bodily activation and 
feeling components, and these components –with their intensity- shape the whole 
subjective state and determine the nature of future reactions. Moreover, other cognitive 
aspects are elicited by and combined with those configurations. For example, in 
worrying the activity of monitoring, waiting, be more or less anxious. Now the degree 
of relief also depends on the presence and intensity of those somatic components and of 
those activities (Was the subject very stressed, feeling her stomach contracted? … Was 
she continuously checking and checking?) . 

We also did not consider the important interaction between the two basic 
components and their strength. For example, there might be an influence of the goal 
on the belief. In ‘motivated reasoning’ [31], in wishful thinking we tend to believe 
more agreeable (goal conformable) beliefs and we defend ourselves from bad (goal 
opposite) beliefs. In Expectations we precisely have goal-related beliefs, thus – with 
an important value of the goal – we might be prone to go against the independent 
sources and evidences of our beliefs and change their credibility in conformity with 
their desirability. In other words, our predictions might be influenced by the value of 
the expected outcome. Vice versa, in some psychological attitude or personality one 
might reduce the concern, the value of the goal just in order to not feel so bad in case 
of failure, since she mainly focuses such an eventuality. 

However, this simplification is just a necessary, preliminary step: nothing prevents 
AI and ALIfe from enriching this skeleton with more mussels and blood. This anatomy 
is necessary for identifying basic structural relationships between mental states, and – in 
this case- the crucial (sometimes hidden) role of expectations in mind.  

Notice that –even with such a simplification - several nice predictions follow from 
this cognitive anatomy. For example, we predict that Disappointment implies 
Surprise, but not the other way around; or that Hope implies a Prediction, but not vice 
versa. We can predict that there is a contradiction between ‘to be frightened of’ 
something and be disappointed if it does not happen; or between forecasting that p 
and be surprised when it actually happens; or between ‘hoping’ that p and feeling 
down if it happens. We predict that a strong hope, when the prediction is realized, 
entails satisfaction, realization; while in the opposite case entails frustration, 
disappointment, and pain.  

Will we have the satisfaction of surprising our artificial Agent, our computer or our 
domestic robot? And possibly even of disappointing them (as they frequently 
disappoint us)? We think so, and – as we said – this objective has been an additional 
reason for being schematic. Computers and robot can have Expectations and one 
might model robotic surprise, disappointment, relief, hope, fear, etc. 
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Of course, to really having artificial fear or hope one should reproduce or simulate 
also the ‘affective’ component, that is the ‘feeling’, by providing to computers, 
artificial agents, and robots a ‘body’ not simply a hardware. This means introducing 
some form of proprioception and enteroception, pain and pleasure, feeling what 
happens to the body and its internal states and events, its automatic reactions to the 
world; and modeling the impact of these signals (motions) on the ‘mental’ 
representations and activity [26]. This is still quite far to be achieved. This is why we 
can have for the moment only the ‘cold’ counterpart of those affective states, just 
reduced to the mental representations on which they are based.  

However, the objective remains that of building some (useless?) anxious machine. 
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Abstract. This paper presents a cognitive model for an autonomous
agent based on emotional psychology and Bayesian programming. A
robot with emotional responses allows us to plan behaviour in a dif-
ferent way than present robotic architectures and provides us with a
method of generating a new interface for human/robot interaction. The
use of emotional modules means that the emotional state of the robot
can be obtained directly and, therefore, it is relatively simple to ob-
tain a virtual face that represents these emotions. An autonomous agent
could have a model of the environment to be able to interact with the
real universe where it is working. It is necessary to consider that any
model of a real phenomenon will be incomplete due to the existence of
uncertain, unknown variables that influence the phenomenon. Two ex-
ample arquitectures are proposed here. Using these architectures some
experimental data, to verify the correctness of this approach, is provided.

Keywords: Cognitive Models, Autonomous Agents, Bayesian Program-
ming, Bayesian Units.

1 Introduction

Humanizing computer interfaces has long been a major goal of both computer
users and programmers [1]. Humanizing has at two main advantages, firstly
that of making interfaces easier and more comfortable to use and secondly of
giving interfaces a more human appearance [2]. The human face is one of the
most compelling components of a human-like interface. Facial expressions are
an important channel of nonverbal communication. Emotional expressions over
time may make people’s faces descriptive of their personalities and their state
of mind. There are some papers that study the importance of the face in the
interaction and communication between people [3] [4].

On the other hand, an autonomous agent could have a model of the en-
vironment to be able to interact with the real universe where it is working.
Nevertheless, it is necessary to consider that any model of a real phenomenon
will be incomplete due to the existence of uncertain, unknown variables that
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influence the phenomenon. The effect of these variables is to cause the model
and the phenomenon to never have the same behaviour. Although reasoning
with incomplete information continues to be a challenge for autonomous agents,
learning and probabilistic inference tries to solve this problem using a formal
base. Bayesian programming [5] [6] [7] is a formalism, based on the principle of
the Bayesian theory of probability and is proposed as a solution when dealing
with problems relating to uncertainty and incompleteness.

Certain parallelisms exist between this kind of programming and the struc-
ture of living organisms, as shown in a theoretical way in [6]. In this way, natural
evolution provided living beings with both the pertinent variables, and the ade-
quate decomposition and parametric forms.

2 Fusing with Bayesian Programming

As commented above, it is necessary to bear in mind that any model of a real
phenomenon will always be incomplete due to the permanent existence of un-
known, hidden variables that will influence the phenomenon. These variables
cause the model and the phenomenon to adopt different behaviour. An artificial
system must perceive, infer, decide and act using an incomplete model of the
environment. Bayesian inference and learning try to solve this problem using a
formal theory. Bayesian programming is a new formalism, and it is proposed as a
solution when dealing with problems relating to uncertainty and incompleteness.

A Bayesian program is defined as a means of specifying a family of probability
distributions. It is made up of different components (see figure 1).

Program

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Description

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Spec (π)

⎧⎪⎪⎨⎪⎪⎩
Pertinent variables
Decomposition

Forms

{
Parametric
Programs

Identification based on Data(δ)
Question

Fig. 1. Structure of a Bayesian program

The first is a declarative component where the user defines a description.
The purpose of a description is to specify a method to compute a joint distribu-
tion on a set of variables given a set of experimental data (δ) and preliminary
knowledge (π). The second component is of a procedural nature and consists of
using a previously defined description with a question. A question is obtained by
partitioning the variables into three groups: Searched, Known and Unknown,
computing a probability distribution of the form P (Searched|Known). Answer-
ing this question consists in deciding a value for the variable Searched according
to P (Searched|Known) using the Bayesian inference rule:

P (Searched|Known ⊗ δ ⊗ π) =
1∑ × ∑

Unknown

P (Searched ⊗ Unknown ⊗ Known|δ ⊗ π) (1)
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Considering both the system decomposition in modules and the fusion of
information a definition of Bayesian processing Unit is proposed, based on the
Bayesian programming formalism. A processing unit u is a description that de-
fines this probabilistic distribution: P (I ⊗ S ⊗ O ⊗ |u), where I is an input
variable that specifies the information to be processed, S is a state variable that
represents the situation of the processing unit and O is an output variable that
specifies the newly generated information.

The variables I, S and O are allowed to be atomic and can be made up
of some random variables that will be assumed as discrete. The decomposition
of this probabilistic distribution and its form is not limited. In this way, the
decomposition of the variable or input variables can be defined using queries to
other processing units. Specific learning is not specified in order to allow the
system designer to use the method that he considers to be more appropriate.
The variable state S represents the situation in a processing unit. For example,
in reactive behaviours, where the input information directly provides the output
information, the shape of the probability of this variable will tend to be uniform.
In more complex behaviours S can take more complex shapes depending on the
information to be processed and the desired output.

3 Proposed Architectures

An emotion is an affective state, a subjective reaction to the environment that
shows internal feelings, motivations, wishes, needs and objectives. Emotions and
the actions linked to them are an essential part of an organism’s relation with its
environment. They can be the means by which a person appraises the significance
of stimuli and prepares the body for an appropriate response [8]. The core of
an emotion is readiness to act in a certain way [9]. In this way, emotions can
interrupt ongoing action; they also prioritise certain kinds of social interaction.

3.1 Complementary Architecture to Obtain a Human/Robot
Interface

In the model proposed here an autonomous agent, which can have a traditional
management system, is able to plan a set of objectives. With this system and us-
ing the principles of the emotional bases previously commented, a subconscious
model that combines the emotions provided by the robot, is defined. These emo-
tions depend on the condition of all variables (sensors, laser, batteries...) and the
previous knowledge of the environment. An emotion can make the robot change
its behaviour in a reactive or deliberate way.

In our case we have a previous navigation system that is able to deliver
correspondence under petition [10]. This system will be expanded with four
emotional modules to help achieve the tasks and provide an effective mechanism
for building an interface with the characteristics outlined above.

Emotional Modules. An emotional module is a Bayesian processing unit that
interacts with other emotional modules, with the traditional system for the res-
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olution of objectives or with the robot using an interface connected directly to
the robot. An emotional module usually has a corresponding human emotion. It
is advisable to combine all the emotional modules using a Bayesian unit that we
call subconscious. This unit is responsible for collecting all the emotional charge
of the robot in a given moment.

As previously stated, an emotional module can act directly with the robot
actuators. However, the conscious system must be connected to the robot to
execute tasks. A Bayesian execution unit is proposed to be in charge of controlling
the robot. This unit will carry out the tasks depending on the emotional values
of the robot and the present piece of work to be completed.

Most emotional modules have a reactive base, this is the reason why they will
not need a state variable. In our system (see figure 2a) we use the following mod-
ules: a dissatisfaction module (defined to show the probability that the robot has
a problem in the execution of its task), a tiredness module (defined as a protec-
tion system), a depression module that determines when work conditions are not
suitable (for example, when sensor readings provide low reliability or tiredness
levels are excessively high). It can produce a decrease in movement intensity or
even halt the robot. And finally a fear module (to maintain the integrity of the
robot and to take reactive action to avoid collisions and obstacles). This mod-
ules are grouped using a subconscious module (that determines the state of the
robot and is used in the interface development). In order to execute an action
we require an execution module. This is a system that determines which actions
are more probable to execute. This probability depends on the outputs of the
emotions that interact with the system as well as the actions proposed by the
traditional system. We briefly will describe some of them:

Fear. The main function of this module is to maintain the integrity of the robot
and to take reactive action to avoid collisions and obstacles. Input variables
are the action to be executed in this moment (Ac) (it must be provided by the
conscious module, it is made up of variables that describe robot actuators, in this
case V rot for rotational velocity and V trans for transactional velocity) and the
readings from sensors (P s). Starting from these variables, the module obtains
an indication of the robot’s degree of fear (V mie) and the action to be executed
(Amie) in order to avoid any actions that could damage the robot.

In this way, the following decomposition is defined with these variables:

P (P s ⊗ Ac ⊗ V mie ⊗ Amie|π) =
P (P s|π) × P (Ac|P s ⊗ π)×P (V mie|Ac ⊗ P s ⊗ π)×P (Amie|V mie ⊗ Ac ⊗ P s ⊗ π)=
P (P s|π) × P (Ac|π) × P (V mie|Ac ⊗ P s ⊗ π) × P (Amie|V mie ⊗ π)

Initially the distribution of the sonar readings P (P s|π) and the distribution
of the actions to be executed P (Ac|π) are unknown. These terms are uniform
distributions. P (V mie|Ac ⊗ P s ⊗ π) is specified as a table that defines the fear
degree of the robot from the sensor values and the action developed. Finally,
P (Amie|V mie ⊗ π) is a table that represents the action to be taken depending
on the fear degree obtained.
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Fig. 2. a) Complementary Architecture. Conscious module is a classic system for the

interaction of the robot with the world. Subconscious module combines the emotional

system modules determining the present state of the robot. A dissatisfaction module is

defined to show the probability (V ins) that the robot has a problem in the execution

of its task. There are two input variables that establish this probability: completed

task rate (Cc) and task completion problems (Oc). Tiredness is defined as a protection

system. In this way, the function of this unit is to calculate the condition of the robot

from the time of continuous execution (Pt) and the state of the batteries (P bat). The

unit shows if the robot needs to return to the charge station in order to recharge its

batteries or if the robot must restrict its movements (V can). The depression module

determines when work conditions are not suitable, for example, when sensor readings

provide low reliability or tiredness levels are excessively high. Knowing the system

reliability (Fc) and tiredness level (V can) the robot will calculate the degree of de-

pression (V dep) and the action to be taken (Adep).A fear module is used to maintain

the integrity of the robot and to take reactive action to avoid collisions and obstacles.

Input variables are the action to be executed in this moment (Ac) and the readings

from sensors (P s). Starting from these variables, the module obtains an indication of

the robot’s degree of fear (V mie) and the action to be executed (Amie) in order to

avoid any actions that could damage the robot. Finally, we use an execution module in

order to determine which actions are more probable to be execute. b) Architecture for

an Autonomous System. The Dissatisfaction, Tiredness, Depression and Fear modules

work in the same way as the previous architecture. The Satisfaction module includes

all objectives that the robot must perform. The Controller module manage the robot

from the emotional modules, it indicates the actions to execute (A) from the results of

the emotional modules and the previous an current state of the robot.

The specification of tables for some terms of the module decomposition pro-
vides some advantages. These advantages are obtained when we specify the prob-
lem to solve in an inverse way than usual. Given an output, any possible input
that generated it, is reasoned. Inverse programming has two main advantages:
it is robust in unexpected situations (an output will always be obtained even
in not considered cases) and taking into account conditional independence the
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number of cases increases in a lineal way with the number of variables. More
details can be found in [5].

Execution Module. As commented above, emotional modules and the tradi-
tional system can interact with the robot actuators. Therefore, it is necessary
to define a system that determines which actions are more probable to execute.
This probability depends on the outputs of the emotions that interact with the
system V mie, Amie (for fear) and V dep, Adep (for depression) as well as the
actions proposed by the traditional system Ac.

In this way, this joint distribution is defined with the following decomposition:

P (V dep ⊗ Adep ⊗ V mie ⊗ Amie ⊗ AC ⊗ π) =
P (V dep|π) × P (Adep|V dep ⊗ π) × P (V mie|Adep⊗ V dep ⊗ π)×
P (Amie|V mie ⊗ Adep ⊗ V dep ⊗ π) × P (Ac|Amie ⊗ V mie ⊗ Adep⊗ V dep ⊗ π)×

= P (V dep|π)× P (Adep|V dep ⊗ π) × P (Amie|V mie ⊗ π) × P (Ac|π) = 1
Σ

∏
i

P (Ai|π)

It is specified as the product of each term of the actions that form it. The
distribution P (V dep|π) is supposed to be uniform for execution task and it is
included in the normalization term 1

Σ . P (Ac|π) is defined starting from two
terms. The first term is the actions to be executed by the conscious system
obtained assigning probabilities to the set of actions to be executed. The second is
the subconscious module that usually will have more execution priority than the
conscious module. The rest of terms of the previous equation must be obtained
from the remaining modules (tiredness and depression).

Subconscious. The subconscious module determines the state of the robot and
is used in the interface development. This state is represented using a human face
that expresses the emotions of the robot in a given moment. In this way, the input
variables are the probability of the different emotions (V ins,V can, V dep,V mie).
Starting from these variables the system will obtain the face (Face) that best rep-
resents these emotions. In this way, the following decomposition is defined:

P (Vi ⊗ Vc ⊗ Vd ⊗ Vm ⊗ Face ⊗ π) =
∏

P (V |Face ⊗ π)

Conditional independence is therefore assumed for all emotions. This can
seem a strong hypothesis, for example, in the emotions tiredness and depression,
where both are related. Nevertheless, given a face it can be assumed that the
probability that it represents an emotion is independent from the rest. This
hypothesis provides some advantages [5]. On the other hand, it is defined:

P (V |Face ⊗ π) = G (μ(V, Face), σ(V, Face))

Where G specifies a discrete Gaussian. The parameters of this Gaussian can be
learned by asking the robot users. Everybody that interacts with the robot will,
when given a face Face, say how it represents an emotion V . In this module, a
set of 17 representative faces have been designed.
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3.2 Architecture for an Autonomous System

In the previous section we presented an architecture that complements a classical
robotic system. This architecture provides a human/machine interface. One of
the benefits of using this architecture is that we can obtain the emotional state
of the robot. Nevertheless, it requires an external system to control the robot.

In this section another architecture, that has been designed specifically to
carry out a task (concretely a navigation task), is proposed. This architecture
contains a Controller module that decides the action for the robot to take. The
Controller module is the only one that controls the robot. Using this architecture
(see figure 2b) we develop an autonomous behaviour from the state of a set of
emotions.

The Dissatisfaction, Tiredness, Depression and Fear modules work in the
same way as the previous architecture. The Satisfaction module includes all of
the tasks to be executed by the robot. The main objective of the robot is to
move to a defined point, avoiding the obstacles in the environment. Although
not described in this paper, any navigation method between two points in a
known environment could be used, as long as the distance between the current
position and the final point is known. This distance will be used to establish the
Vs probability.

The Controller module manage the robot from the emotional modules. The
function of this unit is to give orders for the robot to carry out (A) taken from
the results of the emotional modules (Vs, As, Vi, Vc, Vd, Ad, Vm and Am), the
current state (S) and previous state (S′).

In this way, the following joint distribution is defined:

P (A ⊗ S ⊗ S′ ⊗ Vs ⊗ As ⊗ Vi ⊗ Vc ⊗ Vd ⊗ Ad ⊗ Vm ⊗ Am ⊗ π) =
P (Vs|π) × P (As|Vs ⊗ π) × P (Vi|π) × P (Vc|π) × P (Vd|Vc ⊗ π) × P (Ad|Vd ⊗ π)×
P (Vm|π) × P (Am|Vm ⊗ π) × P (S′|π)×
P (S|S′ ⊗ Am ⊗ Vm ⊗ Ad ⊗ Vd ⊗ Vc ⊗ Vi ⊗ As ⊗ Vs ⊗ π)×
P (A|S ⊗ S′ ⊗ Am ⊗ Vm ⊗ Ad ⊗ Vd ⊗ Vc ⊗ Vi ⊗ As ⊗ Vs ⊗ π) =

1∑ × P (As|Vs ⊗ π) × P (Vd|Vc ⊗ π) × P (Ad| Vd ⊗ π) × P (Am| Vm ⊗ π)×
P (S|S′ ⊗ Vm ⊗ Vd ⊗ Vc ⊗ Vi ⊗ Vs ⊗ π)×
P (A|S ⊗ S′ ⊗ Am ⊗ Ad ⊗ As ⊗ π)

The First equation is obtained assuming conditional independences between
modules. 1∑ is a normalization term that groups the uniform distributions
(P (Vs|π), P (Vi|π), P (Vc|π) and P (S′|π)). Probabilities P (As|Vs ⊗ π),
P (Vd|Vc ⊗ π), P (Ad|Vd ⊗ π) and P (Am|Vm ⊗ π) are defined in the emotional
modules previously presented. The probability of a global state S depends on the
probability of a previous global state S′ and the state of the emotional units. In
the same way, an action A depends on the current state S, the previous state S′

and on the actions of the emotional modules. Both distributions can be defined
with a table. This table can be specified by the programmer or be learned as is
shown in [11].
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4 Experimental Validation

4.1 Complementary Architecture to Obtain a Human/Robot
Interface

The architecture proposed here has been designed for a correspondence deliv-
ery system presented in [10] and developed by the robot PeopleBot (http://
www.activmedia.com). This robot provides a good platform for the development
of human/robot interfaces because of its upright shape and its touch screen.
The emotional interface presented here has been implemented on this robot
and shown on its screen. This interface is based on the probability distribution
P (Vi ⊗ Vc ⊗ Vd ⊗Vm ⊗Face) and concretely in one of the questions that can be
asked to this unit applying equation 1: P (Face|Vi ⊗ Vc ⊗ Vd ⊗ Vm).

Fig. 3. Graphical representation of the probability P (Face|Vi ⊗ Vc ⊗ Vd ⊗ Vm). a)

(Vi, Vc, Vd, Vm) = (0, 0, 0, 0) b)(Vi, Vc, Vd, Vm) = (0.2, 0.23, 0.21, 0.19).

Fig. 4. a) Example of a fear sequence. The images show the transition from neutral

face to the base face of fear. b) PeopleBot in its working environment.

When a face is obtained from this distribution, this face is one of the 17
base faces designed for the system, where a base face represents a set of emo-
tions. From this base face a transition to a neutral face is generated, a neu-
tral face is a face devoid of emotion (see figure 4a). This process continu-
ously provides uniformity and realism to the facial movements. In figure 3 the
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value of the distribution P (Face|Vi ⊗ Vc ⊗ Vd ⊗ Vm) in two specific moments is
shown.

When the user wants to interact with the robot he has two options at his
disposal. The first is to use a verbal command (using the speech recognition
module integrated in PeopleBot) and the second is to use the touch screen where
the face is shown. When the user clicks the screen, all the information needed for
the management of the robot is shown. On the other hand, the use of emotions
provides the same versatility and operation as traditional systems, with the
difference that the separation between modules makes integration and reusability
easier. The use of emotional modules provides the robot with an emotional state.
This state can be used for planning, for the development of tasks and for building
an interface like that proposed in this paper.

Fig. 5. A robot trajectory. The graphs show the level of fear Vm (left column), tiredness

Vc (center column) and satisfaction Vs (right column) in four different positions of the

robot.

4.2 Architecture for an Autonomous System

The second architecture has been designed to develop a concrete navigation task.
This architecture fuses emotional modules in order to complete the tasks using
a Markovian point of view, taking into acount the present and the previous
robot state. The Satisfaction module contains the main tasks to be executed
by the robot, in this case the robot will try to reach a goal point. These be-
haviours will be affected by the other modules of the system. The Fear mod-
ule will reduce the velocity and rotational angle when it considers that the
robot is near to an obstacle and therefore, it is possible that the robot collides
with them. In this way, the Tiredness module also will modify the main be-
haviour, trying to reduce the robot motor overload in order to save the batteries
level. In figure 5 the robot is shown in four different positions in an environ-
ment. The graphs show, for each position, the level of fear (left column), tired-
ness (center column), and satisfaction (right column), taken from the respective
modules.
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5 Conclusions

In this paper a model to imitate human emotional behaviour has been proposed.
This model is based on Bayesian programming, and specifically Bayesian pro-
cessing Units. The main purpose of this paper is to provide a cognitive model
for an autonomous agent. A visual communication interface, simple to use and
whose interpretation is not restricted by language, are developed. A human face
capable of showing different emotions has been integrated into a robot. An asso-
ciation between human emotions and the tasks to be executed by the robot has
been produced. In this way the robot has been provided with emotional mod-
ules. In addition an autonomous architecture and example of its use have been
provided.

An emotional state of the robot is obtained from the information received
from the emotional modules presented in this paper. Using this state, a repre-
sentative face that defines this condition is obtained and shown as an indication
of its present feeling. Some experimental data, to verify the correctness of the
model and the interface, have been provided.

In an uncertain world it is necessary to work taking this uncertainty into
consideration. The model proposed here contains the uncertainty within itself
because it is rigorously based on Bayes Theorem. Future studies will try different
applications of this architecture in autonomous robots.
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Abstract. A common problem encountered in structural pattern recognition is 
the difficulty of constructing classification models or rules from a set of exam-
ples, due to the complexity of the structures needed to represent the patterns. In 
this paper we present an extension of a method for structural learning applied to 
predictive toxicology evaluation.  

1   Introduction 

Structured information is widely used in many areas of computer science and in other 
relevant scientific disciplines as robotics, chemistry, medicine, linguistics etc. Usu-
ally, structured information is represented by means of data structures able to express 
a set of primitives and the relations existing among them. To this aim graphs are used 
in this contest in a variety of forms; the most expressive ones are the Attributed Rela-
tional Graphs (ARG) [1] because they enrich the base structure with a set of attributes 
associated to nodes and edges. Despite their attractiveness in terms of representational 
power, structural methods (i.e., methods dealing with structured information) imply 
complex procedures both in the recognition and in the learning processes. 

Namely, a common problem with this kind of representation is the difficulty of 
constructing, from a suitably chosen collection of examples, the models or the rules 
that are needed to perform the classification task. In fact, the well known learning 
methodologies available when the patterns are represented by means of vectors, like 
the Statistical Learning theory or the Artificial Neural Networks, cannot be applied to 
the more complex structures which encode the structural descriptions. These reasons 
determined, in the scientific community, the birth of two different approaches to the 
problem. One of the first paper introducing the first approach is [2]; the rational of it 
relies upon the conviction that structured information can be suitably encoded in order 
to obtain a representation in terms of a vector, thus making possible the adoption of 
well-known statistical/neural paradigms. The main disadvantage deriving from the 
use of these techniques is the impossibility of accessing the knowledge built by the 
system. The second approach, pioneered by [3], faces the learning problem directly in 
the representation space of the structured data, instead of converting graphs into  
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vectors and using vector-based learning paradigms. The approach considers the de-
termination of the class prototypes as a symbolic machine learning problem: given a 
suitably chosen training set, the goal of the system is to derive, by means of an induc-
tive process, a description of each class which is more general than the bare enumera-
tion of the training examples. In particular the description has also to cover instances 
of the class which are not present in the training set, but still to preserve the ability of 
discriminating the objects belonging to other classes. Furthermore, these descriptions 
must be explicit and easily interpretable by humans (in contrast, for instance, with the 
ones produced by neural networks), allowing an expert to validate or to improve 
them, or to understand what has gone wrong in case of errors. First-order logic predi-
cates constitute a powerful representation means for this kind of knowledge, since 
they are expressive enough to encode both structural descriptions and complex classi-
fication rules, and can be directly employed to build a classification system by means 
of a logic programming language such as Prolog. For this reason the learning task has 
been performed using an Inductive Logic Programming method [5], based on the 
FOIL algorithm [6], which, given a set of positive and negative examples represented 
by means of logical relations, produces for each class a classification rule expressed 
as a Prolog program. This representation, although very expressive, results hard to be 
managed due to the computational cost of the prototypation phase. In our approach, 
that is an extention of [4], we formulate the prototypation problem directly in the 
graphs space avoiding to need the expressive power of the first order logic program-
ming. This property allows to reduce considerably the complexity of the algorithm. 

Our application domain is that of predictive toxicology evaluation that is the 
characterization of the cancerogenic characteristics of chemical compounds. Due to 
the countless number of chemical compounds it would be preferable to avoid the 
use of biological tests because of the time needed to obtain the results. To this aim 
it has been proposed to solve the problem of the predictive toxicology evaluation 
identifying Structure Activity Relationships (SARs) that are models of the relation-
ship between the structural information of chemical compounds and their cancero-
genic characteristics. In the last years different works about the classification of 
cancerogenic compounds were published: [7,8] presented systems based on logic 
programming. However interesting, their approaches do not try to recognize always 
the SARs because they used, for the classification, also the results of toxicity or 
mutagenesis tests. The Department of Computer Science and Engineering of the 
University of Texas at Arlington presented in 1994 a system, SUBDUE [9], for 
logic inductive learning based on the graphs. The algorithm tries to describe the 
training-set characterizing it with the substructures that more frequently occurs. The 
prototypes are validated by means of an inexact matching algorithm. Afterwards in 
2001 Gonzales et al. [10] modified the learning process of the algorithm. The learn-
ing process computes the prototypes considering the ability of covering the samples 
of the same class. The weak point of these approaches is the representation of the 
database: it results too complex for chemical compounds (Fig 1.) because using 
simple graph representation, the nodes represents the objects (atoms, bonds and 
structural groups) and edges represents the relations between the objects. The com-
plexity of the representation determines a considerable increase of the computa-
tional time for the prototypes calculation.  
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Fig. 1. Representation of a part of a compound by the SUBDUE-CL system 

2   The Proposed Symbolic Learning Method 

The rationale of our approach is that of devising a method which, inspired to basic 
machine learning methodologies, particularizes the inference operations to the case of 
graphs. To this aim we consider descriptions given in terms of Attributed Relational 
Graphs (ARG) and we introduce a new kind of Attributed Relational Graph, devoted 
to represent prototypes of a set of ARGs. For this reason these graphs, called General-
ized Attributed Relational Graphs (GARGs), have to contain generalized nodes, 
edges, and attributes. Then, we formulate a learning algorithm which builds such 
prototypes by means of a set of operations directly defined on graphs. The algorithm 
preserves the generality of the prototypes generated by classical machine learning 
algorithms and moreover, similarly to most of machine learning systems [11, 12,13, 
14], the prototypes obtained by our system are consistent, i.e., each prototype covers 
samples of a same class.  

2.1   Graph-Based Representations of Objects and Prototypes  

We assume that the objects are described in terms of Attributed Relational Graphs 
(ARG). An ARG can be defined as a 6-tuple (N, E, AN, AE, aN, aE), where N and 

NNE ×⊂  are, respectively, the sets of the nodes and the edges of the ARG, AN 
and AE the sets of nodes and edge attributes and, finally, aN and aE the functions 
which associate to each node or edge of the graph the corresponding attributes. 

We will assume that the attributes of a node or an edge are expressed in the form 
t(p1,…,pkt), where t is a type chosen over a finite alphabet T of possible types and 

(p1,…,pkt) are a tuple of parameters, also from finite sets t
k

t

t
PP ,...,1 . Both the number 

of parameters (kt, the arity associated to type t) and the sets they belong to depend on 
the type of attribute; for some type kt may be equal to zero, so meaning that the corre-
sponding attribute has no parameters. It is worth noting that the introduction of the  
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Fig. 2. An example of the use of the type information: (a) A set of objects made of three differ-
ent kinds of parts (circles, triangles, rectangles). (b) The description scheme introduces three 
types of nodes, each associated to a different part. Each type contains a set of parameters suit-
able for describing each part. Similarly, edges of the graph, describing topological relations 
among the parts, are associated to two different types. (c) The graphs corresponding to the 
objects in (a). 

type permits us to differentiate between the description of the different kinds of nodes 
(or edges); in this way, each parameter associated to a node (or an edge) assumes a 
meaning depending on the type of the node itself. For example, we could use the 
nodes to represent different parts of an object, by associating a node type to each kind 
of part (Fig. 2). 

A GARG is used for representing a prototype of a set of ARGs. In order to allow a 
GARG (i.e., the prototype it represents) to match a set of possibly different ARGs (the 
samples covered by the considered prototype), we extend the attribute definition. First 
of all, the set of types of node and edge attributes is extended with the special type φ, 
carrying no parameter and allowed to match any attribute type, ignoring the attribute 
parameters. For the other attribute types, if the sample has a parameter whose value is 

within the set t
iP , the corresponding parameter of the prototype belongs to the set 

)(* t
i

t
i PP ℘= , where )(X℘  is the power set of X, i.e., the set of all the subsets of 

X. Referring to the previous example of the geometric objects, a node of the prototype 
could have the attribute rectangle({s,m},{m}), meaning a rectangle whose width is 
small or medium and whose height is medium. 

We say that a GARG G*=(N, E, AN, AE, aN, aE) covers a sample G and we use the 
notation G*  G (the symbol  denotes the relation called covering) if there is a map-

ping μ: N* N such that μ is a monomorphism and the attributes of the nodes and of 
the edges of G* are compatible with the corresponding ones of G. The first condition 
requires that each primitive and each relation in the prototype is present also in the 
sample; note that the converse condition does not hold, i.e., the sample can have addi-
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tional primitives/relations not considered by the prototype. This allows the prototype 
to specify only the features which are strictly required for discriminating among the 
various classes, neglecting the irrelevant ones. The latter condition constrains the 
monomorphism to be consistent with the attributes of the prototype and of the sample 
in the sense that the type of the attribute of the prototype must be either equal to the 
special type φ or to the type of the corresponding attribute of the sample. In the latter 
case, all the parameters of the attribute, which are actually sets of values, must contain 
the value of the corresponding parameter of the sample. 

 

Fig. 3. (a) A GARG representing the set of the four different ARGs associated to objects pre-
sented in (b), whose ARGs are given in Fig. 1c. Note that, for the sake of clarity, we have used 
the disjunction (or) instead of the usual set-theoretic notation. Informally, the GARG represents 
“any object made of a part on the top of a rectangle of any width and height.” (c) A specializa-
tion of the GARG given in (a), obtained by adding a node and an edge, and (d) the objects 
covered by it. Informally, the latter GARG represents “any object made of a part on the top of 
two other parts, that are a rectangle with a large height and any width and another unspecified 
part.” 

3   The Proposed Learning Algorithm 

The goal of the learning algorithm can be stated as follows: there is a (possibly infi-
nite) set S* of all the patterns that may occur, partitioned into C different classes 

**
1 ,....., CSS , with ∅=**

ji SS I ; for i  j; to the algorithm is given a finite subset 

*SS ⊂  (training set) of labeled patterns ( CSSS UU ...1=  with *
ii SSS I= ), 

from which it tries to find a sequence of prototype graphs **
2

*
1 ,....,, pGGG , each 

labeled with a class identifier, such that: 

** : iGiSG ∃∈∀   G  (completeness of prototype set) (1) 

**,GSG ∈∀ ( ) *
iclassGGclassG = (consistency of the prototype set) (2) 
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where class(G) and class(G*) refer to the class associated with sample G and proto-
type G*, respectively. 

Of course, this is an ideal goal since only a finite subset of S* is available to the al-
gorithm; in practice, the algorithm can only demonstrate that completeness and con-
sistency hold for the samples in S. On the other hand, (1) dictates that, in order to get 
as close as possible to the ideal case, the prototypes generated should be able to model 
samples also not found in S, that is, they must be more general than the enumeration 
of the samples in the training set. However, they should not be too general otherwise 
(2) will not be satisfied. The achievement of the optimal trade-off between complete-
ness and consistency makes the prototypation a really hard problem. 

A description of the learning algorithm is presented in the following: the algorithm 
starts with an empty list L of prototypes and tries to cover the training set by succes-
sively adding consistent prototypes. When a new prototype is found, the samples 
covered by it are eliminated and the process continues on the remaining samples of 
the training set. Then a sample is compared sequentially against the prototypes in the 
same order in which they have been generated, and it is attributed to the class of the 
first prototype that covers it. In this way, each prototype implicitly entails the condi-
tion that the sample is not covered by any previous prototype. Thus, with a careful 
choice of the order in which the prototypes are generated, the problems arising when 
the samples of a class are subpatterns of another class are avoided.  

The algorithm fails if no consistent prototype covering the remaining samples can 
be found. It is worth noting that the test of consistency in the algorithm actually 
checks whether the prototype is almost consistent, i.e., almost all the samples covered 
by G* belongs to the same class: 

( ) ( )
( ) θ≥⇔

*

*

* max
GS

GS
GConsistent

i

i

,  
(3) 

where ( )*GS  denotes the sets of all the samples of the training set covered by a pro-

totype *G , and ( )*GSi  the samples of the class i covered by *G and  is a threshold 

close to 1. Note that the assignment of a prototype to a class is done after the proto-
type has been found, meaning that the prototype is not constructed in relation to an a 
priori determined class. The most important part of the algorithm is the construction 
of a prototype, starting from a trivial prototype with one node whose attribute is φ 
(i.e., a prototype which covers any nonempty graph), and refining it by successive 
specializations until either it becomes consistent or it covers no samples at all. An 
important step of this step is the construction of a set Q of specializations of the tenta-
tive prototype G*. The adopted definition of the heuristic function H, guiding the 
search of the current optimal prototype, will be examined later. 

To obtain Q, we have defined a set of specialization operators which, given a pro-

totype graph G* produce a new prototype *G such that *G  specializes G*. The con-
sidered specialization operators are: 
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1. Node addition: G* is augmented with a new node n whose attribute is φ. 

2. Edge addition: A new edge ( *
1n , *

2n ) is added to the edges of G*, where *
1n   

and *
2n are nodes of G* and G* does not contain already an edge between 

them. The edge attribute is φ. 
3. Attribute specialization: The attribute of a node or an edge is specialized 

according to the following rule: 

• If the attribute is φ, then a type t is chosen and the attribute is re-

placed with ( )t
k

t

t
PPt ,....,1 . This means that only the type is fixed, 

while the type parameters can match any value of the corresponding 
type. 

• Else, the attribute takes the form ( )**
1 ,....

tkppt , where each *
ip  is a 

(nonnecessarily proper) subset of t
iP . One of the *

ip such that 

1* >ip is replaced with { }ii pp −*  with *
ii pp ∈ . In other words, 

one of the possible values of a parameter is excluded from the pro-
totype. 

The heuristic function H is introduced for evaluating how promising the provi-
sional prototype is. It is based on the estimation of the consistency and completeness 
of the prototype (see (4), (5) and (6)).  

complcons HHH •=   (4) 

To evaluate the consistency degree of a provisional prototype G*, we have used an 
entropy based measure: 

( ) ( )
( )

( )
( )−−−=

i i

iiii
cons

GS

GS

GS

GS

S

S

S

S
GSH

*

*

2*

*

2
* loglog,   (5) 

It follows that the larger the value of ( )*,GSHcons  is, the more consistent G* is. 

The completeness of a provisional prototype is taken into account by a second term of 
the heuristic function: 

( ) ( )**, GSGSHcompl =   (6) 

4   Application to Predictive Toxicology Evaluation 

The experimental phase has been carried out using the database NIEHS of molecular 
chemical compounds. The database includes a training-set of 298 chemical com-
pounds (162 of them are cancerogenic and 136 non-cancerogenic) and two test sets 
PTE1 e PTE2 respectively of 39 and 23 chemical compounds (Fig. 4). The com 
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pounds are described in terms of atoms and bonds, structural groups included in the 
compound and results of toxicity tests. In our approach, like in [9,10], only structural 
information is used because we are interested in the Structure Activity Relationships. 
It is manifest that ARGs are able to describe completely the structures of atoms, 
bonds  and structural groups. In our work we use the following representation: 

• Atoms are represented by “atom” nodes whose parameters are: element and 
charge; 

• Bonds are represented by a couple of edges (for representing bidirectional 
bonds) of type “bond”; 

• Structural groups are described by “group” nodes whose single parameter 
is the group name. These groups are connected to the atoms whose they are 
constituted by an edge “part of”; 

 

Fig. 4. Bidimensional chemical structure of 1,2-Dyhydro-2,2,4-Trimethylquinoline 

Besides, because of in molecular structures, isolated atoms or structural groups do 
not exists, the specialization operator Node addition was replaced by the operator: 

• ConnectedNodeAddition: G* is augmented with a new node and it is con-
nected to one of the n pre-existent nodes of G*; both node and edge attributes 
are φ  

The algorithm was implemented in Python/C++. The training of the system pro-
duced 86 prototypes spending about one week on a P4 512 RAM. The test on PTE 
datasets showed the following results: 

• On PTE1: 64% accuracy 
• On PTE2: 69% accuracy 

In the following we report a comparative table of results obtained on PTE1 dataset 
(because of the lack of results on PTE2 dataset) by different approaches. It is worth 
noticing that [8] used also information  deriving from mutagenesis tests; [7], instead, 
used the results of in-vivo short term biochemical tests.  

We can compare our system with the results obtained by [9,10] because they are 
the only systems that used exclusively structural information for characterizing Struc-
ture Activity Relationships (SARs). The analysis of the results table induce to the 
conclusion that, using the same input data, the proposed method produces the best 
performances of accuracy for the database NIEHS.  
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Table 1. Results of different algorithms on PTE1 dataset  

Algorithm Type Accuracy (%) 
TIPT [7] Logic Programming 67% 
This Work Inductive Learning on Graphs 64% 
Progol [8] Logic Programming 64% 
SUBDUE-CL [10] Inductive Learning on Graphs 62% 
SUBDUE [9] Inductive Learning on Graphs 46% 

5   Conclusions 

In this work we presented an extension of a method for the structure learning and its 
application to the automatic identification of Structure-Activity Relationships. The 
algorithm was tested on the dataset of the Predictive Toxicology Evaluation Chal-
lenge. The results were compared with the other approaches and they showed the 
effectiveness of our method. Besides it is worth noticing that the proposed approach 
produces interpretable prototypes that permit the user to interpret the results of the 
learning process and to identify errors due to a poor representativeness of the train-
ing set. 
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Abstract. The present paper is devoted to the pattern recognition
methods for combining heterogeneous sets of learning data: set of training
examples and the set of expert rules with unprecisely formulated weights
understood as conditional probabilities. Adopting the probabilistic model
two concepts of recognition learning are proposed. In the first approach
two classifiers trained on homogeneous data set are generated and next
their decisions are combined using local weighted voting combination
rule. In the second method however, one set of data is transformed into
the second one and next only one classifier trained on homogeneous set
of data is used. Furthermore, the important problem of consistency of
expert rules and the learning set is discussed and the method for checking
it is proposed.

1 Introduction

The design of the classifier in statistical pattern recognition generally depends on
what kind of information is available about the probability distribution of classes
and features. If this information is complete, then the Bayes decision scheme
can be used. If such information is unknown or incompletely defined, a possible
approach is to design a system which will acquire the pertinent information from
the actually available data for constructing a decision rule. Usually it is assumed
that available information on the probability characteristics is contained in a
learning set consisting of a sequence of observed features of patterns and their
correct classification. In such a case many learning procedures are known within
empirical Bayes decision theory, which lead to the different sample-based pattern
recognition algorithms (e.g. [3], [5]).

Another approach, interesting from both theoretical and practical point of
view, supposes that appropriate information is contained in expert knowledge. A
typical knowledge representation consists of rules of the form IF A THEN B with
the weight (uncertainty measure) α. These rules are obtained from the expert
as his/her conditional beliefs: if A is known with certainty then the expert’s
belief into B is α. In this case numerous inference procedures are proposed and
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very well investigated for different formal interpretations of the weight α ([4],
[6], [14]).

In this paper we shall focus our attention on decision algorithms for the
case in which both the learning set and expert rules are available. Additionally,
adopting the probabilistic interpretation of weight coefficients, we suppose that
expert rules are not provided with exact value of α (i.e. conditional probability),
but only an interval is specified (by its upper and lower bounds), into which this
probability belongs.

We may expect that the quality of the recognition algorithm will improve
when both kinds of information are concurrently utilized. The concept of pat-
tern recognition for considered case requires that both kinds of information have
unified formal interpretation. In this paper the probabilistic model is adopted
and hence we assign probabilistic meaning to both the information obtained from
experts and the numerical data. According to general principles of this model
we assume that the classes and features are observed values of appropriate ran-
dom variables for which the joint probability distribution exists but is unknown.
We treat expert-acquired information (rules) and numerical data as a source of
knowledge about the unknown probability characteristics.

This paper is a sequel to the author’s earlier publications ([10], [11], [12],
[13]) and it yields an essential extension of the results included therein.

The contents of the work are as follows. Section 2 introduces necessary back-
ground and provides the problem statement. In section 3 the important problem
of consistency of expert rules and the learning set is discussed and furthermore
the algorithm for evaluating it is proposed. In section 4 we present two differ-
ent concepts of pattern recognition algorithms for the problem in question. In
the first approach two classifiers trained on homogeneous data set are generated
and next their decisions are combined using local voting and linear combina-
tion rules. In the second method however, one set of data is transformed into
the second one and next only one classifier trained on homogeneous set of data
is used.

2 Preliminaries and the Problem Statement

Let us consider the pattern recognition problem with probabilistic model. This
means that vector of features describing recognized pattern x ∈ X ⊆ Rd and its
class number j ∈ M = {1, 2, ..., M} are observed values of a couple of random
variables (X,J), respectively. Its probability distribution is given by a priori
probabilities of classes

pj = P (J = j), j ∈ M (1)

and class-conditional probability density function (CPDFs) of X

fj(x) = f(x/j), x ∈ X , j ∈ M. (2)

Pattern recognition algorithm Ψ maps the feature space X to the set of class
numbers M, viz.

Ψ : X → M, (3)
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or equivalently, partitions X into decision regions:

C(i)
x = {x ∈ X : Ψ(x) = i}, i ∈ M. (4)

If probabilities (1) and CPDFs (2) are known, i.e. in the case of complete
probabilistic information, the optimal (Bayes) recognition algorithm Ψ∗, mini-
mizing the probability of misclassification, makes decision according to the fol-
lowing rule:

Ψ∗(x) = i if pi(x) = max
k∈M

pk(x), (5)

where a posteriori probabilities pj(x) can be calculated from the Bayes formula.
Let us now consider the interesting from practical point of view concept of

recognition. We assume that a priori probabilities (1) and CPDFs (2) are not
know, whereas the only information on the probability distribution of J and X
is contained in the two qualitatively different kinds of data.

1. Learning Set:

S = {(x1, j1), (x2, j2), ..., (xN , jN )}, (6)

where xi denotes the feature vector of the i-th learning pattern and ji is its
correct classification.

Additionally, let Si denotes the set of learning patterns from the i-th class.

2. Expert Rules:

R = {R1, R2, ..., RM}, (7)

where
Ri = {r(1)

i , r
(2)
i , ..., r

(Li)
i }, i ∈ M,

∑
Li = L (8)

denotes the set of rules connected with the i-th class. The rule r
(k)
i has the

following general form:

IF w
(k)
i (x) THEN J= i WITH probability greater than p(k)

i
and less than p

(k)
i ,

where w
(k)
i (x) denotes a predicate depending on the values of the features x.

These rules obtained from an expert are a consequence of his experience and
competence and furthermore, they reflect the common regularities resulting from
the general knowledge. Experiences have proved that an expert is very frequently
not able to formulate the logical rules describing the dependences between the
observed and internal values of the system and he cannot describe his way of
reasoning. What is relatively easy to obtain is a kind of input-output description
of the expert decision making process.

We will continue to adopt the following equivalent form of the rule r
(k)
i :

p(k)
i

≤ p
(k)
i ≤ p

(k)
i for x ∈ D

(k)
i , (9)

where
D

(k)
i = {x ∈ X : w

(k)
i (x) = true} (10)

will be called rule-defined region and
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p
(k)
i =

∫
D

(k)
i

pi(x)dx∫
D

(k)
i

dx
(11)

is the mean a posteriori probability of the i-th class in the set D
(k)
i .

We suppose that rules R are not contradictory ([13]).
Let Di = {D(k)

i , k = 1, 2, ..., Li}, i ∈ M and D = {D(k)
i , k = 1, 2, ..., Li,

i ∈ M} denote appropriate families of rule-defined regions and let additionally

XR = ∪D and X (i)
R = ∪Di (12)

denote feature subspaces covered by families D and , Di respectively.
Now our purpose is to construct the recognition algorithm

Ψ(S, R, x) = ΨSR(x) = i, (13)

which using information contained in the learning set S and the set of expert
rules R recognizes a pattern on the basis of its features x. Some propositions of
the rule (13) will be presented in section 4, first however, let discuss the problem
of consistency of rule set R and sample set S.

3 Consistency of the Expert Rules Set and the Learning
Set

In logical reasoning systems the problem of consistency of the gathered knowl-
edge is usually considered and the consistency is verified by proving that the set
of collected facts is consistent in the two-valued logic. As far as knowledge repre-
sentation with uncertainty characteristics is considered, the notion of consistency
is based on the assumed properties of uncertainty measure. In the case of the
approach being considered the gathered knowledge concerns the probabilistic
properties of the population and therefore the consistency conditions should be
considered in the probabilistic bearing. Generally, consistency conditions lead to
the following question: are probability characteristics resulting from the rules R
and learning set S consistent, i.e. does the learning set come from the population
with the probability distribution determined by the expert rules?

Since consistency of sets S and R should be treated as consistency of prob-
abilistic information contained in the both sets, hence we accept the hypothesis
that the set of rules and the learning set are consistent if probability of observa-
tions from the set S, under restrictions resulting from the set R, is over a some
adopted level.

Let introduce first families of sets Bi = {B(1)
i , B

(2)
i , ...B

(li)
i }, i ∈ M and

B = {B(1), B(2), ...B(l)}, where B
(m)
i and B(m) denote not empty constituents

of families of sets Di and D, respectively. It is clear, that sets from every family
are disjoint and furthermore XR = ∪B and X (i)

R = ∪Bi, i.e. families B and Bi

form partitions of feature subspaces XR and X (i)
R , respectively ([15]).
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Let next I
(m)
i (Î(m)

i ) be the set of indices of rules from Ri fulfiling the
conditions w

(k)
i (x) for x ∈ B

(m)
i (for x ∈ B(m)), or equivalently

I
(m)
i = {k : B

(m)
i ⊆ D

(k)
i }, Î

(m)
i = {k : B(m) ⊆ D

(k)
i }. (14)

From (10) it results that in expert opinion

P (p(m)

i
≤ p

(m)
i ≤ p

(m)
i ) = 1, (15)

where
p(m)

i
= min

k∈I
(m)
i

p(k)
i

, p
(m)
i = max

k∈I
(m)
i

p
(k)
i . (16)

p
(m)
i denotes mean a posteriori probability (see (12)) of the i-th class in the set

B
(m)
i . Let N

(m)
i and N (m) denote the number of learning patterns belonging to

the set B
(m)
i from sets Si and S, respectively. Class numbers of learning patterns

from B
(m)
i will be treated as observed values of Bernoulli random variable Y(m)

i :

Y(m)
i =

{
1 if x ∈ B

(m)
i is from ith class,

0 if x ∈ B
(m)
i is not from ith class.

(17)

with probability P (Y(m)
i = 1) = p

(m)
i .

Let now introduce two definitions.

Definition 1. If
P (p(m)

i
≤ p

(m)
i ≤ p

(m)
i ) ≥ α

(m)
i , (18)

where the confidence level is determined on the base of observations Y(m)
i , then

we say that the sets S and R are locally (in the set B
(m)
i ) consistent on the

level α
(m)
i .

Definition 2. Sets R and S are said to be α consistent, where

α =
∑M

i=1

∑li
m=1 α

(m)
i V (B(m)

i )∑M
i=1 V (X (i)

R )
. (19)

In order to calculate α
(m)
i in (19) let note that for Bernoulli distribution on

the base of observation k successes in n trials, we can determine the confidence
interval

P (p1(β, k, n) ≤ p ≤ p2(β, k, n)) = 1 − (β + β). (20)

The endpoints in (21) (confidence limits) are equal ([16]):

p1(β, k, n) =
k

k + (n − k + 1)F (β, 2(n − k + 1), 2k)
, (21)

p2(β, k, n) =
(k + 1)F (β, 2(k + 1), 2(n − k))

n − k + (k + 1)F (β, 2(k + 1), 2(n − k))
, (22)
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where F (β, k, n) is quantile in the range of β of a Snedecor’s F distribution with
k and n degrees of freedom.

Hence and from (19) and (21) we first find significance levels β
(m)
i and β

(m)

i

as solutions of the following equations:

p(m)

i
= p1(β(m)

i
, N

(m)
i , N (m)), p

(m)
i = p2(β

(m)

i , N
(m)
i , N (m)), (23)

and next we simply get

α
(m)
i = 1 − (β(m)

i
+ β

(m)

i ). (24)

It should be emphasised that generally, proposed evaluation (19) of consistency
between two sets of data is not a measure of quality of set of expert rules (and in
consequence a measure of expert quality [1], [7]). There are many reasons which
can lead to the relatively small value of α, e.g. not sufficently numerous learning
set, noises in feature measurements or errors of learning set source. The index α
may be considered as a measure of expert rules quality in the case if we suppose
that learning set is noise-free and furthermore for every set B

(m)
i the number

N (m) satisfies inequality ([16]):

N (m) ≥ (uα)2

2(p(m)

i
+ p

(m)
i )2

, (25)

where uα is critical value of the Gaussian random variable for acceptable confi-
dence level α.

4 Pattern Recognition Algorithms

In the sample-based classification, i.e. when the only learning set S is given, one
obvious and conceptually simple method is to estimate a priori probabilities and
CPDFs and then to use these estimators to calculate a posteriori probabilities
(let say p

(S)
i (x)), i.e. discriminant functions of the optimal (Bayes) classifier (5).

On the other hand, using this concept in the case when only the set of rules R
is given, we obtain the so-called GAP (the Greatest Approximated a posteriori
Probability) rule-based algorithm, which originally was introduced in [10]:

ΨR(x) = i if p
(R)
i (x) = max

k∈M
p
(R)
k (x). (26)

p
(R)
i (x) denotes approximated a posteriori probability of i-th class, which - for

x ∈ B(m) - is calculated from the set R according to the following formulas:

– for i ∈ M(m) = {I : Î
(m)
i �= �}:

p̂i(x) =
p̂(m)

i
+ p̂

(m)

i

2
, p̂

(m)

i = min
k∈Îm

i

p
(k)
i , p̂(m)

i
= min

k∈Îm
i

p(k)
i

, (27)
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– for i ∈ M− M(m):

p̂i(x) = [1 −
∑

j∈M(m)

p̂j ]/[M− | M(m) |]. (28)

The final value of p
(R)
i (x) should be normalized to 1, i.e.

p
(R)
i (x) = p̂i(x)/

∑
i∈M

p̂i(x). (29)

When both sets S and R are given we propose two concepts of recognition
algorithms, which are presented in next subsections. In our propositions informa-
tion included in sets S and R is submitted to processing and fusion. Difference
consists in order of both activities.

4.1 Mixed Algorithm

In so-called mixed algorithm decision is made according to the following rule:

ΨSR(x) = i if p
(SR)
i (x) = max

k∈M
p
(SR)
k (x), (30)

where
p
(SR)
i (x) = γ(x) p

(R)
i (x) + [1 − γ(x)] p

(S)
i , 0 ≤ γ(x) ≤ 1. (31)

It means, that first we calculate approximated (estimated) values of a pos-
teriori probabilities separately from both sets, and next we use their weighted
sum in the Bayes algorithm (5).

In the mixed algorithm (30) a mixing coefficient γ(x) plays the crucial role.
Assuming that γ(x) is constant in set B(m) and equal to γ(m), m = 1, 2, ..., l, we
propose three methods of calculating it.

1. The first method takes into account intuitively obvious character of depen-
dence between γ(m) and the number of learning patterns in B(m) (let say
N (m)) and the accuracy of determining a posteriori probabilities pi(x) in
rules R for x ∈ B(m) (let say Δ(m)). Namely, γ(m) should be a decreasing
function of N (m) and Δ(m), for example:

γ(m) =
1 − Δ(m)

(1 − Δ(m)) + (1 − e−N(m))
. (32)

2. In the second approach, for a particular B(m) such value γ(m) ∈ [0, 1] is
applied which maximizes the number of correctly classified learning patterns
from B(m).

3. As previously, but now γ(m) ∈ {0, 1}. It means that we always use a simple
algorithm ΨR or ΨS , which for each set B(m) is selected independently to
obtain the better local result of recognition.
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4.2 Unified Algorithms

Now, in order to find (13) we will transform one set of data into the second set
and next, having the homogeneous form of information, we can simply use either
the GAP algorithm (for transformation S → R

′
) or recognition algorithm with

learning (e.g. NN - nearest neighbour decision rule [3], [5]) for transformation
R → S

′
.

Our proposition of procedures for ”the unification of information” leads to
the following algorithms.
Algorithm R → S

′

Input data: N
′(m)
i -the number of generated patterns for region B

(m)
i

for i = 1 to M
for m = 1 to li

for k = 1 to N
′(m)
i

generate random class number j ∈ M with probabilities
if j = i
then

(variant 1) p(j) = (p(m)

i
+ p

(m)
i )/2

(variant 2) p(j) randomly (uniformly) selected

from the interval [p(m)

i
, p

(m)
i ]

else
p(j) = [1 − p(i)]/(M − 1)

fi
generate random feature vector x uniformly distributed

in B
(m)
i

endfor
endfor

endfor

Algorithm S → R
′

Input data: α - confidence level for created rules
L

′
i - number of rules for i-th class (i ∈ M)

D
′(k)
i - feature regions for rules k = 1, 2, ..., L

′
i

for i = 1 to M
for k = 1 to L

′
i

find N (k) - number of learning patterns belonging to D
′(k)
i

find N
(k)
i - number of learning patterns belonging to D

′(k)
i

calculate p
′(k)
i

(1−α
2 , N

(k)
i , N (k)) and p

′(k)
i (1−α

2 , N
(k)
i , N (k))

according to (21) and (22), respectively
endfor

endfor

In order to determine regions D
′(k)
i we can use methods known in procedures

of generating fuzzy rules from numerical data, e.g. based on cluster analysis,
graph theory or decomposition of CPDFs ([2]).
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5 Conclusions

During the past decade the fusion of various sources of knowledge was firmly
established as a practical and effective solution for difficult pattern recognition
tasks ([1], [7], [8]). This idea is established using classifier combination approach,
which in the literature is known under many names: hybrid methods, decision
combinations, classifier fusion, mixture of experts, modular systems, to name
only a few ([9]).

Most of the research on classifier ensambles is concerned with generating
ensambles by using a single learning model. Different classifiers are received by
manipulating the training set, or the input features, and next their decisions are
combined in some way (typically by voting) to classify new patterns. Another
approach is to generate classifiers by applying different learning algorithms to a
single data set ([17]).

The present paper is devoted to the methods for combining heterogeneous
sets of learning data: set of training examples and the set of expert rules with un-
precisely formulated weights. Adopting the probabilistic model of classification,
we discuss two different concepts of pattern recognition algorithms in which the
both sets of data are treated as a source of information about the probability
distribution of features and classes. In the first approach two classifiers trained
on homogeneous data set are generated and next their decisions are combined
using local weighted voting combination rules. In the second method however,
one set of data is transformed into the second one. This procedure of unification
of information allows to generate only one classifier trained on homogeneous set
of data.
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Abstract. This paper introduces a novel approach to the specification of
hard combinatorial problems as pseudo-Boolean constraints. It is shown
(i) how this set of constraints defines an energy landscape representing
the space state of solutions of the target problem, and (ii) how easy
is to combine different problems into new ones mostly via the union
of the corresponding constraints. Graph colouring and Traveling Sales-
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1 Introduction

The ability to learn associative behaviour through examples is a desirable fea-
ture in an adaptive system. Nevertheless, it would not be practical to acquire,
through examples, certain pieces of knowledge that had already been learnt by
other systems. Besides, sometimes it is easier to describe a problem via its con-
straints to an artificial neural network (ANN) such that the set of its global
energy minima corresponds to the set of solutions to the problem in question.
For example, an explanation of how the Traveling Salesperson Problem (TSP)
can be defined as a set of mathematical constraints that are solvable by an ANN
can be found in [6] and [5].

Alternatively, constraints may be essentially logical, constituting a kind of
description or specification of a suitable solution for a problem being modeled.
A problem that apparently does not involve optimizing a cost function is that of
finding a model for a logical sentence. In propositional logic, that would consist
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of the assertion of truth-values to the propositional symbols that appear in the
formula in question, in such a way that the formula as a whole becomes true.
That mapping of truth-values to propositions constitutes, for propositional for-
mulae, an interpretation of it [9]. A formula that has no models is said to be
unsatisfiable or inconsistent. Some problems may be better described as a com-
bination of logical and mathematical constraints. A subset of this combination
could be seen as a sum of weighted products of boolean variables, pseudo-Boolean
constraints [2].

This paper introduces a novel approach to the specification of hard combi-
natorial problems as pseudo-Boolean constraints defining an energy landscape
representing the space state of solutions of the target problem. It is shown how
easy is to map and combine different problems into new ones mostly via the
union of the corresponding constraints. Graph colouring and Traveling Salesper-
son Problem (TSP) were chosen as the basic problems from which new combina-
tions were investigated. Among other possible computational intelligence models
that could have been used, (e.g., genetic algorithms, artificial immune systems,
etc) this work adopted higher-order Hopfield networks of stochastic neurons in
order to solve all the mapped problems.

2 Higher-Order Hopfield Networks

A notable step towards understanding the collective properties of artificial neural
networks (ANNs) was taken by J. Hopfield [4] when he saw an analogy between
the evolution of a spin-glass system towards minimizing its energy function and
the evolution of the activity function of a so-called Hopfield network. For a
function to be called an energy function it is necessary that its value decreases
monotonically until the (or one of the) stable state(s) of the system is reached.
The direct consequence of such interpretation is the proof of convergence to en-
ergy minima of artificial neural networks (ANNs) composed of symmetrically
connected (i. e., wij = wji) McCulloch-Pitts’ neurons (i, j, . . .) acting as energy
minimization (EM) systems. The proof required the observation of a constraint:
that nodes operate asynchronously, i.e., that no two nodes operate at the same
time step. This restriction can be weakened to one where asynchronous oper-
ation is only required for neighbouring nodes, i.e., it is guaranteed that non-
neighbouring nodes can operate at the same time and energy will still decrease
monotonically [1]. Two nodes i and j are said to be neighbours if they are linked
by a connection with weight wij �= 0.

Sometimes it is convenient to express not only the mutual influence between
two neurons, but also the influence of concurrent activation of three or more
neurons. Such connections are known as multiplicative or higher-order and the
number of units pertaining to a connection is called the arity of the connection.
Only one value (positive or negative) is associated to each higher-order connec-
tion and networks containing one or more multiplicative connections are called
higher-order networks. Notice that higher-order connections are still considered
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symmetric, i.e., they take part in the activation function of all nodes involved in
the connection, and have the same weight value.

Unfortunately, a Hopfield network, even of higher-order, is only capable of
finding local minima. In this sense, an improvement consists of incorporating an
stochastic component to the neurons behavior such that the resulting network
could find global minima through a mechanism known as simulated annealing [7].
In this way, consider a random variable di associated to each binary node vi ∈ V ,
V denoting the set of random variables v1, v2, . . . , vn, n =| V |. The values of
these random variables are taken from a common finite domain D = {0, 1}, so
that vi represents the state of neuron i and each element of Dn is a possible
network state. Each vi ∈ V define a set of neighbours Q(vi) in such a way
that a homogenous neighbourhood is obtained, i.e., for any two vi, vj ∈ V , if
vj ∈ Q(vi), then vi ∈ Q(vj). The result of this incorporation can be described
by the following equations:⎧⎪⎨⎪⎩

p(vi = 1|vj = dj ; vj ∈ Q(vi)) = 1
1+e(−neti)/T

p(vi = 0|vj = dj ; vj ∈ Q(vi)) = e(−neti)/T

1+e−neti/T

Where neti = (
∑

wijvj(t)) − θi, θi is the threshold of neuron i, and T is the
parameter known as temperature (T ≥ 0).

3 Mapping Satisfiability to Energy Minimization

In order to convert satisfiability (SAT) to energy minimization (EM), consider
the following mapping of logical formulae to the set {0, 1}:

H(true) = 1
H(false) = 0
H(¬p) = 1 − H(p)
H(p ∧ q) = H(p) × H(q)
H(p ∨ q) = H(p) + H(q) − H(p ∧ q)

If a logical formula is converted to an equivalent in clausal form, the result
being a conjunction ϕ of disjunctions ϕi, it is possible to associate energy to
H(¬ϕ). Nevertheless, energy calculated in this way would only have two possible
values: one, meaning solution not found (if the network has not reached global
minimum), and zero when a model has been found. Intuitively, it would be better
to have more “clues”, or degrees of “non-satisfiabililty”, on whether the network
is close to a solution or not.

Let ϕ = ∧iϕi where ϕi = ∨jpij , and pij is a literal. Therefore ϕ = ∨iϕi

where ϕi = ∧j¬pij . Instead of making E = H(¬ϕ), consider E = H∗(¬ϕ) =∑
i H(¬ϕi). So, E =

∑
i H(∧j¬pij) =

∑
i

∏
j H(¬pij), where H(p) will be re-

ferred to as p. Informally, E counts the number of clauses that are not satisfied
by the interpretation represented by the network’s state.
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An issue to point out is that the resulting network of the above mapping may
have higher-order connections, i.e., connections involving more than two neu-
rons. That does not constitute a hindrance as has been demonstrated that, with
higher-order connections, Boltzmann Machines still converge to energy minima
[3]. Remarks on a learning mechanics for this network are made in [6]. Paral-
lel and distributed simulation of network with higher-order connections can be
done by substituting each higher-order connection by a completely-connected
subgraph. Alternatively, [10] converts the higher-order network to a binarily
connected one that preserves the order of energy values of the different network
states. A simple example demonstrates how SAT can be mapped to EM. Let ϕ
be the formula, expressed as a conjunction of clauses:

ϕ = (p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (r).

SAT(ϕ) can be translated to the minimum of the following energy function:

E = H(¬(p ∨ ¬q)) + H(¬(p ∨ ¬r)) + H(¬r)
= H(¬p ∧ q) + H(¬p ∧ r) + H(¬r)
= (1 − p) ∗ q + (1 − p) ∗ r + (1 − r) = q − pq − pr + 1

where H(prop) = prop.

4 Combinatorial Problems as Pseudo-Boolean
Constraints

So far, the problem of mapping SAT to EM, by associating energy to “amount of
non-satisfiability” and minimizing it, has been presented. This, together with the
fact that the language of logic can be used to define a set of constraints, may lead
to a technique for mapping and combining optimization problems into energy
minimization. The mapping of three problems into constraint satisfiability are
introduced next: TSP, Graph Colouring and a third problem resulting from the
combination of the first two problems.

4.1 Mapping TSP

Let G = (V, A) be an undirected graph, where V is the graph’s vertex set, A the
set of G’s edges, being each edge an unordered pair of G’s vertices. Associating
each vertex i ∈ V to a city and each edge (i, j) ∈ A to a path between i
and j, if |V | = n ≥ 3 and distij is the cost associated to the edge (i, j) ∈ A
where {i, j} ∈ V , then, the Travelling Salesperson Problem (TSP) consists on
determining the minimum cost Hamiltonian cycle of G. In order to enable the
tour to end at an initial city a, a twin name a′ is given so that it will be clamped
as the least city of the tour (with all traveling costs repeated), in the same way
that a is clamped as the first city of the tour. In this way, a problem with m cities
has to use an augmented n × n matrix, where n = m + 1, so that all conditions
may be applied to a round tour.
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Mapping to Constraint Satisfiability. The network is composed by an n×n
matrix of binary neurons vij , where i represents a city in V and j represents
the position of i in the tour. The repetition of propositional clauses, which differ
only by the value of indices, is represented in a compact form by the symbol of
universal quantification. However, it should be stressed that the use of universal
quantifiers to compress the representation of the propositional constraints does
not mean that the language of logic used to describe such constraints has become
first order logic. The network’s behavior is specified by the following constraints:

Integrity Constraints:

(i) All n cities must take part in the tour:
∀i, ∀j|1 ≤ i ≤ n, 1 ≤ j ≤ n : ∨j(vij). So, let ϕ1 = ∧i(∨j(vij)).

(ii) Two cities cannot occupy the same position in the tour:
∀i, ∀j, ∀i′|1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ i′ ≤ n, i �= i′ : ¬(vij ∧ vi′j).
So, let ϕ2 = ∧i ∧i′ 
=i ∧j¬(vij ∧ vi′j).

(iii) A city cannot occupy more than one position in the tour:
∀i, ∀j, ∀j′|1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ j′ ≤ n, j �= j′ : ¬(vij ∧ vij′ ).
So, let ϕ3 = ∧i ∧j ∧j′ 
=j¬(vij ∧ vij′ ).

Optimality Constraints:

(iv) The cost between two consecutive cities in the tour:
∀i, ∀j, ∀i′|1 ≤ i ≤ n, 1 ≤ j ≤ n − 1, 1 ≤ i′ ≤ n, i �= i′ : distii′(vij ∧ vi′(j+1))
So, let ϕ4 = ∨i ∨i′ 
=i ∨j<ndistii′(vij ∧ vi′(j+1)).

Constraints (ii) and (iii) are Winner-Takes-All (WTA) constraints. They can
be used to justify the conversion of disjunctions in the middle of constraints to
a conjunction of disjuncts. All the constraints above are associated to a penalty
strength that is expressed through multiplicative constants. The highest mul-
tiplicative constant, represented by β, is applied to the WTA constraints. The
other integrity constraints (type (i)) are weighetd by α. The lowest penalty
strength is given to optimality constraints (type (iv)), which are weighted by
constant 1. So, ⎧⎨⎩

dist = max{distij}
α = ((n3 − 2n2 + n) ∗ dist) + h
β = ((n2 + 1) ∗ α) + h

Mapping SAT into EM. We will use the method described in [10] to map log-
ical propositional formulae into the set {0, 1}. The H operator will be employed
in all three problems approached by this work. The energy equation relative
to the integrity constraints is presented next followed by the detailing of its
components:
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Ei = αH∗
WTA(¬ϕ1) + βH∗(¬ϕ2) + βH∗(¬ϕ3)

As ϕ1 = ∧i(∨j(vij)), ¬ϕ1 = ∨i(∧j(¬vij)).

H∗(¬ϕ1) =
∑n

i=1 H(∧j(¬vij)) =
∑n

i=1

∏n
j=1 H(¬vij) =

∑n
i=1

∏n
j=1(1 − vij)

However, due to WTA constraints, the actual mapping of ¬ϕ1 is

H∗
WTA(¬ϕ1) =

∑n
i=1

∑n
j=1(1 − vij)

As ¬ϕ2 = ∨i ∨i′ 
=i ∨j(vij ∧j vi′j),

H∗(¬ϕ2) =
∑n

i=1

∑n
i′=1,i′ 
=i

∑n
j=1 H(vij ∧ vi′j) =

∑n
i=1

∑n
i′=1,i′ 
=i

∑n
j=1 vijvi′j

As ¬ϕ3 = ∨i ∨j ∨j′ 
=j(vij ∧j vij′ ),

H∗(¬ϕ3) =
∑n

i=1

∑n
j=1

∑n
j′=1,j′ 
=j H(vij ∧ vij′ ) =

∑n
i=1

∑n
j=1

∑n
j′=1,j′ 
=j vijvij′

Next, the term of the energy equation relative to the tour’s cost (optimality
constraints) is introduced: Eo =

∑
s H∗(ϕ4).

H∗(ϕ4) =
∑n

i=1

∑n
i′=1,i′ 
=i

∑n−1
j=1 distii′H(vij ∧ vi′(j+1)) =

=
∑n

i=1

∑n
i′=1,i′ 
=i

∑n−1
j=1 distii′vijvi′(j+1)

The complete energy equation becomes: E = Ei + Eo.

4.2 Graph Colouring Mapping

Let G = (V, A) be an undirected graph, where V is the graph’s vertex set, A the
set of G’s edges, being each edge an unordered pair of G’s vertices. The Graph
Colouring Problem consists in determining the minimum assignment of colours
(positive integers) to the vertices such that each vertex has only one colour and
no two neighbouring vertices have the same colour.

Mapping to Constraint Satisfiability. The network is mainly composed by
a matrix Vcolour having n × n binary neurons vcik and a matrix Colour having
1 × n binary neurons ck, where i is a vertex in V and k represents the colour
associated to vertex i. Addicionally, a matrix neighii′ is used to indicate the
neighbouring relationship between vertices:

Integrity Constraints:

(v) Every vertex must have one colour assigned to it:
∀i, ∀k|1 ≤ i ≤ n, 1 ≤ k ≤ n : ∨(vcik). So, let ϕ5 = ∧i(∨kvcik).

(vi) Two neighbouring vertices cannot have the same colour:
∀i, ∀i′, ∀k|1 ≤ i ≤ n, 1 ≤ i′ ≤ n, 1 ≤ k ≤ n, i �= i′ :
¬(neighii′) ∨ ¬(vcik ∧ vci′k).
So, let ϕ6 = ∧i ∧i′ 
=i ∧k(¬(neighii′) ∨ ¬(vcik ∧ vci′k)).
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(vii) A vertex cannot have more than one colour:
∀i, ∀k, ∀k′ |1 ≤ i ≤ n, 1 ≤ k ≤ n, 1 ≤ k′ ≤ n, k �= k′ : ¬(vcik ∧ vcik′ ).
So, let ϕ7 = ∧i ∧k ∧k′ 
=k¬(vcik ∧ vcik′ ).

(viii) If a colour k is assigned to a vertex in matrix Vcolour, then the corre-
sponding unit in matrix Colour must be activated:
∀i, ∀k|1 ≤ i ≤ n, 1 ≤ k ≤ n : ¬vcik ∨ ck. So, let ϕ8 = ∧i ∧k (¬vcik ∨ ck).

Optimality Constraints:

(ix) The number of activated elements in matrix Colour:
∀k|1 ≤ k ≤ n : ck. So, let ϕ9 = ∨kck.

Similarly to the case of TSP, multiplicative constants α and β are used to
indicate the penalty strength:{

α = (n ∗ 1) + h
β = ((n3 + n2 + 1) ∗ α) + h

Mapping SAT into EM. Let’s generate the energy equation relative to the
integrity constraints: Ei = β[H∗(¬ϕ7)]+α[H∗

WTA(¬ϕ5)+H∗(¬ϕ6)+H∗(¬ϕ8)].
Since Eo =

∑
s H∗(ϕ9), then

E = Ei + Eo = β[
∑n

i=1

∑n
k=1

∑n
k′=1,k′ 
=k vcikvcik′ ] + α[

∑n
i=1

∑n
k=1(1 − vcik)] +

α[
∑n

i=1

∑n
i′=1,i′ 
=i

∑n
k=1 vcikvci′kneighii′ ]+α[

∑n
i=1

∑n
k=1 vcik(1−ck)]+

∑n
k=1 ck

4.3 Map Colouring-TSP Mapping

A combination of two different problems is tackled here: Map Colouring and
TSP. This hybrid problem is based on a set of cities, which are organised in
contiguous regions. The TSP restrictions are maintained and the neighbourhood
among adjacent regions is represented by different colours. The cost functions of
the original problems, i.e., number of colours and tour cost, are part of the new
cost function to be minimized. Interesting solutions would be tradeoffs between
solutions of the two problems and this could be obtained by minimizing the
change of colours between consecutive cities in the tour.

Let M = (V, A1, A2) be an undirected multigraph, where V is the graph’s
vertex set, being each vertex i ∈ V associated to a city. A1 is the set of M ’s
edges so that an edge (i, j) ∈ A1 exists iff i and j belong to different adjacent
regions. A2 is the set of M ’s edges associated to all possible direct paths between
any pair of cities i and j. Each edge (i, j) ∈ A2 has an associated distance cost
distij . The resulting Map Colouring-Travelling Salesperson Problem (MC-TSP)
consists of determining (i) a tour and (ii) a colour assignment to the different
regions (by assigning colours to the visited cities).
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Mapping to Constraint Satisfiability. The resulting network is composed
by the matrices devised for (a) Graph Colouring and (b) TSP:

(a) A matrix Vcolour having n×n binary neurons vcik and a matrix Colour having
1×n binary neurons ck, where i is a vertex in V and k represents the colour
associated to vertex i. Addicionally, an n×n matrix neigh is used to indicate
the neighbouring relationship between vertices;

(b) An n × n matrix of binary neurons vij ,
where i represents a city in V and j represents the position of i in the tour.

Integrity Constraints:

The set of integrity constraints is the union of TSP’s integrity constraints (i),
(ii), (iii) and graph colouring’s integrity constraints (v), (vi), (vii), (viii).

Optimality Constraints:

The set of optimality constraints is the union of TSP’s and Graph Colour-
ing’s optimality constraints (iv), (ix) and constraints of type (x) below:

(x) The change of colours between consecutive cities in the tour:
∀i, ∀j, ∀i′, ∀k,∀k′|1 ≤ i ≤ n, 1 ≤ j ≤ (n − 1), 1 ≤ i′ ≤ n, 1 ≤ k ≤ n, 1 ≤ k′ ≤
n, i �= i′, k �= k′ : (vij ∧ vi′(j+1) ∧ vcik ∧ vci′k′).
So, let ϕ10 = ∨i ∨j<n ∨i′ 
=i ∨k ∨k′ 
=k(vij ∧ vi′(j+1) ∧ vcik ∧ vci′k′).

Multiplicative constants γ and δ are added to the multiplicative constants of
TSP and Graph Colouring in order to indicate the new penalty strengths:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dist = max{distij}
α = ((n3 − 2n2 + n) ∗ dist) + h
β = ((n5 − n4 − n3 + n2 + 1) ∗ α) + h
γ = ((n + 1) ∗ β) + h
δ = ((2n3 − n2 + n + 1) ∗ γ) + h

Mapping SAT into EM. The energy equation relative to the integrity and
optimality constraints are:

Ei = δ[H∗(¬ϕ2) + H∗(¬ϕ3) + H∗(¬ϕ7)] + γ[H∗
WTA(¬ϕ1) + H∗

WTA(¬ϕ5) +
H∗(¬ϕ6) + H∗(¬ϕ8)], and

Eo = β[H∗(ϕ9)] + α[H∗(ϕ10)] + H∗(ϕ4).

Finally, E = Ei + Eo. Notice that Eo above corresponds to a possible way
of combining the two original problems. In this case, minimizing the number
of colours has been prioritized over the other two components of Eo, namely
ϕ10 and ϕ4. Similarly, ϕ10 has been prioritized over ϕ4. Different priority orders
could be explored originating the specification of new problems. In fact, the
possibility of combining a multitude of problems,is quite an interesting feature
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Fig. 1. Samples of the energy (E) behaviour and global minima found in (a) TSP, after

560 steps (t); (b) Graph Colouring, after 9967 steps (t), and (c) Map Colouring–TSP,

after 38277 steps (t). Geometrical cooling (0.99) was used in (a), (b) and (c).

of our modeling, since real practical problems requiring optimization treatment
are often not reducible to a single combinatorial problem. Figure 1 illustrates
experimental results from the mapping of the three problems over simple six
nodes graphs into stochastic high-order networks.

5 Conclusion

Although there are already language proposals oriented to the specification of
problems via sets of constraints, e.g., Z notation [11], the possibility of combin-
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ing different sets of such constraints in order to specify a new target problem
is the main contribution of this work. Moreover, our approach profits from the
intermediate definition of an energy function, which can be minimized by any
available solver, not only higher-order Hopfield networks of stochastic neurons,
as considered in this work. The development of a compiler which translates con-
straints into high-order networks and the mapping of molecular modeling via
pseudo-boolean constraints are ongoing work. Among the most interesting in-
vestigations for future work, we intend to develop an integration of first-order
logic inferencing [8] with pseudo-boolean constraints as an alternative and nat-
ural way of processing constraint logic programming.

References

1. Barbosa, V.C, Lima P.M.V.: On the distributed parallel simulation of Hopfield’s
neural networks. Software-Practice and Experience 20(10) (1990) 967–983.

2. Dixon, H.E., Ginsberg, M.L., Parkes, A.J.: Generalizing Boolean Satisfiability I:
Background and Survey of Existing Work. Journal of Artificial Intelligence Re-
search 21 (2004) 193–243.

3. Geman S., Geman D. : Stochastic relaxation, Gibbs distribution, and the Bayesian
restoration of images IEEE Transactions on Pattern Analysis and Machine Intelli-
gence PAMI-6 (1984) 721–741.

4. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. of the National Academy of Sciences USA 79 (1982)
2554–2558.

5. Hopfield, J.J., Tank D.W.: Neural computation of decisions in optimization prob-
lems. Biological Cybernetics 52 (1985) 141–152.

6. Jones, A.J.: Models of Living Systems: Evolution and Neurology. Lecture Notes.
Department of Computing. Imperial College of Science, Technology and Medicine,
London, UK (1994).

7. Kirkpatrick, S., Gellat Jr., C.D., Vecchi, M.P.: Optimization via Simulated An-
nealing. Science 220 (1983) 671–680.

8. Lima P.M.V.: Resolution-Based Inference on Artificial Neural Networks. Ph.D.
Thesis, Department of Computing. Imperial College of Science, Technology and
Medicine, London, UK (2000).

9. Lima P.M.V.: A Goal-Driven Neural Propositional Interpreter. International Jour-
nal of Neural Systems 11 (2001) 311–322.

10. Pinkas, G.: Logical Inference in Symmetric Neural Networks. D.Sc. Thesis, Sever
Institute of Technology, Washington University, Saint Louis, USA (1992).

11. Mike Spivey: The Z Notation: A Reference Manual. 2nd edition, Prentice Hall
International Series in Computer Science (1992).



Robust Ellipse-Specific Fitting

for Real-Time Machine Vision

Eliseo Stefano Maini

ARTS Lab - Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera,
Viale R. Piaggio, 34 - 56025 Pontedera, Italy

es.maini@ieee.org

Abstract. This paper presents a robust and non-iterative algorithm for
the least-square fitting of ellipses to scattered data. In this work, we
undertake a critical analysis of a previous reported work [1] and we pro-
pose a novel approach that preserves the advantages while overcomes the
major limitations and drawbacks. The modest increase of the computa-
tional burden introduced by this method is justified by the achievement
of an excellent numerical stability. Furthermore the method is simple
and accurate and can be implemented with fixed time of computation.
These characteristics coupled to its robustness and specificity makes the
algorithm well-suited for applications requiring real-time machine vision.

1 Introduction

One of the basic tasks in pattern recognition and computer vision is the fitting of
geometric primitives to a set of data points that are supposed to pertain to the
same token [2]. The compact representation obtained after fitting (i.e. estimating
the parameters of the geometric model) plays a fundamental role in decreasing
the computational burden to be charged on higher levels of processing when
scene-interpretation or object-tracking might be performed. A wide recognized
geometric primitive is the ellipse which owes its popularity to the property of
being the perspective projection of a circle. Elliptic patterns are commonly found
both in natural and in manmade environments, hence, applications requiring the
fitting of elliptic primitives are wide-spread over several fields such as astronomy,
physics, biology, medical imaging, industrial inspection, robotics etc.

Over recent decades, the increasing demand for machine vision resulted in
many different methods that were proposed for solving fitting problems. Broadly
speaking, these methods follow two major approaches: the clustering/voting
(CV) techniques and the least square (LS) techniques. The former approach
makes use of different algorithms such as RANSAC, Hough transform and fuzzy
clustering whereas the latter approach is based on optimization criteria in which
different objective functions are minimized with respect to a specific set of data
points [3]. The choice among these two approaches is usually performed by eval-
uating the trade-off between the computational burden and the robustness that
is required by the application. In fact the CV techniques are extremely robust
but their visiting characteristics are time-demanding and memory-consuming

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 318–327, 2005.
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notably if the adopted geometric model is other than the straight-line. In those
cases, the computational load may become overwhelming for applications requir-
ing real-time performances, such as object-tracking or visual-servoing, which are
frequently investigated in mobile-robotics [4][5]. Moreover, the classical Hough
Transform suffers from limitations of the sensitivity that are due to the possi-
ble presence of spurious and blurred peaks in the accumulators [6]. Compared
with the CV approach, usually the approach based on LS techniques is less
resource-demanding even if the latter algorithms work on a single primitive at
time. Furthermore, the LS techniques have a low breakdown point; this means
that they perform poorly in presence of severe non-Gaussian outliers although
some variants (such as the Theil-Sen approach, the least median of squares, the
Hilbert curve and the minimum volume estimator) are reported to improve the
robustness of the results especially on specific conic sections [7]. Despite these
limitations the LS techniques are often preferred for applications requiring real-
time machine vision especially when the geometric primitive is a conic. There
are two main reasons for this: first, the already mentioned computational costs.
As an example, consider the problem of using a traditional Hough transform
for the identification of an ellipse. In this case each pixel of the image can gen-
erate a surface in a five-dimensional space then the parameters are recovered
by searching the intersections of all the generated surfaces. With increasing lev-
els of resolution this process tends to require high computational performances
and huge amounts of memory for the accumulator [6]. Although many efforts
were made to reduce the computational cost, the Hough transform algorithms
seem still excessively resource consuming for real time machine vision [8]. The
second objection to be considered is that the iterative algorithms do not have
fixed time of computation therefore they are not suited for real time applica-
tions. Unfortunately, the latter consideration affects both the CV and some of
the LS techniques that are often iterative. In short: if an ellipse fitting is required
one has to rely on generic conic fitting or, otherwise, on iterative methods that
tend to push the estimation toward ellipticity by iterating, hence spoiling the
opportunity to use them in a real-time application.

An interesting breakthrough in this field was the one proposed in [1]. In that
paper the authors indicated a strategy to overcome the limitations of previous
methods that were either iterative or not ellipse-specific. As illustrated by the
authors, the method offers several remarkable advantages. First, by incorporat-
ing the ellipticity constraint into the normalization factor, the algorithm yields
to unique elliptical solutions even in presence of noisy-data thereby improving
one of the most notable limitations of the LS techniques (i.e. the low breakdown
point). Furthermore, the low eccentricity bias, the invariance to an affine trans-
formation and the non-iterative characteristic represent three relevant properties
introduced by this method. On the other hand, the proposed approach suffers
from some important drawbacks which are not described in the paper. Despite
the claimed robustness, in some circumstance the method turns out to be nu-
merically instable and produces non optimal or completely wrong results such
as infinite or complex solutions.
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In this paper we analyze the original approach, we characterize its draw-
backs and we purpose an improved method that seems to solve the numerical
instabilities with a reasonable growth of the computational load. The paper is
organized as follows: in Section 2 we describe the original approach and we dis-
cuss the situations where it fails or produces non-optimal results, in Section 3
we purpose our improved method. Finally, in Section 4, we present and discuss
a comparative evaluation and the experimental results.

2 Original Approach and Limitations

2.1 Analytical Background

A central conic can be expressed by an implicit second order polynomial such as:

F (x, y) = ax2 + bxy + cy2 + dx + ey + f = 0 (1)

or, in vectorial form:
Fa(x) = x · a = 0 (2)

where a = [a, b, c, d, e, f ]T and x = [x2, xy, y2, x, y, 1] are the vectors of the
coefficients and the coordinates of the points on the conic section respectively.
Given the set of data points:

T = {(xi, yi) : i = 1 . . .N} (3)

and assuming that F (a;pi) represents the algebraic distance of the point pi =
(xi, yi) from (2), the problem of fitting a conic section to (3) may be tackled by
minimizing the sum of the squared distances of the curve to the given points [4].
The solution of the resulting non-linear minimization problem:

min
a

(
N∑

i=1

F (a;pi)) = min
a

(
N∑

i=1

(pi · a)2) (4)

may be found making use of the classical iterative least squares approach af-
ter having introduced an appropriate constraint to discard the trivial solution
a = 06. To this aim, several authors suggested many different equations to ex-
press the constraint but a review of their methods is out of the objectives of
this paper. Conversely, we recall that the solution of (4) will be a general conic
and not necessarily an ellipse. In order to guarantee the ellipse-specificity of
the fitting, the well-known discriminant-constraint (i.e. b2 − 4ac < 0) has to be
considered when solving the problem (4). As pointed out in [1], the resulting
constrained minimization problem is hard to solve for the presence of the non-
convex inequality, hence some authors concluded that, for its basically nonlinear
characteristics, an ellipse-specific fitting must always require iterative methods
[9]. In [1] authors tackled this matter observing that for any real number α �= 0
the conic α · Fa(x) = α · xa = 0 is the same conic as the one reported in (2).
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Therefore, by arbitrary scaling the coefficients of the conics the constraint
becomes b2 − 4ac = 1, or, in vectorial form:

aT · C · a = 1 (5)

where C indicates the following constraint matrix:

C =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 +2 0 0 0
0 −1 0 0 0 0

+2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

Now, coming back to (4) and following [10] the ellipse-specific problem reduces
to find the solution of the minimization problem:{

min ‖D · a‖2

aT · C · a = 1
(7)

where the design matrix D is a N × 6 real matrix representing the least square
minimization (4). In extenso:

D =

⎛⎜⎝ x2
1 x1y1 y2

1 x1 y1 1
...

...
...

...
...

...
x2

N xNyN y2
N xN yN 1

⎞⎟⎠ (8)

The optimal solution of (7) may be found using the Lagrange multiplier λ:{
2DTDa − 2λCa = 0
aT · C · a = 1 (9)

This may be rewritten in the form:⎧⎨⎩
Sa = λCa
aT · C · a = 1
S = DT D

(10)

where S is the scatter matrix of size 6×6. The system (10) is solved by considering
the generalized eigenvectors of the first equation and by observing that, for any
non-zero scalar μ, if (λk,uk) solves the generalized eigenvector problem evenly
(λk, μuk) does it. Hence, making use of the second equation of (10), we may
calculate:

μ2
ku

T
k Cuk = 1 ⇒ μk =

√
1

uT
k Cuk

=

√
λk

uT
k Suk

(11)

therefore the solutions are found by setting ãk = μkuk. Based on this derivation
the authors demonstrated in [1] that the solution of the conic-fitting problem (4)
subject to the constraint (5) admits exactly one elliptical solution corresponding
to the single positive generalized eigenvalue of (10).
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2.2 Advantages and Limitations

As remarked, the method proposed in [1] (i.e. B2AC) offers several relevant
advantages but, on the other hand, the algorithm suffers from some important
drawbacks that are not properly addressed in the original paper and that are
likely to cause severe numerical instabilities or even wrong results. The major
limitations of the algorithm are two. First: the scatter matrix is severely ill-
conditioned and this may seriously affect the following eigenvector problem. If
calculating the ratio of the largest to smallest singular value of the matrix S
in (10) (i.e. the 2-norm condition number) it may be noticed that the reported
values are extremely high, giving evidence of the potential numerical instabilities
arising from the finite-precision representation. This problem is clearly unveiled
if the software implementation is carried out using compilers such as ANSI C
that admits a smaller representation for floating-point numbers compared to the
MATLAB tools used by authors (roughly 1037 vs 10380).

Secondly, in some circumstance, the localization of the fitting’s optimal so-
lution may result ambiguous or even impossible. In [1] authors stated that there
exist exactly one elliptical solution of the problem (8) corresponding to vector
associated to the single positive generalized eigenvalue of (10) and that, this so-
lution, is optimal in the least square sense. Unfortunately, this statement is not
always true. Because of the numerical instabilities, it is often impossible to find
a positive eigenvalue or, in other cases, the reported numerical solutions may
be misleading and the optimal solution may be associated with a small negative
eigenvalue. Furthermore, from a theoretical point of view, it has to be remarked
that the algorithm has a specific source of errors that is not mentioned in paper
[1]. In fact, if the data points lie exactly on the ellipse the eigenvalue correspond-
ing to the optimal solution is zero and the original algorithm does not lead to
any solution. Once more, because of the numerical calculation, this circumstance
may happen even if the data points are “close” to the ideal ellipse; this means
that the algorithm may perform poorly when noise is absent or even in presence
of a small amount of noise in the data. In order to overcome the limitations of
the B2AC meanwhile preserving the advantages offered from the approach we
propose an enhanced algorithm for direct least square fitting of ellipses. The
algorithm is based on re-centering and scaling data points and on the use of a
simple re-sampling technique and offers the advantage of finding a good solution
even in those cases in which B2AC fails.

3 Enhanced Direct Least Square Fitting of Ellipses

The enhanced direct least-square fitting of ellipses (EDFE) is based on the ana-
lytical background previously discussed. In this section we will shortly describe
the techniques adopted to insure an adequate robustness to the method. Even
since now, we introduce the operator Θxiyj =

∑N
k=1 xi

kyj
k that will be used to

have a compact representation for the scatter matrix.
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3.1 Re-centering and Scaling

It is worth noticing that the scatter matrix S has the following structure:

S =

⎛⎜⎜⎜⎜⎜⎜⎝
Θx4 Θx3y Θx2y2 Θx3 Θx2y Θx2

Θx3y Θx2y2 Θxy3 Θx2y Θxy2 Θxy

Θx2y2 Θxy3 Θy4 Θxy2 Θy3 Θy2

Θx3 Θx2y Θy2 Θx2 Θxy Θx

Θx2y Θxy2 Θy3 Θxy Θy2 Θy

Θx2 Θxy Θy2 Θx Θy N

⎞⎟⎟⎟⎟⎟⎟⎠ (12)

In this expression the coordinates of each point pi = (xi, yi) may assume values
in the interval between zero and the maximal resolution of the frame grabber.
In modern devices, these resolutions can easily reach values of 103, hence the
maximum values appearing in S may reach values in the order of N(103)4 while
S6,6 = N . In these circumstance, S is intrinsically ill-conditioned therefore the
eigenvector problem may yield to erratic results. To overcome this source of errors
a simple re-centring and scaling procedure may be performed on the data-points
before constructing the scatter matrix. Introducing the centring factors :

xm = minN
i=1{xi} ym = minN

i=1{yi} (13)

and the scale factors:

sx =
maxN

i=1{xi} − minN
i=1{xi}

2
sy =

maxN
i=1{yi} − minN

i=1{yi}
2

(14)

the normalized ellipse is obtained by applying the following affine transformation:

x̂ =
x − xm

sx
− 1 ŷ =

y − ym

sy
− 1 (15)

Recalling expression (2) the resulting ellipse may be written in the form:

Fâ = x̂ · â = 0 (16)

With these positions equation (16) represents an ellipse similar to (2) but nor-
malized to be enclosed in a square, (side length=2, center=(0, 0)). Therefore,
after solving the eigenvector-problem the reported parameters have to be de-
normalized. From (16) the calculation of the de-normalizing coefficients is
straightforward. By imposing the equality Fâ = x̂ · â = x · a = Fa and exe-
cuting the dot products results:

a = âs2
y; d = d̂sxs2

y − b̂sxsyKy − 2âs2
yKx

b = b̂sxsy; e = ês2
xsy − b̂sxsyKx − 2ĉs2

xKy

c = ĉs2
x; f = âs2

yK2
x + b̂sxsyKxKy + ĉs2

xK2
y − d̂sxs2

yKx − ês2
xsyKy + f̂s2

xs2
y.

(17)
Therefore, the coefficients of the original conic may be calculated from those

of the normalized ellipse using (17) where Kx = (xm + sx) and Ky = (ym + sy).
After this affine transformation, the data points assume values in [−1, 1] thereby
the maximum values in the scatter matrix may reach values in the order of N . As
reported in Section 4 the normalization of the data points reduce of several orders
the 2-norm condition number hence improving the robustness of the solution.
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3.2 Resampling with Perturbations

Recalling that if the data points lie exactly on the ellipse or “close” to it the al-
gorithm does not converge, one should conclude that the method purposed in [1]
must be rejected as useless since it may not insure the retrieval of the solution. In
order to overcome this limitation we propose a simple “perturb-and-resample”
strategy to be performed when the localization of the eigenvalue is impossible.
The basic idea of the strategy is quite simple. Given that B2AC does not con-
verge in absence of noise and that it is, instead, robust when the noise tends to
increase it is feasible to modify the data points by adding a known Gaussian noise
and, after that, perform the fitting. The robustness of the method is insured by
applying this procedure an adequate number of times. After M iterations there
will be created a family of M ellipses each one fitting the original data points
previously perturbed by a controlled level of noise. The searched ellipse is then
found by averaging the parameters obtained over replications. Moreover, given
that the noise distribution is known to be Gaussian, it is straightforward to
compute the confidence level of the parameters. Using this approach, it is also
possible to control both the level of noise and the number of replications in order
to achieve the desired level of accuracy. On the other hand this method increases
the computational burden therefore we purpose to apply this strategy only in
those cases in which the localization of the solution turns out to be impossible
or numerically unstable. The EDFE algorithm is depicted in Fig. 1.

Fig. 1. Schematic representation of the EDFE algorithm

4 Experimental Results

The algorithm was tested on synthetic data obtained during simulations. The
parameters controlled by the simulator were: 1) the number of points on the
curve (N), 2) the standard deviation of noise in original data (σ), 3) the por-
tion of elliptic arc from which data points were extracted (g), 4) the horizontal
(hres) and the vertical (vres) resolution, 5) the number of replicates in the re-
sampling procedure (M), 6) the standard deviation of the perturbing noise (ζ).
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Table 1. Varying resolution: B2AC average percentage of FAIL and comparative anal-

ysis of the CN values of S. (Parameters N=50, σ=0.01, g=2π, M=100, ζ=0.01).

hres × vres 320 × 240 640 × 480 1024 × 768 1280 × 1024 1600 × 1200

F (%) 4.5 24.9 50.0 64.2 72.2
CNB 0.5·1023 0.3·1025 1.0·1026 0.2·1027 0.2·1028

CNE 1.0·1010 0.9·1010 1.0·1010 0.3·1010 0.4·1010

Table 2. Varying std. of noise: B2AC average percentage of FAIL and comparative

analysis of the CN values of S. (N=50, g=2π, M=100, ζ=0.01, hres=640, vres=480).

σ 0 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.75 1

F(%) 48.3 32.5 30.3 26.7 23.8 20.3 15.8 14.2 13.0 11.5 11.1 9.9
CNB 2·1026 4·1025 3·1025 7·1024 3·1024 2·1024 6·1023 2·1023 2·1022 2·1021 3·1020 2·1020

CNE 3·1012 2·1012 2·1011 4·1010 9·109 2·109 2·108 9·106 2·106 2·105 3·104 2·104

The simulator generated synthetic data points by randomly extracting uniformly
distributed values for the five ellipse’s parameters. (i.e.: coordinates of the center
(xc, yc), length of the major (aM ) and minor axes (am) and angle of rotation (φ)).
For comparative purposes, the fitting procedures were carried out both for the
EDFE algorithm and for the B2AC as described in [1]. The results of the fitting
procedures were evaluated by calculating the root mean square error (RMSE) of
the parameters obtained from fitting. The numerical stability of the eigenvector
problem was assessed by computing the 2-norm condition number (CN) both
for the B2AC (CNB) and the EDFE (CNE) algorithms. Those cases in which
the original algorithm was not capable to provide a solution were marked as
FAIL either if the error was originated by numerical instability or by impossible
localization of the eigenvalue. The trials marked as FAIL were counted (F(%))
and excluded from further examinations. The same criterion was applied to the
EDFE. Each case was investigated by averaging results obtained over 10 simula-
tion runs, each one generating 1000 ellipses. The effects of increasing resolution
on the numerical stability are reported in Table 1. As expected, to increasing
values of resolution corresponds increasing CN for the B2AC that compromise
the numerical stability of the method. This evidence is furthermore confirmed
by the increasing percentage of FAIL marks reported for B2AC. The EDFE al-
gorithm always found the solution therefore we do not report the EDFE FAIL
percentage on the tables. Thanks to the re-centering and scaling, the EDFE
shows lower CN that reflect an improved robustness of the method. Moreover,
the CN values are not affected by changing the resolution hence the EDFE seems
to provide a proper insurances of device-independency. The effects of varying the
standard deviation of noise in the input data are reported in Table 2. Even if the
CN of B2AC is several orders higher than EDFE, Table 2 shows that both algo-
rithms tends to increase the CN when the noise level tends to zero. As already
remarked, this evidence may be explained considering that there is a theoret-
ical reason for having ill-conditioned problems when the noise is absent. The
reported rates of failure suggest that the B2AC algorithm performs poorly even
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Fig. 2. Accuracy of centre localization when varying N ,ζ,M : Averages, over 10 runs of

the RMSE of fitting. (xcb, ycb) obtained using B2AC, (xce, yce) obtained using EDFE,

(xcr, ycr) obtained using EDFE only on those ellipses for which re-sampling was applied.

if small a amount of noise is present. On contrary, the re-sampling procedure
of the EDFE always yields to a robust estimation of the ellipse even when the
noise level is set to zero (i.e. theoretical instability). The accuracy of (xc, yc)
estimation is reported in Fig. 2 both for EDFE and B2AC. The estimation of
aM , am and φ are not reported because of space restrictions but they follow
similar trends. For assessing the accuracy of the method we studied the effects
of varying: 1) N (with M=100, ζ=0.01), 2)ζ (with N=50, M=100) and 3)M
(with N=50, ζ=0.01). All the simulations presented here were conducted with
the following setting of parameters: σ=0, g=2π, hres=640, vres=480. It is worth
noticing that, in Fig. 2, those curves that are referred to B2AC are calculated
only in the cases in which the method converged (roughly the 50% of the whole).
Obviously, the accuracy of estimations increases when the number of data points
increase. From Fig. 2 it may be noticed that, when the data points are few (i.e.
5≤ N ≤ 15) the RMSE of fitting tends to be higher when using the EDFE; par-
ticularly on those solutions obtained using re-sampling with perturbation. This
is well explained considering that even small perturbation may have noticeable
effects on ellipses geometry if the number of points tends to its minimum of five.
Conversely, when the number of points increases, roughly above 25, the EDFE
shows a quality of fitting that is numerically equivalent to the one obtained on
the non failing trials of B2AC. With respect to the effect induced by increasing
the level of perturbing noise we observe that, as expected, it has no effect on the
B2AC since the RMSE of fitting is rather constant whereas it affects the EDFE
that shows an increasing trend roughly linear. The latter evidence confirms what
already observed in [1]. Furthermore, when perturbing noise is small (ζ ≤0.015)
the EDFE performs the fitting better than the best results obtained by B2AC
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without reporting any FAIL mark. When varying the number of replicates the
EDFE behaves similarly. In fact, when the number of replicates is low (M≤15)
the algorithm tends to estimate the parameters with an higher error with re-
spect to the best results of B2AC. Conversely, when increasing the number of
replicates the EDFE reaches the accuracy of the B2AC even with a moderate
number of repetitions (i.e. 50≤ M ≤100). As depicted in Fig. 2, the re-sampling
strategy does not affect the accuracy of the B2AC that is, in fact, approximately
constant. On contrary, to further increasing of M corresponds further improve-
ment of the estimation and, beyond 200 repetitions, the EDFE shows better
performances in comparison to B2AC.

5 Conclusions

Our experiments give evidence of the superior robustness of the EDFE which
was always capable to compute the best fitting in the least-square sense while
preserving the advantages offered by the B2AC. Furthermore, the accuracy of
the estimates may be tuned by operating on the number of replicates and on the
magnitude of the perturbing noise therefore offering the flexibility that different
applications may require. The increased computational load introduced by the
centering and scaling coupled to the re-sampling procedures may be justified
by the numerical stability of the method and by considering that, even if in-
creased, the computational time are fixed therefore making the EDFE a suitable
algorithm for real-time machine vision.
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Abstract. Semantic memory representations have often be modeled in
terms of a collection of semantic features. Although feature-based mod-
els show a great explanatory power with respect to cognitive and neu-
ropsychological phenomena, they appear to be underspecified if inter-
preted from a neuro-computational perspective. Here we investigate the
retrieval dynamics in a feature-based semantic memory model, in which
the features are represented by neurons of the Hindmarsh-Rose type in
the chaotic regime. We study the state of synchronization among fea-
tures coding for the same or different representations and compare the
correlation patterns obtained by analyzing the whole neural signal and a
manipulated signal in which the sub-threshold component is ruled out.
In all cases we find stronger correlations among features belonging to the
same representations. We apply a formal method in order to represent
the state of synchronization of features which are simultaneously coding
for different representations. In this case, the synchronization and de-
synchronization pattern that allows for a shared feature to participate in
multiple memory representations appears to be better defined when the
whole signal is considered. We interpret the simulation results as sugges-
tive of a role for chaotic dynamics in allowing for flexible composition of
elementary meaningful units in memory representations.

1 Introduction

Semantic memory can be defined as our relatively permanent memory store
for world knowledge: it comprises information about words meaning and allows
for the recognition of meaningful perceptual stimuli. The featural description
of memory representations produced accounts for a large part of the experi-
mental phenomena described in semantic memory literature, such as basic level
naming [1], typicality effects [2], context effects [3], priming [4] and category
structure [5]. The existence of subgroups of shared features is at the base of
the explanatory account of the models in both cases. The main problem with
the feature-based account is that it appears to have a great deal of explanatory
power at a general level, but it is extremely underspecified in the details. There
is a remarkable lack of consensus about what could be reasonably conceived as
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a semantic feature for different classes of stimuli [6], such as percepts and words
belonging to different semantic and morpho-syntactic classes (concrete words,
abstract words, verbs etc.), although recent explicit proposals in this sense have
appeared in the literature [7]. Here we will approach the problem of modeling
semantic memory representations with shared features starting from some as-
sumptions on the dynamic process of memory retrieval. First of all we assume
that a semantic feature is a cognitive component of the semantic representation
that is encoded in the collective activity of a segregated population of neurons
[8] with chaotic dynamics. In fact, although memory processes and their neural
correlates have been extensively modeled in terms of Attractor Neural Networks
[9] and recent approaches emphasize the role that dynamic ”latching” between
attractors might have in unleashing the computational capabilities of fixed point
dynamics [10], simultaneous retrieval of overlapping patterns still remain very
difficult to implement with more ”sedate” dynamical systems. Second, recent
approaches have emphasized the need to shift to dynamic paradigms in which
memory representations are built ’on the fly’ according to the specificity of the
task demands and of the behavioral goals the subject is engaged in [11]. Chaotic
dynamics might be a preferential tool in this framework due to low cost and fast
transition between attractor states.

Building on some ideas that were first proposed in the case of perceptual
features [12] [13] [14], we explore the possibility to resort to chaotic dynamics in
order to implement a toy model of a multimodular semantic memory system in
which shared features can be dynamically allocated to different semantic repre-
sentations in order to allow for the co-occurring retrieval of two or more related
patterns, as it is possibly needed for the memorization and retrieval of complex
scenes or concepts. Taking as a starting point the multimodular structure de-
fined in [15], we propose a richer quantitative analysis of the network behavior
by applying different types of synchronicity measures. We also contrast the re-
sults obtained by the different signal manipulations in an attempt to disclose
the characteristics of the neural signal that appears to be more relevant for the
emergency of the hierarchical structure of memory representations.

2 The Model

We study an associative neural network characterized by a multimodular archi-
tecture, which represents the functional segregation observed in some cortical
areas (V1 and beyond [16]). The modular architecture of the network, depicted
in Fig.1, is given by a set of M feature modules, each representing a specific di-
mension, or domain, in the memory pattern (e.g. color, dimension, shape, etc.).
Each module includes F neurons coding for different features of the pattern
(features are encoded by a single neuron), along the dimension specified by the
module (e.g. red in color module, sphere in shape module, etc.). For the sake
of computational simplicity we choose to substitute the population dynamics
at the featural level with single unit dynamics. Although this is clearly a limit
of the present simulations it is nevertheless known that single neuron spiking
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Fig. 1. Representation of the multimodular architecture. The network includes M

(M=16) feature modules, represented here as boxes. Each module contains F (F=8)

neurons, depicted as squares. Each single neuron i is connected to all neurons j in the

other modules, through excitatory coupling (wij).

activity shares many relevant properties with network activity in terms of tem-
poral statistics [17]. A memory pattern is defined by a vector of M features, each
from a different module. In order to obtain all possible patterns, every neuron is
connected via excitatory coupling to all neurons of the other modules (coopera-
tion). Since neurons belonging to the same module code for mutually exclusive
features (e.g. either red or yellow), we also introduce a competitive mechanism
between them which take into account the average intra-modular activity. We
use Hindmarsh-Rose model-neurons, which exhibit realistic response properties
such as the presence of long interspike intervals between action potentials. Those
models are characterize by a periodic or chaotic (irregular bursting) dynamic
behavior, depending on a single parameter [18]. The network consists of N HR
neurons (N = 128), belonging to M different modules (M = 16). In each module
we have F feature neurons (F = 8)(i is the index for neurons in the network, j
is the index identifying neurons belonging to different modules from the module
of i, k identifies neurons inside the same module as i). Each HR neuron in the
network is described by the first-order differential equations

Ẋi = Yi − aX3
i + bX2

i − Zi + Ii +
F (M−1)∑

j=1

wijSj(t) − 1
F − 1

F−1∑
k=1

S
(i)
k (t) (1)

Ẏi = c − dX2
i − Yi (2)

Żi = r[s(Xi − x0) − Zi]. (3)

The state of neuron i is described by three time-dependent variables, namely, the
membrane potential Xi, the recovery variable Yi, and a slow adaptation current
Zi. The external input Ii, for the standard choice of parameters (a = 1.0, b = 3.0,
c = 1.0, d = 5.0, s = 4.0, r = 0.006, and x0 = −1.6), is set such that the single
neuron dynamics is chaotic. The synaptic input given by the firing activity of the
j-th neuron on the i-th neuron is modeled in Eq.(1) by the impulse current to
the i-th neuron, proportional to the synaptic strength wij , generated when the
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j-th neuron is active. A neuron is here considered active whenever its membrane
potential exceeds a threshold value X∗ (X∗ = 0 in our study) and its activity
is coded by the variable Sj = Θ(Xj(t) − X∗), where Θ(x) = 1 if x ≥ 0 and
Θ(x) = 0 if x < 0. A local inhibition mechanism, active on the i-th neuron, is
modeled in Eq.(1) by a negative impulse current to the i-th neuron, generated
when the k-th neuron, belonging to the same module as i, is active. Si here
represents the activity variables of the neurons in the module (i).

Our memory patterns are defined by sets of 16 features, coded by 16 active
neurons. Given two memory patterns, we distinguish between Patterns which do
not share features (NSF) and Patterns which share features (SF). In the first
case, vectors coding for the two patterns are orthogonal: they do not share any
features. In this case, all active neurons are coding for a pattern only. In the
second case, vectors are not orthogonal, so some neurons are coding for more
than one pattern. We implement a learning stage, during which input memory
patterns are stored, and a retrieval stage, in which the network activates some
memory patterns out of the stored ones. A variable number of memory patterns is
randomly generated and stored in long-term memory via updating of connection
weights by a one-shot Hebbian mechanism: if two connected neurons i and j
(belonging to different modules) are active at the same time, the synaptic efficacy
of their connection (wij) is increased. In this work wij is defined as

wij =
1
M

1
F

(1 − exp (−(
1
P

P∑
p=1

Si(p)Sj(p)))), (4)

where Sl(p)=1 if neuron l is active for pattern p, Sl(p)=0 otherwise; P is the
number of stored patterns. The learned connection weights are kept costant
during memory retrieval and successive simulations. In the later section, we
report results concerning the multiple retrieval dynamics of the network. We are
interested on the retrieval of patterns which share features and which do not.
The numerical integration was done by using a fixed-step fourth-order Runge-
Kutta method. The integration step-size was chosen equal to 0.05 ms to compare
our results with experiments.

3 Results and Discussion

3.1 Retrieval Dynamics: Results and Discussion

In order to investigate the retrieval dynamics of the network, we study the tem-
poral firing state of the neurons which are activated by input patterns (working-
memory [19]). We activate those neurons coding for the 16 features of a given
pattern, by setting the external input current Ii in a chaotic regime, randomly
between 3.0 and 3.1 (Ii is equal to 0 for inactive neurons). We are interested
on what happens when the retrieved patterns are more than one, and when
they share some features (SF) or not (NSF). Simulations were run with a vari-
able number of stored patterns, retrieved patterns and shared features. Here,
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for the sake of simplicity, we report the results concerning two simulation con-
ditions: the retrieval of two NSF patterns and that of two SF patterns with
three shared features. In both conditions the number of stored patterns P is
equal to 15. In order to characterize the degree of correlation within and be-
tween patterns, we analyze the normalized correlation functions with variable
lag τ , between the time series x(t), y(t) generated by the membrane potential
X of the active neurons. In Figs.2-3 the maxima of correlation functions defined
as Cxy = max(τ){ 〈x(t−τ)y(t)〉t−〈x〉〈y〉

σxσy
} are plotted, where 〈.〉 and σ denote time

averages and standard deviations respectively. As the binarization is a standard
type of manipulation of the neural signals, we use the same correlation analysis
with the binarized time series of the membrane potential. We define a threshold
(taken here as thr = 0) to encode the membrane potential X(t) of the neurons
as a string of 0’s and 1’s (X(t) = 1 when X(t) > thr and X(t) = 0 other-
wise). This analysis is done in order to determine if this different format encodes
the same information as non binarized signals, and if this information is suffi-
cient to describe the correlation structure of the retrieved patterns. We expect
that this structure does not change dramatically for the binarized time series,
due to the fact that the temporal informations about the spikes (their temporal
position, length and separation from other spikes) are maintained in binarized
time series.

Fig. 2. Retrieval of two patterns with Not Shared Features. Maxima of correlation

functions between time series (left) and binarized time series (right) of the membrane

potential of active neurons (16 for Pattern I and 16 for Pattern II). Within each matrix:

the maxima values for the 16 pairs of neurons belonging to Pattern I and Pattern I

(top-left), Pattern I and Pattern II (top-right), Pattern II and Pattern I (bottom-left),

Pattern II and Pattern II (bottom-right). Values are represented using grayscales, from

0 (black) to 1 (white).
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Retrieval of Patterns with Not Shared Features (NSF). In this simula-
tion condition, we activate two NSF patterns (Pattern I and Pattern II) out of
the P stored patterns. We have 32 active neurons, each one coding for one pat-
tern only. By analyzing the structure of correlation functions for the binarized
and non binarized time series, we find stronger correlations between neurons
coding for the same pattern, and weaker correlations between neurons coding
for different patterns (Fig.2). The maxima of correlation functions are greater
for non binarized time series compared to binarized time series, but the structure
of the matrix is similar.

Retrieval of Patterns with Shared Features (SF). In this second condi-
tion, the network retrieves two SF patterns which share three features (there are
three neurons which are coding for both Pattern I and Pattern II). By evalu-
ating maxima of correlation functions for the binarized and non binarized time
series (Fig.3), we observe stronger correlations between neurons coding for the
same pattern and weaker correlations between neurons coding for different pat-
terns, except for those neurons coding for shared features: they are correlated
with neurons coding for both Pattern I and Pattern II. As in NSF condition,
the maxima of correlation functions are greater for non binarized time series
compared to binarized time series, but the structure of the matrix is similar.
The neuronscoding for shared features are correlated with neurons coding for

Fig. 3. Retrieval of two patterns with three Shared Features. Maxima of correlation

functions between time series (left) and binarized time series (right) of the membrane

potential of active neurons (16 for Pattern I and 16 for Pattern II). Within each matrix:

the maxima values for the 16 pairs of neurons belonging to Pattern I and Pattern I

(top-left), Pattern I and Pattern II (top-right), Pattern II and Pattern I (bottom-left),

Pattern II and Pattern II (bottom-right). Values are represented using grayscales, from

0 (black) to 1 (white).
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Fig. 4. Left: from top, the first time series is the membrane potential of a neuron coding

for Pattern I only (PI), second one for Pattern I and Pattern II (S), and the third one

for Pattern II only (PII). Over the time series the mobile window (w = 100 msec) for

MWC is depicted. Right: the MWC between the shared neuron S and the two neurons

coding for one pattern only (PI and PII), are plotted, as a function of time shift.
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Fig. 5. Left: from top, the first time series is the binarized membrane potential of a

neuron coding for Pattern I only (PI), second one for Pattern I and Pattern II (S),

and the third one for Pattern II only (PII). Over the time series the mobile window

(w = 100 msec) for MWC is depicted. Right: the MWC between the shared neuron

S and the two neurons coding for one pattern only (PI and PII), are plotted, as a

function of time shift.

Pattern I and Pattern II in a nonstationary way. In order to investigate this
non-stationarity, we introduce the Mobile Window Correlation (MWC) (see next
section).
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Fig. 6. The maximum of correlation functions between time series of neurons coding

for the three shared features in SF simulation condition (neurons 3, 13 and 15 from

Fig.3)

Mobile Window Correlation (MWC). The Mobile Window Correlation is
defined as MWC(θ) = 〈xy〉−〈x〉〈y〉

σxσy
, where the averages and the standard devia-

tions are evaluated in the mobile (synchronous) window [θ − w/2, θ + w/2]. We
analyze the MWC, as a function of the time shift, for the time series of a neu-
ron coding for both patterns (indicated with ’S’, in Fig.4 for non binarized time
series and in Fig.5 for binarized) and two neurons, the first coding for Pattern
I (MWC(PI,S)) and the second for Pattern II (MWC(PII,S)) only. As shown in
Fig.4 and Fig.5, the shared neuron S is alternatively correlated with the neurons
coding for the two patterns (PI and PII).

3.2 Hierarchical Organization in Neural Representation

Overall, the results of the correlation analysis show that units that are coding
for shared features tend to be more strongly correlated among them than units
that are coding for item specific features belonging to the same pattern (Fig.6).
In the model it is therefore possible to disclose the emergence of pools of units
coding for shared features. We suggest that these pools of units are represen-
tative of super-ordinate information with respect to what is coded at the level
of Shared Features. In the semantic memory system, the stronger correlation
between shared features could be at the base of the hierarchical structure of the
memory representations.

4 Discussion

Previous connectionist models of semantic memory assuming feature-based rep-
resentations [5] and point attractor dynamics [20] have proven to be a suitable
tools to investigate and explain a great deal of cognitive and neuropshychological
data. What is therefore the main advantage obtained by shifting to a chaotic
dynamic regime? Our results enhance the role of chaotic dynamics in allowing
much greater flexibility of semantic representations during memory retrieval.
In fact, in our model the same semantic features can be dynamically allocated
to different memory representations by alternating their synchronization state
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with different pools of units. Furthermore the same mechanism is able to sustain
the separation and concurrent retrieval of partially overlapping memory repre-
sentations, and avoids spurious synchronization of unrelated semantic features.
Neither attractor networks with Hopfield dynamics [20] nor models resorting to
static synchronization of neural activities [21] are able to solve this computa-
tional problem. We would like to speculate that this mechanisms could play a
relevant role in other cognitive domains, possibly linked to frontal lobes func-
tions, such as conflict resolution and coherence assessment [11]. In an attempt
to provide a formal description of dynamic synchronicity, we introduce the Mo-
bile Window Correlation Analysis. In the present set of simulations dynamic
synchronization shows up even when we take into account the spiking signals
alone and leave out the contribution of sub-threshold neural activity (Fig.5).
Nevertheless, it appears that the alternate synchronization to different pools of
features is more neatly defined when the whole signal is considered (Fig.4), e.g.
when the sub-threshold activity of the units is also taken into account.

5 Conclusions

In the present work we presented a toy model of the semantic memory system
in which semantic features are coded by Hindmarsh-Rose neurons in the chaotic
regime. We devised a formal method to quantify the level of synchronous and
asynchronous activity among units coding for Shared and Not Shared Features,
and we applied it to the whole signal and to different manipulated neural signals,
in which the contribution of sub-threshold activity was ruled out. Although the
emergence of a hierarchical structure is evident in all cases, the synchronization
shifts that allow for the same feature to participate in the retrieval of multiple
semantic memory representations appears to be better defined when the sub-
threshold activity is also taken into account. Based on our results, we suggest
that the structure of correlations typical of groups of Shared Features would be
more robust with respect to damage when compared to the one of Not Shared
Features. Further simulations will empirically address this issue. Overall, our
results suggest that chaotic dynamics might play a relevant role in allowing for
flexible composition of elementary representational states in cognition.
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Abstract. Semantic Web Services should make it easier for a user to find the 
needed information on Web by using natural language queries, instead of sim-
ple keywords like in search engines. It has been widely recognized that the 
main problem in the implementation of this idea is the problem of semantic rep-
resentation, the same problem that AI researchers were trying to solve for a 
long time. Various ontology and schema languages are used in Semantic Web 
to represent the semantics of Web pages, but they require an extensive effort to 
translate the existing Web pages. We propose a new knowledge representation 
technique, so called Hierarchical Semantic Form, together with a supporting 
SOUL algorithm, which should provide a rudimentary understanding of exist-
ing, non-annotated Web pages, thus eliminating the need for their laborious 
translation. As an example we have implemented a prototype Semantic Web 
Service that gives information about flights stored in an ordinary Web page. 

1   Introduction 

Nowadays, Internet represents a very useful medium for information retrieval, be-
cause it stores a vast quantity of data. However, at the same time this vast quantity of 
information introduces a limit for even wider use of Internet, because it becomes 
difficult for a human to find the relevant Web site [1]. As a response, many search 
engines were introduced, but the problem still exists; when you get thousands of hits, 
it is not easy to locate the right one.  

Web community recognized the importance of the problem and launched Semantic 
Web [2] in an attempt to allow computer programs (esp. intelligent agents) to search 
the Web (using semantic categories instead of keywords) and find the needed infor-
mation for a user. However, computers are not able to extract semantic categories 
from Web pages in their current form (HTML), hence new knowledge representation 
techniques have been proposed to represent the meaning of Web pages. 

Although the problem of semantic representation emerged again in Semantic Web, 
this is not a new problem. The same problem was recognized by researchers in the 
field of Artificial Intelligence, and since then, many knowledge representation tech-
niques have been proposed [3], [4]: logic formalism, semantic nets, conceptual de-
pendencies, frames (schemas), scripts, rules, etc. In Semantic Web different ontology 
and schema languages such as XOL [5], SHOE [6], OML [7], RDFS [8], 
DAML+OIL[9], OWL [10], are used to represent the semantics.  
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These techniques can be used to represent semantics and proved useful in  
many applications, although they have some drawbacks. All these languages and  
formalisms represent a kind of meta-language in which knowledge should be repre-
sented. However, these meta-languages have a form different from natural language. 
As a consequence, after meta knowledge (definitions of semantic categories and rela-
tions), has been defined, objects from the domain of application must be translated 
from natural language form using the selected representation. In case of Semantic 
Web this means translation of billions of existing Web pages, which is hard to  
imagine. 

Unlike ontology and schema languages which are used to represent semantics only, 
Hierarchical Semantic Form (HSF) [11] can be used to represent semantics, but also 
grammar rules, which are used by Space Of Universal Links (SOUL) algorithm to 
parse natural language input and recognize semantic categories. This way HSF with 
SOUL provides the necessary base for rudimentary understanding of natural language 
content. 

In this paper we will describe first, on an example of flight search, how semantics 
and grammar rules are represented using HSF, and then we will briefly describe the 
capabilities of a flight search prototype implemented as a Semantic Web Service. 

2   Hierarchical Semantic Form 

The Hierarchical Semantic Form (HSF) can be used to represent various kinds of 
syntax and semantic categories as well as relationships between these syntax and 
semantic categories. The automatic extraction of semantic categories and relations 
between them is provided by the SOUL (Space Of Universal Links) algorithm, which 
gives support to the Hierarchical Semantic Form. HSF uses two data types, groups 
and links, to build the hierarchy of categories. 

The group data type (Fig. 1.a) designates characters, a group of characters, words, 
a group of words, sentences, etc. Except at the lowest level, where groups represent 
single characters, this data abstraction is used to represent sequences at different lev-
els of hierarchy (a group points to the first link of a sequence). One group can appear 
in different contexts, so it can have many associated links (for each context – one 
link). This way a unique representation of category is provided.  

The link data type (Fig. 1.b) enables the creation of sequences at different hierar-
chy levels (sequences of characters, words, group of words, sentences, etc.). The main 
role of links is to represent categories (groups) in different contexts. For each new 
context where category appears, we need a new link. A link points to group it repre-
sents within the sequence, but also to predecessing link and all successive links (de-
fining the context of the category). If a link is the last in the sequence of links, instead 
to successive links it points to a group that represents this sequence. 

When we read a sentence: 

“There is an AlItalia flight AZ423/AZ1019 from Berlin to Rome departing at 06:50 
and arriving at 11:30 on Sunday.” 
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Fig. 1. Basic data types 

    Our brain could recognize the following semantic categories: 

<airline-flight> = “AlItalia flight” 
<flight-number> = “AZ423/AZ1019” 
<from-phrase> = “from Berlin” 
<to-phrase> = “to Rome” 
<departure-time> = “departing at 06:50” 
<arrival-time> = “arriving at 11:30” 
<day-of-week> = “Sunday” 

These semantic categories represent our understanding of the sentence. Using 
SOUL Commander, a kind of Natural Language Processing shell, we can define vari-
ous semantic categories. The <flight-number> semantic category can be defined using 
the following commands: 

Definition: “AZ” is a “<airline-code>” 
Definition: “AZ423” is a “<flight-number>” 
Definition: “AZ423/AZ1019” is a “<flight-number>” 

thus producing the following grammar rules: 

<airline-code> ::= AZ 
<flight-number> = <airline-code><number> 
<flight-number> = <flight-number>/<flight-number> 

In the same way we can define other semantic categories. Finally, using SOUL 
Commander we can define that only the sentences containing <flight-number>, 
<from-phrase>, <to-phrase>, <departure-time>, <arrival-time> and <day-of-week> 
semantic categories will be understood as flight definitions. Using these definitions, 
SOUL Commander will be able to recognize the following flight definitions although 
it will not understand all the words: 

“On Saturday, the Italian national airline, AlItalia, has a flight from Rome to Ber-
lin, AZ1020/AZ422, arriving at 11:30 and departing at 07:05.” 

“AlItalia has a new flight, AZ429/AZ1043, on Sunday departing at 17:10 from 
Berlin and arriving at 21:35 to Rome.” 

After recognizing the flight definition, SOUL Commander creates its representa-
tion using the Hierarchical Semantic Form (Fig. 2). 

associated links 

first link 

successive links first link

associated group 

a) group b) link
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Fig. 2. Flight definition in HSF 

Notice that “AZ” group is represented only once within “AZ429/AZ1043” group 
(Fig. 3).  

 

Fig. 3. HSF representation of “AZ429/AZ1043” group 
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Grammar rules are represented in HSF using the keyword, <is-a>. As an example, 
a grammar rule: 

<flight-number> = <airline-code><number> 

will be represented in HSF like in Fig. 4. 

 
Fig. 4. Complex grammar rule in HSF 

With the semantic categories defined so far SOUL Commander will show a poor 
performance. It will be able to process only AlItalia flights between Berlin and Rome 
with a very limited understanding capability. However, it is easy to define codes for 
other airlines and new towns to be able to process more flights. Similarly, by adding 
few new semantic categories like <departure-phrase>, <arrival-phrase>, <from-to>, 
<time-phrase> and <part-of-day>, SOUL Commander understanding capabilities will 
be enhanced, and it will now be able to process the flight definitions like: 

“Welcome aboard on a Lufthansa Berlin-Paris flight LH4310 departing at 5:25 in 
the afternoon and arriving at 7:05 PM each Sunday.” 

“Air France announces promotional prices for a flight AF1604 leaving Paris at 11 
o’ clock in the morning and arriving at Rome at 13:05 on Saturday and Sunday.” 

The final form of a flight definition will contain the following semantic categories: 

<flight-number> <from-phrase> <to-phrase> <from-to> 
<departure-phrase> <arrival-phrase> <departure-time> 
<arrival-time> <day-of-week> 

SOUL Commander will process a sentence as a flight definition if it contains in-
formation about flight number, departure town (<from-phrase>, <from-to>, <depar-
ture-phrase>), arrival town (<to-phrase>, <from-to>, <arrival-phrase>), departure 
time (<departure-phrase>, <departure-time>), arrival time (<arrival-phrase>, <arrival-
time>), and at least one day of week. Of course, this form doesn’t cover all possible 
cases for flight definitions, but as we already saw, by adding new semantic categories, 
understanding capabilities can be enhanced. 

<airline-code> <number> <flight-number> <is-a>

<airline-code> <number> 
<is-a> <flight-number> 
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In a similar way, by adding some new semantic categories (<flight-time-list>, 
<flight-list>, <airline>, <flight>, <date>, <relative-date>), we can define a general 
form of a query: 

<flight-time-list> <flight-list> <airline> <flight> 
<from-phrase> <to-phrase> <from-to> <departure-phrase> 
<arrival-phrase> <departure-time> <arrival-time> <time-
phrase> <time> <part-of-day> <day-of-week> <date> 
<relative-date> 

When processing a query, SOUL algorithm performs partial parsing and recog-
nizes some of the semantic categories from query definition. Code underlying this 
query request checks first if the query contains the semantic category <flight> (either 
directly, or within more complex semantic categories <flight-time-list> and <flight-
list>), departure town (<from-phrase>, <from-to> <departure-phrase>), arrival town 
(<to-phrase> <from-to> <arrival-phrase>) and date of flight (<day-of-week> <date> 
<relative-date>). If these basic semantic categories have been found, query will be 
executed.  

The semantic categories (<from-town>, <to-town>, <day-of-week>) from the 
query are matched with the same semantic categories from flight definitions and then 
missing information is found (e.g. flight number, departure time, arrival time and 
airline). 

The flight query can contain some constraints on time or on the number of flights 
that should be presented. The time constraints can be set on departure or arrival time, 
or both: 

“I need flights from Berlin to Rome arriving at 5 o’clock in the afternoon next Sun-
day.” 

“Please, find me a flight from Berlin to Rome departing in the morning and arriv-
ing before 1 PM on 10th of April.” 

“What flights are there from Rome to Berlin departing after 6:00 and arriving be-
tween 1 PM and 14:00 on 10/04?” 

If the exact time constraint is set (e.g. at 5 o’clock in the afternoon), then the flights 
between 16:30 and 17:30 will be searched. 

If the query matches many flights, then the list length can be constrained by requir-
ing only “first flight”, “first three flights” or “last five flights”. 

Flight definitions in the flight base contain days of week, so if the query contains a 
date (month and day), it will be converted to day of week. 

3   Flight Search Example 

ARPA launched Spoken Language Systems program in 1988, a five-year program 
centered around a pseudo-application called the Air Travel Information Service 
(ATIS). An idea was to develop an interactive system for querying the ATIS database 
and essentially going through all the steps it would take to book a real flight. Al-
though the emphasis was on speech recognition, due attention was also paid to Natu-
ral Language Processing. A number of well-functioning prototypes of the ATIS  
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application was developed, however neither of them reached the status of a product. 
One can come to the conclusion that the technology was not mature enough to pro-
vide a satisfactory solution. 

Inspired with ATIS project, we have developed a prototype Flight Information Ser-
vice (FIS), a Semantic Web Service, which should provide information about airline 
timetables. We have defined first meta knowledge, i.e. the definitions of semantic 
categories and relations used in this domain, and then we defined a flight base (using 
an ordinary HTML file) in natural language for major European airlines. 

FIS incorporates SOUL Commander, all grammar rules and stores the context of 
dialog with user. FIS is storing the context which is deep enough to find all basic 
information required for a flight query, departure and arrival city and day (date) of 
flight. One possible conversation between user and FIS is represented in Fig. 5. 

 

Fig. 5. Simple conversation 
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However, FIS is also able to process complex queries such as:  

“What flights are there from Rome to Berlin departing before 10:00 o’clock in the 
morning and arriving between 1 PM and 14:00 on April the 10th?” 

FIS will find only one flight matching all these constraints, a Lufthansa flight, 
LH3853/LH180, departing at 7:00 and arriving at 13:30. 

If we would like to see some more flights, we could relax a bit constraint on de-
parture and arrival time by typing: 

“Departing after 10:00 and arriving between 2 PM and 18:00” 

and FIS will now present 7 flights (Fig. 6), taking into account new constraints and 
context information about departure city (Berlin), arrival city (Rome) and flight date 
(April the 10th). 

 

Fig. 6. Partial query 

If we need some additional (or more restricted) information, we need not repeat the 
whole query. It is enough that we type only the changed parts, and FIS will find the 
missing information from the context. 

Notice that FIS could be relatively easy upgraded to TIS (Travel Information Ser-
vice) by defining few semantic categories, four new commands and timetables for bus 
and train trips.  
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4   Conclusions 

The main obstacle in broader use of Semantic Web lies in the necessity for translation 
of existing Web pages into one of ontology or schema languages. However, this labo-
rious job of translating existing Web pages could be avoided if some kind of rudimen-
tary understanding of natural language is provided. 

In this paper we have proposed a Hierarchic Semantic Form (HSF), which is a hi-
erarchical equivalent of plain text form, where all semantic categories are explicitly 
represented and hierarchically organized. HSF and SOUL (Space of Universal Links) 
algorithm can be used to learn sequences representing natural language input, which 
easies a lot the definition of semantic categories and relations, and eliminates the need 
for manual translation of existing Web pages. 

To validate the ideas of HSF and SOUL we have developed a flight search proto-
type, Flight Information Service (FIS), which was inspired by the ARPA project 
ATIS (Air Travel Information System). FIS was implemented as a Semantic Web 
Service, which uses an ordinary HTML file with flight timetables defined in natural 
language, processes natural language queries and presents the flights that satisfy the 
constraints set by user. FIS is scalable, because new semantic categories can be easily 
added to enhance its understanding capabilities and new airlines and new flights can 
be also defined to increase usefulness of service, robust, because it is not confused by 
unknown words and phrases or by syntactically incorrect queries, and portable, be-
cause semantic categories used in FIS, could be reused, for example, in an informa-
tion service about bus or railway timetables. 
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Abstract. To make progess in understanding human brain functional-
ity, we will need to understand its basic functions at an abstract level.
One way of accomplishing such an integration is to create a model of
a human that has a useful amount of complexity. Essentially, one is
faced with proposing an embodied “operating system” model that can
be tested against human performance. Recently technological advances
have been made that allow progress to be made in this direction. Graph-
ics models that simulate extensive human capabilities can be used as
platforms from which to develop synthetic models of visuo-motor be-
havior. Currently such models can capture only a small portion of a full
behavioral repertoire, but for the behaviors that they do model, they can
describe complete visuo-motor subsystems at a level of detail that can be
tested against human performance in realistic environments. This paper
outlines one such model and shows both that it can produce interesting
new hypotheses as to the role of vision and also that it can enhance our
understanding of visual attention.

1 Introduction

All brain operations are situated in the body [1]. Even when the operations
are purely mental, they reflect a developmental path through symbols that are
grounded in concrete interactions in the world. The genesis of this view is at-
tributed to the philosopher Merleau-Ponty [2], but more recently it has been
taken as a tenet of research programs for the reason that tremendous computa-
tional economies result. Essentially the body does a large part of the necessary
computation, leaving the brain with much less to do.

Research programs that focus on embodiment have been facilitated by the
development of virtual reality (VR) graphics environments. These VR environ-
ments can now run in real time on standard computing platforms. The value of
VR environments is that they allow the creation of virtual agents that imple-
ment complete visuo-motor control loops. Visual input can be captured from the
rendered virtual scene, and motor commands can be used to direct the graphical
representation of the virtual agent’s body. Terzoupolous and Rabie [3] pioneered
the use virtual reality as a platform for the study of visually guided control.
Embodied control has been studied for many years in the robotics domain,
but virtual agents have enormous advantages over physical robots in the areas
of experimental reproducibility, hardware requirements, flexibility, and ease of
programming.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 347–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Embodied models can now be tested using new instrumentation. Linking
mental processing to visually-guided body movements at a millisecond timescale
would have been impractical just a decade ago, but recently a wealth of high res-
olution monitoring equipment has been developed for tracking body movements
in the course of everyday behavior, particularly head, hand and eye movements
(e.g. [4]). This allows for research into everyday tasks that typically have rela-
tively elementary cognitive demands but require elaborate and comprehensive
physical monitoring. In these tasks, overt body signals provide a direct indication
of mental processing.

During the course of normal behavior humans engage in a wide variety of
tasks, each of which requires certain perceptual and motor resources. Thus there
must be mechanisms that allocate resources to tasks. Understanding this re-
source allocation requires an understanding of the ongoing demands of behavior,
as well as the nature of the resources available to the human sensori-motor sys-
tem. The interaction of these factors is complex, and that is where the virtual
human platform can be of value. It allows us to imbue our artificial human with
a particular set of resource constraints. We may then design a control architec-
ture that allocates those resources in response to task demands. The result is
a model of human behavior in temporally extended tasks that may be tested
against human performance.

We refer to our own virtual human model as ‘Walter.’ Walter has physical
extent and programmable kinematic degrees of freedom that closely mimic those
of real humans. His graphical representation and kinematics are provided by the
DI-guy package developed by Boston Dynamics. This is augmented by the Vortex
package developed by CMLabs for modeling the physics of collisions. The crux
of the model is a control architecture for managing the extraction of information
from visual input that is in turn mapped onto a library of motor commands.
The model is illustrated on a simple sidewalk navigation task that requires the
virtual human to walk down a sidewalk and cross a street while avoiding obstacles
and collecting litter. The movie frame in Figure 1 shows Walter in the act of
negotiating the sidewalk which is strewn with obstacles (blue objects) and litter
(purple objects) on the way to crossing a street.

2 Behavior Based Control

As pointed out by Newell [5], any system that must operate in a complex and
changing environment must be compositional, that is It has to have elemental
pieces that can be composed to create its more complex structures. Figure 2 il-
lustrates two broad compositional approaches that have been pursued in theories
of cognition, as well as in robotics. The first decomposition works on the assump-
tion that the agent has a central repository of symbolic knowledge. The purpose
of perception is to translate sensory information into symbolic form. Actions are
selected that result in symbolic transformations that bring the agent closer to
goal states. This sense-plan-act approach is typified in the robotics community
by early work on Shakey the robot [6], and in the cognitive science community
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Fig. 1. The Walter simulation. The insets show the use of vision to guide the humanoid

through a complex environment. The upper inset shows the particular visual routine

that is running at any instant. The lower insert shows the visual field in a head-centered

frame.

by the theories of David Marr [7]. In principle, the symbolic planning approach
is very attractive, since it suggests that sensation, cognition and action can be
studied independently, but in practice each step of the process turns out to be
difficult to characterize in isolation. It is hard to convert sensory information
into general purpose symbolic knowledge, it is hard to use symbolic knowledge
to plan sequences of actions, and it is hard to maintain a consistent and up to
date knowledge base.

The difficulties with the symbolic planning approach have led to alternate
proposals. In the robotics community Brooks [8] has attempted to overcome
these difficulties by suggesting a radically different decomposition, illustrated in
Figure 2B. Brooks’ alternate approach is to attempt to describe whole visuo-
motor behaviors that have very specific goals. Behavior-based control involves
a different approach to composition than planning-based architectures: simple
microbehaviors are sequenced and combined to solve arbitrarily complex prob-
lems. The best approach to attaining this sort of behavioral composition is an
active area of research. Brooks’ own subsumption architecture worked by orga-
nizing behaviors into fixed hierarchies, where higher level behaviors influenced
lower level behaviors by over-writing their inputs. Subsumption works spectacu-
larly well for trophic, low-level tasks, but generally fails to scale to handle more
complex problems [9]. For that reason we have chosen a more flexible control
architecture.

Our version of Brooks’ behavior-based control centers around primitives that
we term microbehaviors. A microbehavior is a complete sensory/motor routine
that incorporates mechanisms for measuring the environment and acting on it
to achieve specific goals. For example a collision avoidance microbehavior would
have the goal of steering the agent to avoid collisions with objects in the en-
vironment. A microbehavior has the property that it cannot be usefully split
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Perception Cognition Action

A

B

a vison module

a sensory-motor behavior

Fig. 2. Two approaches to behavioral research contrasted. A) In the Marr paradigm

individual components of vision are understood as units. B) In the Brooks paradigm

the primitive unit is an entire behavior.

into smaller subunits. Walter’s microbehavior control architecture follows more
recent work on behavior based control (e.g. [10,11]) that allows the agent to
address changing goals and environmental conditions by dynamically activat-
ing a small set of appropriate behaviors. Each microbehavior is triggered by
a template that has a pattern of internal and environmental conditions. The
pattern-directed activation of microbehaviors provides a flexibility not found in
the fixed subsumption architecture.

3 The Human Operating System Model

We think of the control structure in terms of an operating system as the basic
functions are needed to implement it are similar as shown in Figure 3. The be-
haviors themselves, when they are running, each have distinct jobs to do. Each
one interrogates the sensorium with the objective of computing the current state
of the process. Once the state of each process is computed then the action rec-
ommended by that process is available. Such actions typically involve the use
of the body. Thus an intermediate task is the mapping of those action recom-
mendations onto the body’s resources. Finally the behavioral composition of the
microbehavior set itself must be chosen. We contend that, similar to multipro-
cessing limitations on silicon computers, that the brain has a multiprocessing
constraint that allows only a few microbehaviors to be simultaneously active.
This constraint, we believe, is the same as that for working memory.

Addressing the issues associated with this vantage point leads directly to an
abstract computational hierarchy. The issues in modeling vision are different at
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Fig. 3. The venue of the behavioral model defines computations at three distinct levels.

1) At the most basic level sensory routines define the state of a behavior. 2) At an

intermediate level, behaviors compete with each other for the body’s resources. 3) At

the most abstract level the composition of behaviors must be continually adjusted.

Table 1. The organization of human visual computation from the perspective of the

microbehavior model

Abstraction
Level

Problem Being Addressed Role of Vision

Behavior Need to get state information Provide State Estimation

The current state needs to be updated to
reflect the actions of the body

None

Arbitration Active behaviors may have competing de-
mands for body, legs, eyes. Conflicts have
to be resolved

Move gaze to the location
that will minimize risk

Context Current set of behaviors B is inadequate
for the task. Have to find a new set

Test for off-agenda exigen-
cies

each level of this hierarchy. Table 1 shows the basic elements of our hierarchy
highlighting the different roles of vision at each level.

The behavior level of the hierarchy addresses the issues in running a mi-
crobehavior. These are each engaged in maintaining relevant state information
and generating appropriate control signals. Microbehaviors are represented as
state/action tables, so the main issue is that of computing state information
needed to index the table. The arbitration level addresses the issue of managing
competing behaviors. Since the set of active microbehaviors must share per-
ceptual and motor resources, there must be some mechanism to arbitrate their
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needs when they make conflicting demands. The context level of the hierarchy
maintains an appropriate set of active behaviors from a much larger library of
possible behaviors, given the agents current goals and environmental conditions.

The central tenet of Walter’s control architecture is that, although a large
library of microbehaviors is available to address the goals of the agent, at any
one time, only a small subset of those are actively engaged as shown in Figure 4.
The composition of this set is evaluated at every simulation interval, which we
take to be 300 milliseconds commensurate with the eyes’ average fixation time.

Fig. 4. The model assumes that humans have an enormous library of behaviors that can

be composed in small sets to meet behavioral demands. When an additional behavior

is deemed necessary it is activated by the ’operating system.’ When a running behavior

is no longer necessary, it is deactivated.

The issues that arise for vision are very different at the different levels of the
hierarchy. Moving up the levels:

1. At the level of individual behaviors, vision provides its essential role of com-
puting state information. The issue at this level is understanding how vision
can be used to compute state information necessary for meeting behavioral
goals. Almost invariably, the visual computation needed in a task context
is vastly simpler than that required general purpose vision and, as a conse-
quence, can be done very quickly.

2. At the arbitration level, the principal issue for vision is that the center of gaze
is not easily shared and instead generally must be allocated sequentially to
different locations. Eye tracking research increasingly is showing that all gaze
allocations are purposeful and directed toward computing a specific result
[12,13,14]. Our own model [15] shows how gaze allocations may be selected
to minimize the risk of losing reward in the set of running behaviors.

3. At the context level, the focus is to maintain an appropriate set of microbe-
haviors to deal with internally generated goals. One of these goals is that
the set of running behaviors be response to rapid environmental changes.
Thus the issue for vision at this level is understanding the interplay between
agenda-driven and environmentally-driven visual processing demands.

This hierarchy immediately presents us with a related set of questions: How
do the microbehaviors get perceptual information? How is contention managed?
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How are sets of microbehaviors selected? In subsequent sections, we use the
hierarchical structure to address each of these in turn, emphasizing implications
for vision.

4 State Estimation Using Visual Routines

The first question that must be addressed is how individual microbehaviors
map from sensory information to internal state descriptions. The position we
adopt is that this information is gathered by deploying visual routines. These
are a small library of special-purposed functions that can be composed. The
arguments for visual routines have be made by [16,17,18]. The main one is that
the representations of vision such as color and form, are problem-neutral in that
they do not contain explicitly the data upon which control decisions are made.1

and thus an additional processing step must be employed to make decisions. The
number of potential decisions that must be made is too large to pre-code them
all. Visual routines address this problem in two ways: 1) routines are composable
and 2) routines process visual data in an as-needed fashion.

To illustrate the use of visual routines, we describe the ones that create
the state information for three of Walter’s microbehaviors: collision avoidance,
sidewalk navigation and litter collection. Each of these requires specialized pro-
cessing. This processing is distinct from that used to obtain the feature images of
early vision even though it may use such images as data. The specific processing
steps are visualized in Figure 5.

– Litter collection is based on color matching. Litter is signaled in our simula-
tion by purple objects, so that potential litter must be isolated as being of
the right color and also nearby. This requires combining and processing the
hue image with depth information. The result of this processing is illustrated
in Figure 5b.

– Sidewalk navigation uses color information to label pixels that border both
sidewalk and grass regions. A line is fit to the resulting set of pixels which
indicates the estimated edge of the sidewalk. The result of this processing is
illustrated in Figure 5c.

– The collision detector uses a depth image. A depth image may be created
by any of a number of cues, (stereo, kinetic depth, parallax depth, etc.) but
for collisions, it must be processed to isolate potential colliders. The result
of this processing is illustrated in Figure 5d. A study with human subjects
shows that they are very good at this, integrating motion cues with depth
to ignore close objects that are not on a collision course [19].

Regardless of the specific methods of individual routines, each one outputs
information in the same abstract form: the state needed to guide its encompass-
ing microbehavior. The next section describes how Walter can learn to use this
information to guide its parent microbehavior.
1 Marr recognized this difficulty of processing visual data prior to knowing what it

will be needed for implicitly in his ’principle of least commitment’ [7].
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Fig. 5. The Visual Routines that compute state information. a) Input image from

Walter’s viewpoint. b) Regions that fit the litter color profile. Probable litter locations

are marked with circles. c) Processed image for sidewalk following. Pixels are labeled

in white if they border both sidewalk and grass color regions. The red line is the most

prominent resulting line. b) One dimensional depth map used from obstacle avoidance

(not computed directly from the rendered image).

5 Learning Microbehaviors

Once state information has been computed, the next step is to find an appropri-
ate action. Each microbehavior stores actions in a state/action table. Such tables
can be learned by reward maximization algorithms: Walter tries out different ac-
tions in the course of behaving and remembers the ones that worked best in the
table. The reward-based approach is are motivated by studies of human behavior
that show that the extent to which humans make such trade-offs is very refined
[20] as well as studies using monkeys that reveal the use of reinforcement signals
in a way that is consistent with reinforcement learning algorithms [21].

Formally, the task of each microbehavior is to map from an estimate of the rel-
evant environmental state s, to one of a discrete set of actions, a ∈ A, so as to
maximize the amount of reward received. For example the the obstacle avoidance
behavior maps the distance and heading to the nearest obstacle s = (d, θ) to one of
three possible turn angles, that is, A = {−15o, 0o, 15o}. The policy is the action so
prescribed for each state. The coarse action space simplifies the learning problem.

Our approach to computing the optimal policy for a particular behavior is
based on a standard reinforcement learning algorithm, termed Q-learning[22].
This algorithm learns a value function Q(s, a) for all the state-action combina-
tions in each microbehavior. The Q function denotes the expected discounted
return if action a is taken in state s and the optimal policy is followed there-
after. If Q(s, a) is known then the learning agent can behave optimally by always
choosing arg maxa Q(s, a)(See Appendix for details). Figure 6 shows the table
used by the litter collection microbehavior, as indexed by its state information.
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Fig. 6. The central portion of the litter cleanup microbehavior after it has been learned.

The color image is used to identify the heading to the nearest litter object as a heading

angle θ and distance d. Using this state information to index the table allows the

recovery of the policy, in this case heading = −45o, and its associated value. The fact

that the model is embodied means that there is we can assume there is neural circuitry

to translate this abstract heading into complex walking movements. This is true for

the graphics figure that has a ‘walk’ command that takes a heading parameter.

Table 2. Walter’s reward schedule

Outcome Immediate Reward

Picked up a litter can 2
On sidewalk 1
Collision free 4

Each of the three microbehaviors has a two-dimensional state space. The
litter collection behavior uses the same parameterization as obstacle avoidance:
s = (d, θ) where d is the distance to the nearest litter item, and θ is the angle. For
the sidewalk following behavior the state space is s = (ρ, θ). Here θ is the angle of
the center-line of the sidewalk relative to the agent, and ρ is the signed distance
to the center of the sidewalk, where positive values indicate that the agent is
to the left of the center, and negative values indicate that the agent is to the
right. All microbehaviors use the logarithm of distance in order to devote more
of the state representation to areas near the agent. All these microbehaviors use
the same three-heading action space described above. Table 2 shows Walter’s
reward contingencies. These are used to generate the Q-tables that serve as a
basis for encoding a policy. Figure 7 shows a representation of the Q-functions
and policies for the three microbehaviors.
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Fig. 7. Q-values and policies for the three microbehaviors. Figures a)-c) show

maxa Q(s, a) for the three microbehaviors: a) obstacle avoidance, b) sidewalk follow-

ing and c) litter collection. Figures d)-f) show the corresponding policies for the three

microbehaviors. The obstacle avoidance value function shows a penalty for nearby ob-

stacles and a policy of avoiding them. The sidewalk policy shows a benefit for staying

in the center of the sidewalk θ = 0, ρ = 0. The litter policy shows a benefit for picking

up cans that decreases as the cans become more distant. The policy is to head toward

them.

When running the Walter simulation, the Q-table associated with each be-
havior is indexed every 300 milliseconds. The action that is the policy is selected
and submitted for arbitration. The action chosen by the arbitration process is
executed by Walter. This in turn results in a new Q-table index for each microbe-
havior and the process is repeated. The path through a Q-table thus evolves in
time and can the visualized as a thread of control analogous to the use of the
term thread in computer science.

6 Microbehavior Arbitration

A central complication with the microbehavior approach is that concurrently
active microbehaviors may prefer incompatible actions. Therefore an arbitration
mechanism is required to map from the demands of the individual microbehaviors
to final action choices. The arbitration problem arises in directing the physical
control of the agent, as well as in handling gaze control and each of these requires
a different solution. This is because in Walter’s environment, his heading can
be a compromise between the demands of different microbehaviors but his gaze
location is not readily shared by them. A benefit of knowing the value function for
each behavior is that the Q-values can be used to handle the physical arbitration
problem in each of these cases.
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Heading Arbitration. Since in the walking environment each behavior shares
the same action space Walter’s heading arbitration is handled by making the
assumption that the Q-function for the composite task is approximately equal
to the sum of the Q-functions for the component microbehaviors:

Q(s, a) ≈
n∑

i=1

Qi(si, a), (1)

where Qi(si, a) represents the Q-function for the ith active behavior. Thus the
action that is chosen is a compromise that attempts to maximize reward across
the set of active microbehaviors. The idea of using Q-values for multiple goal
arbitration was independently introduced in [23] and [24].

In order to simulate the fact that only one area of the visual field may be
foveated at a time, only one microbehavior is allowed access to perceptual in-
formation during each 300ms simulation time step. That behavior is allowed
to update its state information with a measurement, while the others propagate
their estimates and suffer an increase in uncertainty. The mechanics of maintain-
ing state estimates and tracking uncertainty are handled using Kalman filters
- one for each microbehavior. In order to simulate noise in the estimators, the
state estimates are corrupted with zero-mean normally distributed random noise
at each time step. The noise has a standard deviation of .2m in both the x and
y dimensions. When a behavior’s state has just been updated by its visual rou-
tine’s measurement, the variance of the state distribution will be small, but as
we will demonstrate in simulation, in the absence of such a measurement the
variance can grow significantly.

Since Walter may not have perfectly up to date state information, he must
select the best action given his current estimates of the state. A reasonable
way of selecting an action under uncertainty is to select the action with the
highest expected return. Building on Equation (1) we have the following: aE =
argmaxa E[

∑n
i=1 Qi(si, a)], where the expectation is computed over the state

variables for the microbehaviors. By distributing the expectation, and making a
slight change to the notation we can write this as:

aE = argmax
a

n∑
i=1

QE
i (si, a), (2)

where QE
i refers to the expected Q-value of the ith behavior. In practice we

estimate these expectations by sampling from the distributions provided by the
Kalman filter.

Gaze Arbitration. Arbitrating gaze requires a different approach than arbi-
trating control of the body. Reinforcement learning algorithms are best suited
to handling actions that have direct consequences for a task. Actions such as
eye movements are difficult to put in this framework because they have only
indirect consequences: they do not change the physical state of the agent or the
environment; they serve only to obtain information.
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A much better strategy is to choose to use gaze to update the behavior that
has the most to lose by not being updated. Thus, the approach taken here is to
try to estimate the value of that information. Simply put, as time evolves the
uncertainty of the state of a behavior grows, introducing the possibility of low
rewards. Deploying gaze to measure that state reduces this risk. Estimating the
cost of uncertainty is equivalent to estimating the expected cost of incorrect ac-
tion choices that result from uncertainty. Given that the Q functions are known,
and that the Kalman filters provide the necessary distributions over the state
variables, it is straightforward to estimate, this factor, lossb, for each behavior
b by sampling (See Appendix). The maximum of these values is then used to
select which behavior should be given control of gaze.

Figure 8 gives an example of seven consecutive steps of the sidewalk naviga-
tion task, the associated eye movements, and the corresponding state estimates.

TIME

a)

b)

SF

LC

OA

Fig. 8. a) An overhead view of the virtual agent during seven time steps of the

sidewalk navigation task. The blue cubes are obstacles, and the purple cylinder is

litter. The rays projecting from the agent represent eye movements; red correspond

to obstacle avoidance, blue correspond to sidewalk following, and green correspond

to litter collection. b) Corresponding state estimates. The top row shows the agent’s

estimates of the obstacle location. The axes here are the same as those presented

in Figure 7. The beige regions correspond to the 90% confidence bounds before any

perception has taken place. The red regions show the 90% confidence bounds after

an eye movement has been made. The second and third rows show the corresponding

information for sidewalk following and litter collection.
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The eye movements are allocated to reduce the uncertainty where it has the
greatest potential negative consequences for reward. For example, the agent fix-
ates the obstacle as he draws close to it, and shifts perception to the other two
microbehaviors when the obstacle has been safely passed. Note that the regions
corresponding to state estimates are not ellipsoidal because they are being pro-
jected from world-space into the agents non-linear state space.

One possible objection to this model of eye movements is that it ignores
the contribution of extra-foveal vision. One might assume that the pertinent
question is not which microbehavior should direct the eye, but which location
in the visual field should be targeted to best meet the perceptual needs of the
whole ensemble of active microbehaviors. There are a number of reasons that
we choose to emphasize foveal vision. First, eye tracking studies in natural tasks
show little evidence of “compromise” fixations. That is, nearly all fixations are
clearly directed to a particular item that is task relevant. Second, results in [25]
suggest that simple visual operations such as local search and line tracing require
a minimum of 100-150ms to complete. This time scale roughly corresponds to
the time required to make a fixation. This suggests that there is little to be
gained by sharing fixations among multiple visual operations.

7 Microbehavior Selection

The successful progress of Walter is based on having a running set of microbe-
haviors Bi, i = 0, .., N that are appropriate for the current environmental and
task context. The view that visual processing is mediated by a small set of mi-
crobehaviors immediately raises two questions: 1) What is the exact nature of
the context switching mechanism? and 2) What should the limit on N be to
realistically model the limitations of human visual processing?

Answering the first question requires considering to what extent visual pro-
cessing is driven in a top down fashion by internal goals, versus being driven
by bottom up signals originating in the environment. Somewhat optimistically,
some researchers have assumed that interrupts from dynamic scene cues can ef-
fortlessly and automatically attract the brain’s “attentional system” in order to
make the correct context switch e.g [26]. However, a strategy of predominantly
bottom-up interrupts seems unlikely in light of the fact that what constitutes a
relevant cue is highly dependent on the current situation. On the other hand,
there is a strong argument for some bottom up component: humans are clearly
capable of responding appropriately to cues that are off the current agenda.

Our model of the switching mechanism is that it works as a state machine as
shown in Figure 9. For planned tasks, certain microbehaviors keep track of the
progress through the task and trigger new sets of behaviors at predefined junc-
tures. Thus the microbehavior “Look for Crosswalk” triggers the state NEAR-
CROSSWALK which contains three microbehaviors: “FollowSidewalk”, “Avoid
Obstacles”, and “Approach Crosswalk.”

Figure 9B shows when the different states were triggered on three separate
trials.
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Fig. 9. (Top left) A list of microbehaviors used in Walter’s overall navigation task. (Top

right) The diagram for the programmable context switcher showing different states.

These states are indicated in the bands underneath the colored bars below. Bottom)

Context switching behavior in the sidewalk navigation simulation for three separate

instances of Walter’s stroll. The different colored bars denote different microbehaviors

that are in control of the gaze at any instant.

This model reflects our view that vision is predominantly a top-down pro-
cess. The model is sufficient for handling simple planned tasks, but it does not
provide a straightforward way of responding to off-plan contingencies. To be
more realistic, the model requires some additions. First, microbehaviors should
be designed to error-check their sensory input. In other words, if a microbehav-
ior’s inputs do not match expectations, it should be capable of passing control
to a higher level procedure for resolution. Second, there should be a low latency
mechanism for responding to certain unambiguously important signals such as
rapid looming.

Regarding the second question of the possible number of active microbehav-
iors, there are at least two reasons to suspect that the maximum number that
are simultaneously running might be modest. The first reason is the ubiquitous
observation of the limitations of spatial working memory (SWM). The original
capacity estimate by Miller was seven items plus or minus two [27], but current
estimates favor the lower bound [28]. We hypothesize that this limitation is tied
to the number of independently running microbehaviors which we have termed
threads. The identification of the referents of SWM has always been problematic,
since the size of the referent can be arbitrary. This has lead to the denotation of
the referent as a ‘chunk,’ a jargon word that postpones dealing with the issue of
not being able to quantify the referents. The thread concept is clearer and more
specific as it denotes exactly the state necessary to maintain a microbehavior.
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The second factor limiting the number of running microbehaviors is that
large numbers of active microbehaviors may not be possible given that they
have to be implemented in a neural substrate. Cortical memory is organized
into distinct areas that have a two-dimensional topography. Furthermore spatial
information is usually segregated from feature based information so that the
neurons representing the colors of two objects are typically segregated from
the neurons representing their location. As a consequence there is no simple
way of simultaneously associating one object’s color with its location together
with another object’s association of similar properties (This difficulty is the so-
called “binding problem” [29]). Some proposals for resolving the binding problem
hypothesize that the number of active microbehaviors is limited to one, but this
seems very unlikely. However the demands of a binding mechanism may limit
the number of simultaneous bindings that can be active. Thus it is possible that
such a neural constraint may be the basis for the behavioral observation.

Although the number of active microbehaviors is limited there is reason to
believe that it is greater than one. Consider the task of walking on a crowded
sidewalk. Two fast walkers approaching each other close at the rate of 6 me-
ters/second. Given that the main source of advanced warning for collisions is
visual and that eye fixations typically need 0.3 seconds and that cortical pro-
cessing typically needs 0.2-0.4 seconds, during the time needed to recognize an
impending collision, the colliders have traveled about 3 meters, or about one and
a half body lengths. In a crowded situation, this is insufficient advance warning
for successful avoidance. What this means is that for successful evasions, the
collision detection calculation has to be ongoing. But that in turn means that it
has to share processing with the other tasks that an agent has to do. Remem-
ber that by sharing we mean that the microbehavior has to be simultaneously
active over a considerable period, perhaps minutes. Several elegant experiments
have shown that there can be severe interference when multiple tasks have to
be done simultaneously, but these either restrict the input presentation time or
the output response time [30]. The crucial issue is what happens to the internal
state when it has to be maintained for an extended period.

8 Conclusions

The focus of this paper was to introduce the issues associated with using a
graphical agent as a proto-theory of human visuo-motor behavior. One criti-
cism of such a project is that, even though the system is vastly reduced from
that needed to capture a substantial fraction of human behavior, the model as it
stands is complicated and has enough free parameters so that any data from real
human performance would be easy to fit. Although the system is complex, most
of the constraints follow from the top-level assumption of composable microbe-
haviors. Once one decides to have a set of running microbehaviors, the questions
of how many and when are they running are immediate. Furthermore they have
ready answers in observations of human behavior in the classic observations of
working memory and eye movements: Working memory suggests the number of
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Table 3. The relationships between attention and working memory and the microbe-

havior model

Abstraction
Level

Attention Working Memory

Behavior YES The contents of working memory

Arbitration YES The referents of working memory
or “chunks”

Context YES

simultaneous microbehaviors is small; eye movements suggest when a behavior
is running as each fixation is an indication of the brain’s instantaneous problem
being updated. Table 3 summarizes the relationships between the hierarchy used
by the model and the notions of attention and working memory.

The restricted number of active microbehaviors means that there must be
a mechanism for making sure that a good behavioral subset has been chosen.
Such a mechanism must interrogate the environment and 1) add needed mi-
crobehaviors as well as 2) drop microbehaviors if needed to meet the capacity
constraint.

The essential description of microbehaviors is captured by reinforcement
learning’s Q-tables that relate the states determined by vision to actions for
the motor system. Indeed the commands are in coded form, taking advantage of
known structure in the body that carries them out. Assuming the existence of
a table as is done at the reinforcement learning level finesses important details.
Thus a more detailed model is necessary to account for how the table index is
created.

The reinforcement learning venue provides a different perspective on gaze
allocation. One of the original ideas was a bottom-up view that gaze should be
drawn to the most salient locations in the scene as represented in the image,
where salience was defined in terms of the spatial conjunction of many feature
points. However recent measurements have shown that eye movements are much
more agenda driven than that predicted by bottom-up saliency models. For
example Henderson has shown that subjects examining urban scenes for people
examine place where people might be even though these can have very low feature
saliency [19]. Walter’s use of Q-tables suggest that to interpret gaze allocation,
an additional level of indirection may be required. For example, the controller
for sidewalk navigation uses gaze to update the estimate of the location of the
sidewalk. In order to predict when gaze might be allocated to do this, in our
model, requires knowing the uncertainty in the current estimate of the sidewalk
location.

The most important benefit of the kind of model presented in this paper
is that it encourages the modeler to frame experimental questions in the con-
text of integrated natural behavior. There are dramatic differences between this
perspective and traditional approaches to studying vision:
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1. The desired schedule of interrupts under normal behavior has a temporal
distribution that is very different than worst-case laboratory situations. In
the lab, subjects are typically in extremis with respect to reaction times,
whereas natural behaviors typically allow flexibility in responding.

2. In a multiple task situation, the most important task facing the deployment
of gaze is to choose the behavior being serviced. This problem is hardly
considered in the search literature which concentrates on within-task saliency
of individual targets.

3. The natural timescale for studying microbehavior components is on the or-
der of 100 to 200 milliseconds, the time to estimate state information. Below
that one is studying the process of state formation, a level of detail is inter-
esting in its own right but is below the central issues in human behavioral
modeling.

4. The context for the deployment of visual routines is reversed from a lab-
oratory situation. In that situation the typical structure of a task forces a
bottom-up description. The image is most often presented on a previously
blank CRT screen. In a natural task, the particular test needed in a gaze
deployment is known. Furthermore this test is known before the saccade is
made. Thus in the natural case the situation is reversed, the test can be
in place before the data is available. This has the result of making the test
go as fast as possible. The speed of tests may account for the fact that
fixation times in natural situations can be very short. Dwell times of 100
milliseconds are normal, less than half those observed in many laboratory
studies.

All of these observations underline the importance of graphic simulation as a
new tool in the study of human vision. While the model has extensive structure,
each component of the structure serves a specific purpose and the whole combine
to direct the performance of human behaviors. A competing performance model
might look very different but would have to address these issues.

Perhaps the most important theme in recent vision research, is that no com-
ponent of the visual system can be properly understood in isolation from the
behavioral goals of the organism. Therefore, properly understanding vision will
ultimately require modeling complete sensori-motor systems in behaving agents.
The model presented in this paper is certainly not true in all of its particulars,
and it leaves many details unspecified. However, it does provide a framework for
thinking about action-oriented human vision. The fact that developing complete
and correct models of human vision is such a difficult task should not stop us
from trying to put as many of the pieces together as possible.
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Appendix: Reinforcement Learning Details

Learning behaviors There are a number of algorithms for learning Q(s, a) [31,32]
the simplest is to take random actions in the environment and use the Q-learning
update rule [33]:

Q(s, a) ← (1 − α)Q(s, a) + α(r + γ max
a′

Q(s′, a′))

Here α ∈ (0, 1) is a learning rate parameter, γ ∈ (0, 1) is a term that deter-
mines how much to discount future reward, and s′ is the state that is reached
after action a. As long as each state-action pair is visited infinitely often in the
limit, this update rule is guaranteed to converge to the optimal value function.
The Q-learning algorithm is guaranteed to converge only for discrete case tasks
with Markovian transitions between states. Walter’s tasks are more naturally
described using continuous state variables. The theoretical foundations of con-
tinuous state reinforcement learning are not as well established as for the discrete
state case. However empirical results suggest that good results can be obtained
by using a function approximator such as a CMAC along with the Sarsa(0)
learning rule: [34]

Q(s, a) ← (1 − α)Q(s, a) + α(r + γQ(s′, a′))

This rule is nearly identical to the Q-learning rule, except that the max action
is replaced by the action that is actually observed on the next step. The Q-
functions used throughout this paper are learned using this approach. A more
detailed account of the learning procedure can be found in [35] and [36].

Choosing behaviors for a state update Whenever Walter chooses an action
that is sub-optimal for the true state of the environment, he can expect to lose
some return. We can estimate the expected loss as follows:

loss = E[max
a

∑
Qi(si, a)] − E[

∑
Qi(si, aE)]. (3)

The term on the left-hand side of the minus sign expresses the expected return
that Walter would receive if he were able to act with knowledge of the true state
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of the environment. The term on the right expresses the expected return if he is
forced to choose an action based on his state estimate. The difference between
the two can be thought of as the cost of the agent’s current uncertainty. This
value is guaranteed to be positive, and may be zero if all possible states would
result in the same action choice.

The total expected loss does not help to select which of the microbehaviors
should be given access to perception. To make this selection, the loss value can be
broken down into the losses associated with the uncertainty for each particular
behavior b:

lossb = E

[
max

a

(
Qb(sb, a) +

∑
i∈B,i
=b

QE
i (si, a)

)]
−
∑

i

QE
i (si, aE). (4)

Here the expectation on the left is computed only over sb. The value on the left
is the expected return if sb were known, but the other state variables were not.
The value on the right is the expected return if none of the state variables are
known. The difference is interpreted as the cost of the uncertainty associated
with sb.
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Abstract. How visual attention is shared between objects moving in an
observed scene is a key issue to situate vision in the world. In this note, we
discuss how a computational model taking into account such issue, can
be designed in a bayesian framework. To validate the model, experiments
with eye-tracked human subjects are presented and discussed.

1 Introduction

One of the main concerns in modeling active organisms or agents such as humans
and robots is how to ”situate” vision in the world. It has been argued that what
is needed to navigate the world is a way of directing attention to individual
objects; then, additional information can be encoded as needed [1], [2]. Attention
not only restricts various types of visual processing to certain spatial areas of the
visual field but also accounts for object-based information, so that attentional
limitations are characterized in terms of the number of discrete objects which
can be simultaneously processed.

Several theories have been concerned with how these visual objects are in-
dividuated accessed and used. In particular Pylyshyn’s FINST (FINgers of IN-
STantiation) theory has complemented such theories by postulating a mecha-
nism by which object-based individuation, tracking and access is realized [2].
The model is based on a finite number of visual indexes (fingers, inner pointers)
which can be assigned to various items and serve as means of access to such
items for higher level process that allocates focal attention. The visual indexes
bestow a processing priority to the indexed items, insofar as they allow focal
attention to be shifted to indexed, possibly moving, items without first search-
ing for them by spatial scanning. In this note, we discuss how such mechanism
may find its computational counterpart in the bayesian framework of multiple
hypotheses tracking, and how it may be embodied in a general model of visual
attention.

2 Background and a Foreword on Visual Inference

The model presented here grounds its rationale in the functional architecture
of biological vision [3], [4], [5]. A simplified outline of the neural pathways for
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Fig. 1. Main neural pathways and modules for vision and gaze control [3], [4], [5]

gaze control is shown in Fig. 1. Early visual neurons in V1 and V2 are generally
seen as spatiotemporal filters that extract local features and feed them to two
information pathways. These two pathways, rather than being characterized by
classic”what” (object-based) and ”where” (spatial-based) type of processing, can
be more generally viewed, according to Goodale and Humprey [4], as the action
and perception pathways. The former processes visual information in order to
accomplish some action in the world; it is mainly spatial-based, but yet can
handle object-based information in visuomotor tasks, even in the presence of
lesions within the perception pathway [4]. The latter is basically concerned with
object identification/recognition and is the main route to visual perception. The
action pathway principally involves middle temporal (MT) areas which perform
motion analysis, area V3 dealing with the analysis of dynamic form [3] and
medial superior temporal (MST) areas involved, for instance, in target pursuit.
The perception pathway involves area V4 involved in the analysis of form in
association with color, and infero-temporal cortex (IT) areas, that can be defined
the highest-order areas for the visual perception of objects (e.g., faces).

Clearly, the two pathways are not segregated but cooperate to provide a
coherent picture of the world. Overt visual attention, and thus gaze control, is
one critical facet of the cooperation between these two pathways. It is possible
to roughly distinguish three levels of control. At the highest level, frontal eye
fields (FEF) are involved in target selection and regulate the decision of when
to initiate or cancel a gaze-shift, and its related neurons respond more strongly
when the stimulus in their response field is a target relevant from a behavioral
standpoint. At an intermediate level, posterior parietal cortex (PPC) provides
some form of saliency encoding [6],[5]. The lowest stage is represented by the
superior colliculus (SC), which provides the necessary target-position signals to
premotor circuitry in the brainstem; its eye movements-related neurons are likely
to encode the probability that the stimulus in the response field is the target
from a priori information or from a posteriori analysis of the sensory cue to
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target information [5]. Note that PPC and FEF can be considered as modules
of the action pathway.

Summing up, in each visual module, information is processed by consider-
ing input signals fed by lower levels together with contextual information, such
as backward signals from higher level modules in the same pathway and side-
ward signals from different pathway. This fact raises the issue of how to account
for such complexity in designing computational models. It has been argued [7]
that a Bayesian approach could be an appropriate model to deal with cross-
processing of information among modules. To summarize the rationale of such
approach, consider a module M1 receiving an input signal zobs (observation)
from a lower level module and contextual information zcont, then the task of
the module is to infer (hidden) information z1, given zcont and zobs, namely
to compute the posterior probability P (z1|zobs, zcont) = P (zobs|z1,zcont)P (z1|zcont)

P (zobs|zcont)
,

where P (zobs|z1, zcont) represents the likelihood weighted by prior information
P (z1|zcont), and P (zobs|zcont) is a normalizing factor. Note that if markovianity
is assumed, then P (z1|zobs, zcont) � P (zobs|z1)P (z1|zcont).

3 Overview of the Model

The model presented here is summarized at a glance in Fig. 2. In the follow-
ing for sake of simplicity, with a slight abuse of notation, we will indicate with
zfeat

t either a scalar feature or a feature vector measured at time t, and input
frames are denoted zt, zt−1; also Ok is used to label either a generic region or a
specific object. In the proposed system the pair (zt, zt−1) is represented in color
opponent space and undergoes a pyramidal transformation. On such represen-
tation, probability density functions (pdf) are computed relative to contrast,

Fig. 2. Bayesian modeling of visual modules and their interactions. Inputs from the

left are provided by a pair of frames and related pyramidal representations.
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p(zcontr
t |zt), novel events occurring in the scene, p(znew

t |zt, zt−1), and optical
flow, p(zOF

t |zt, zt−1). Contrast and novelties are straightforwardly combined in
a local saliency density, p(zsal

t ).
In the perceptual pathway a preliminary object segmentation based on color

features, p(Ok|zcolor
t ), is performed, and this in turn is used to initialize the dy-

namic form segmentation module, which computes the probability p(k|zt−1, θk)
that a point is labelled with label k, and thus assigned to object Ok described by
segmentation parameters θk. Dynamic form segmentation is jointly performed
together with object motion estimation, which derives affine motion parame-
ters Φ of motion likelihood p(zt|k, zt−1, Φ). The preliminary region segmentation
previously introduced is also forwarded to higher identification modules that
compute the joint probability p(Ok|xk

t , Zobj
t , zcolor

t ) of having, at time t an ob-
ject of class k in a state xk

t given low-level features like color and a set Zobj

of object or model dependent features - e.g., eye and mouth position for face
detection.

In this context Pylyshyn’s conjecture of fingers of instantiation is acknowl-
edged in terms of multiple hypotheses instantiation. Object and state informa-
tion (for instance, position and dimension at time t) together with motion param-
eters Φ are used along multiple object tracking which is performed as a Bayesian
recursive filtering of multiple hypotheses, p(xk

t |Zk
t , Zk

t−1, · · · , Zk
t0 , Ok), Zk

t denot-
ing the set of features observed on object Ok. The decision of tracking object Ok

among other objects Oj , j �= k is contextually performed by jointly taking into
account features and priority of the object with respect to a specified task via the
MAP rule, namely max p(Ok, xk

t |Zk
t , xj

t , Z
j
t , Oj)j 
=k. Such top-down focus of at-

tention (FOA) is used to modulate, with local saliency, the final decision (motor
command) of setting the FOA at location xFOA

t = argmaxx p(Ok, xk
t |Zk

t , zsal
t ).

In this respect, the model allows to control the gaze at three levels of complex-
ity: at the highest level, attention is focused on the base of prior information
(motivations, task, behavior); if this is not available tracking of objects may still
be performed using local saliency; eventually at the lowest level, if the percep-
tion pathway is inhibited, point of gaze is chosen by the SC-like module only
relying upon novelties and abrupt events occurring in the scene, according to a
purely reactive behavior. Interestingly enough, this different levels of complexity,
roughly correspond to the development of visual attention capabilities in the in-
fant, or, on a larger scale, to evolution of biological vision systems. Intermediate
processing results are shown at a glance in Fig. 3, where probability maps are
graphically rendered as grey-level images.

4 Early Visual Analysis

From a color video sequence, early visual features such as color opponents, in-
tensity and orientation are computed in a set of feature maps based on retinal
input and represented using pyramids. Then, center-surround operations, are
implemented as differences between a fine and a coarse scale for a given feature
[6]. One feature type encodes for on/off image intensity contrast, two encode for
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Fig. 3. Results obtained by different modules visualized as grey-level maps. Bottom,

from left to right: the frame at time t; feature encoding providing three contrast maps,

novelty and raw optical flow; motion segmentation and estimation map; skin map and

model -based face detection maps. Top, from right to left: top-down saliency map;

tracked objects maps; mid-level saliency map; final gaze control map; FOA drawn as a

circle on the original frame. Due to space limitations, pyramidal representation is not

shown.

red/green and blue/yellow double-opponent channels and four encode for local
orientation contrast.

The contrast pyramids for intensity, color, and orientation are summed across
scales into three separate conspicuity maps [6], obtaining a vector of contrast fea-
tures zcontr

t (cfr. Fig. 3). Novelty features znew
t are obtained on a lower level l of

the image intensity Gaussian pyramid as the difference between two subsequent
frames, smoothed via anisotropic filtering.

Contrast and novelty features are mapped to likelihoods by fitting a gaussian
to their distribution in the image, e.g., p(zcontr

t )= exp(−1
2 (zcontr

t −μ)T Σ−1(zcontr
t −μk)

(2π)(D/2)|Σk|1/2 .
In this way the saliency of a point is proportional to p(zcontr

t )−1, being large when
the feature is unexpected. Motion analysis is performed on Gaussian pyramids
of pairs of frames using Anandan’s algorithm [8] in order to obtain optical flow
pdf p(zOF

t |zt, zt−1).

5 The Perception Pathway

The perception pathway deals with object-based information that, in the current
implementation of the system, is represented by faces and other generic moving
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objects, O = {F ,M}. The ultimate goal here is to identify objects Ok ∈ O, that
is to compute

p(Ok|xk
t , Zobj

t , zcolor
t ) � p(Zobj

t |xk
t , Ok, zcolor

t )p(xk
t |Ok, zcolor

t )p(Ok|zcolor
t )P (Ok).

(1)
The term p(Ok|zcolor

t ) represents a preliminary segmentation, and is approx-
imated as the likelihood p(zcolor

t |Ok) computed by using a spatially sensitive
variant of the Expectation-Maximization (EM) algorithm [9].

For instance, in the case of faces (Ok = Fk), p(Fk|zcolor
t ) represents in Eq.1 a

skin map, while p(xk
t |Fk, zcolor

t ) is the probability of detecting a face in state xk
t

and is basically derived through eye detection via Discrete Symmetry transform,
xk

t being represented through center and dimensions of a face bounding box
[10]. The likelihood p(Zface

t |xk
t , Fk, zcolor

t ) models face specific features Zface
t ,

for instance ”low level” distributions of skin texture and shape features, namely
p(zskin

t |xk
t , Fkzcolor

t ), p(ztex
t |xk

t , Fk) and p(zshape
t |xk

t , Fk) and ”high level” model-
based information, such as facial shape likelihood p(zshape

t |xk
t , Fk), accounting

for similarity to a model template (cfr. Fig. 3, and [10] for details).

6 The Action Pathway

The goal of motion processing modules is to compute motion features related to
objects Ok, so that, if the case, gaze can focus and track a specific object with
respect to some given task.

The problem of object motion estimation and prediction can be formulated
in Bayesian terms as by the recursive Bayesian filter which solves the prob-
lem in two step. The objective of tracking an object Ok is to estimate the
state xk

t given all the measurements Zt = {Z1, · · · , Zt} up to that moment,
or equivalently to construct the posterior pdf p(xk

t |Zt, Ok). In our case the
state accounts for position, height and width of a bounding box, and rotation,
xk

t = {x, y, wX, wY, θ}. The prediction step uses the dynamic equation and
the already computed pdf of the state at time t − 1, p(xt−1|Zt−1, Ok), to derive
the prior pdf of the current state, p(xk

t |Zt−1, Ok). Then, the update step employs
the likelihood function p(Zt|xk

t , Ok) of the current measurement to compute the
posterior pdf p(xk

t |Zt, Ok). Formally:

p(xk
t |Zk

t , Ok) ∝ p(Zk
t |xk

t , Ok)
∫

p(xk
t |xk

t−1, Ok)p(xk
t−1|Zk

t−1, Ok)dxk
t−1. (2)

The likelihood is provided by a specific measurement on object features (color,
velocity and dimension). The term p(xk

t |xk
t−1, Ok) represents our knowledge about

how the object might evolve from time t−1 to t. Here we assume that the dynamics
p(xk

t |xk
t−1, Ok) of each object is described by a parametric (affine) model:

zmotion =
(

1 x y 0 0 0
0 0 0 1 x y

)
φk, (3)

where φk = (α1, · · · , α6)T are the motion parameters of such region/object.
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The motion model is derived using the information fed through contextually
by modules that, on the basis of raw motion vectors zOF

t and by cooperat-
ing with object segmentation modules, compute the complete data likelihood
p(zt, k|zt−1, φk, θk), where k = (k1, · · · , kN )T is a ”hidden” vector of binary in-
dicator labels that assign each pixel to a unique region/object Ok and θk are
the parameters describing region k. The cooperation among different modules,
that is the computation of the complete data (zt, k) (Fig. 3) is obtained by
maximizing via the EM algorithm the complete likelihood
p(zt, k|zt−1, Φ, θ) =

∏
r p(zt, |k, zt−1, Φ)p(k|zt−1, θ), where r indexes all sites of

the frame lattice and Φ = (φ1, · · · , φN )T is the vector of all motion parameters.
To this end we experimented both with algorithms described in [11] and [12],
and opted for the latter because more efficient. Initialization of motion vectors is
performed by using optical flow vectors, and the initial segmentation/labelling
is obtained by combining rough information obtained by the novelty detector
with a preliminary segmentation performed on frame zt−1 again via the EM
algorithm [9].

In order to model multiple object tracking, in the vein of Pylyshyn, we must
account for the fact that human observers can perform smooth pursuit of one
object, while keeping inner ”pointers” to other objects moving in the scene
(k � 4, 5), so that they are able to rapidly switch to one such background object,
either under volitional control or due to habituation factors [2]. From a compu-
tational point of view, a viable solution is to consider on the one hand objects to
track as a multiple hypotheses process, while on the other hand the selection of
one among these is performed by taking into account prior information related to
the task the agent should perform. For what concerns the first problem, one such
tool is particle filtering (PF) [13]. The main idea of PF relies upon approximating
the pdf by means of a set of weighted samples S = {(s(n), π(n))}, n = 1 . . . N .
Every sample s represents the current object status to which is associated a
discrete sampled probability π, where

∑N
n=1 π(n) = 1. The goal is to com-

pute by sampling the posterior pdf p(st|Zt, Ok) in place of p(xk
t |Zt, Ok). Here,

st = {x, y, wX, wY, θ} and π
(n)
t = p(Zt|xk

t = s
(n)
t , Ok). Thus, filtering is

performed by using Eq. 2 and substituting xk
t = st.

To generate St, after having selected N samples from the set St−1 with prob-
ability π

(n)
t−1, prediction p(st|st−1, Ok) is obtained by propagating each sample of

an object by the motion affine model of the tracked region.Then, data observation
is accomplished and the likelihood p(Zk

t |st, Ok) evaluated. Each particle is then
weighted in terms of the observation with probability π(n). Eventually, the mean
state of Ok is estimated at each time step from μs = E[s] =

∑N
n=1 π(n)s(n), and

this determines the position of the object. At time t, the sample selection from
the sample set St−1, performed before the propagation step, is accomplished as
described in [13]. For computational efficiency (lower number of samples) we use
multiple PFs to track the different objects, represented in Fig. 3 as a stack of
tracking maps.
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7 Gaze Control

High level gaze control is obtained by estimating the posterior probability of
gazing, at time t, object Ok and its state xk

t while observing object features Zj

and other moving objects {Oj}j 
=k, p(Ok, xk
t |Zk

t , xj
t , Z

j
t , Oj)j 
=k. By using Bayes

rule:

p(Ok, xk
t |Zk

t , xj
t , Z

j
t , Oj)j 
=k =

p(Zk, xk|Ok, Zk, xj , Zj , Oj)j 
=kP (Ok)∑
l p(Z l

t, x
l
t|Ol, x

j
t , Z

j
t , Oj)j 
=lP (Ol)

. (4)

The object to be focused is selected via a MAP criterion,
max p(Ok, xk

t |Zk
t , xj

t , Z
j
t , Oj)j 
=k. In Eq. 4, P (Ok) denotes the prior probability

of observing object Ok, and captures the relevance of the object with respect
to a task pursued by the agent. It can be modeled as the product of two inde-
pendent components, P (Ok) = Ptask(Ok)phab(Ok), where Ptask(Ok) is the prior
knowledge on task, while phab(Ok) accounts for habituation, loss of interest ef-
fects, namely phab = exp(−λt). By assuming weak coupling between features,
the likelihood in Eq. 4 can be estimated as∏

zi∈Z

p(zk
i,t, x

k
t |Ok, zk

i,t, x
j
t , z

j
i,t, Oj)j 
=k =

∏
zi∈Z

1
1 + exp(−β(zk

i,t − 〈zj
i,t〉))

, (5)

where 〈zj
i,t〉 = 1

n−1

∑
j 
=k zj

i,t. The rationale behind Eq.5 is to grant higher prob-
ability to an object that is more salient with respect to others surronding it.
Interestingly enough, the use of a sigmoid function to model the likelihood term
in Eq.4 together with the MAP selection rule, implements a winner-take-all
strategy, which Pylyshyn [2] conjectured as a plausible neural implementation
of FINST dynamics.

For what concerns mid level gaze control, the probability of focusing on a
region of space on the basis of its saliency p(zsal

t ) takes into account static and dy-
namic features through the mixture p(zsal

t )=αcp(zcontr
t |zt)+ αnp(znew

t |zt, zt−1)−
αhp(zhist

t |zsal
t−1, x

FOA), where p(zhist
t |zsal

t−1, x
FOA
t ) is a ”history” term which ac-

counts for recently focused regions and implements the inhibition of return
mechanism.

Eventually in the SC-like module the point of fixation can be obtained as

xFOA
t = arg max

x
p(Ok, xk

t |Zk
t , zsal

t ) � p(Ok, xk
t |Zk

t )
p(zsal

t )
, (6)

thus combining high and mid-level focusing probabilities. The chosen FOA po-
sition xFOA

t is also fed backward to PPC-like module, in order to compute
p(zhist

t |zsal
t−1, x

FOA) in the next frame.

8 Experimental Work

Different clips produced to simulate different conditions have been used to com-
pare model-generated scanpaths with those of human observers, either syntheti-
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Fig. 4. Gaze control results (left to right, top to bottom): the FOA of the average

observer is drawn as a black circle; the white circle is the FOA set by the system

cally generated or representing fixed-camera outdoor sequences. The subjects
involved in the experiments were 39 students, from 19 to 26 years old; all subjects
had normal or corrected-to-normal vision, and were naive with respect to the
purpose of the experiment. Each of them was sitting in front of the display
of the eye-tracking system at a distance of 60 cm, and was asked to look at
the video clip, so as to be able to answer a few questions about the content
of the video that would have been asked immediately after. Scanpath capture
and recording was performed using an ASL 5000 eye-tracking device. Results
eye-tracked from 5 subjects have been preliminary used to train the model, and
derive prior probabilities (estimated as fixation frequencies of specific objects,
e.g., faces, moving persons, etc.); the other 34 subjects where eye-tracked in order
to compute a ”reference” scanpath to include fixations which are common to
many observers (average observer), while leaving out fixations that are observer-
specific. Due to space limitations, we present here results obtained on a clip where
three people are walking at different distances from the camera, with different
speeds and directions, then a new person enters the scene running towards the
camera. In this case, the ”reference” scanpath was generated in free-viewing
conditions (no task), and turned to be the most critical to compare with our
system. Fig. 4 shows a summarization of results. Note that the FOAs set by
the system match with a short time delay the scanpath of the average observer;
clearly, in the absence of a specified task (uniform Ptask(Ok), Eq.4), the system
deploys attention to walkers near to the camera (frames 7 and 8, mid row), while
interestingly human observers keep on focusing the face of the popped-in runner,
trying to perform identification.
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9 Final Remarks

The model integrates different visual modules and levels of gaze control in a
Bayesian framework, and in particular allows attentive multiple object track-
ing [2]. Also, gaze control via saccade and pursuit is shared among modules [5];
for instance, pure saccadic behavior may take place in the absence of objects
in motion or top-down inhibition of tracking. Preliminary results give evidence
of reasonable performance in comparison with human visual behavior. Experi-
ments have shown that the system increases performance when visual tasks are
specifically committed, which is not surprising, since human attentive behavior is
known to be subjectively biased and idiosyncratic along unconstrained viewing.
Future research will consider tighter integration of modules via nonparametric
generalized belief propagation techniques [7].
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Abstract. We propose an image indexing and retrieval method which is
based on the multiscale image analysis theory in conjunction with fuzzy
image feature extraction. The main idea is based on the assumption that
the fundamental cues for image description such as shape and textures
should be considered together within a unified model. Here the multiscale
analysis is modeled by a differential morphological filter, and the feature
are extracted by a multiscale fuzzy gradient operation applied to the
detail images, which are the differences between images at successive
scales. Experiments with large image databased and comparisons with
classical methods are reported .

1 Introduction

The recent explosion of availability of digital media together with the even in-
creasing communication bandwidth has made possible the distribution and stor-
age of digital images and videos for a wide variety of purposes, from the protec-
tion of cultural patrimony to the use of advanced watermarking techniques for
copyright, to the development of large on line image and video databases. Large
scale image repositories are pervasive in several domains such as medical image
management, multimedia libraries, document archives, art collections, geograph-
ical information systems, law enforcement agencies, and journalism. In all these
fields the need of advanced content-based image retrieval (CBIR) systems is even
increasing due to the wide availability of high definition sensors and scanners,
therefore the development of CBIR methodologies has been an active research
area in the recent years [20].

CBIR systems commonly use a set of features for image representation in
addition to some meta information that is stored as keywords. Most systems use
color features in the form of color histograms to compare images [17,21]. The
ability to retrieve images when color features are similar across the database is
achieved by using texture features [14,13]. Shape is also an important attribute
that is employed in comparing similarity of regions in images [6,15,12]. In CBIR
systems, the queries that are used to retrieve images can be broadly classified
as primitive, logical, and abstract. A query is said to be a primitive query if it
is based on features extracted from the images. A query is said to be logical if it
employs the identities of the objects in the image. Abstract queries are typically
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based on a notion of similarity which is a concept that cannot be easily captured
in a mathematical model. Here we focus on the use of fuzzy scale-space primitive
features for the efficient realization of a image retrieval algorithm. In particular
we show how the algorithm reported in [5] can be extended to be used for image
representation and retrieval. In order to build advanced CBIR the theory of fuzzy
logic has been already applied in several forms which are essentially related with
the way the user performs or expresses a query, see for example [9]. Here we
adopt a different approach, showing that the primitive feature extraction can
strongly benefit from the combined adoption of non-linear scale space analysis
with the fuzzy information fusion relating local to wide support features.

Most feature based approaches share as common factor the concept of scale
which is related to the unknown mean size objects or texture primitive (“tex-
els”). The use of multiple scales can be of aid when facing complex pattern
recognition problems such those involved in image indexing and retrieval. In-
deed a scale-space analysis of an image is a family of smoothed images derived
on the basis of a continuous scale parameter [11,10] As the scale increases the
image get coarser and fine details are gradually suppressed. The meaningful fea-
tures in the original signal, which persist at higher scales, can be then identified
by following their path in the resulting scale-space. Although early works on
scale-space were essentially based on linear filtering using the Gaussian function
as smoothing kernel (known as Gaussian Pyramid), it is now recognized that
even non-linear filters such as multiscale dilation and erosion can posses the
monotonic property for signal extrema which is the fundamental requirement
of continuous scale-space analysis [3,11]. The morphological approach to image
analysis has been shown to be an efficient tool for textural feature extraction and
description [5].

The paper is organized as follows. The next Section reports the adopted
model consisting into the multiscale representation and the textural gradient
features which we use for image indexing. In the last Section we present the
experimental results and comparisons on a large data image database.

2 The Proposed Approach

Here we focus on a feature based approach for image indexing and retrieval. As
in every image vision system, the choice of the kind of feature to select for the
classification ad description of pictorial information influences the performance
and complexity of the system being developed. As already pointed out, shape,
color and texture play a fundamental role within this context. Several works
have been developed trying a unified approach at shape and texture segmenta-
tion [22] as they represent the main computational cues for three-dimensional
object description. Textural gradient [5] are one of such integrated approaches
for unifying shape and texture. Here we report the application of this kind cues
to the development of a CBIR system. In the sequel we describe the main com-
putational steps of our algorithm implemented within a framework of image
indexing ad retrieval[7].
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2.1 Non-linear Scale Space Filtering

A morphological scale–space representation of an image u0(x), x ∈ �2, is defined
as a family of smoothed images, derived on the basis of a scale parameter t,
i.e. given u0(x), u(x, t) means the ”image u0 analyzed at scale t”. The Affine
Morphological Scale Space (AMSS) model, introduced in [1], is defined as the
solution of the following second order non linear partial differential equation

∂u

∂t
= |∇u|(curv(u))

1
3 u(x, 0) = u0(x) (1)

where curv(u) represents a second order differential operator corresponding

to the curvature of level curves of u(x, t), i.e. curv(u) = uxxu2
y−2uxyuxuy+uyyu2

x

(u2
x+u2

y)3/2 .
Here the notation ux represents the partial derivative of u with respect to the
variable x and analogously for the other differential operators.

This kind of smoothing possesses invariance properties; specifically, the model
(1) is the unique multi-scale analysis which has the properties of:

– Contrast Invariance. We perceive textures on the basis of relative spatial
relationships between pixels, rather than the luminosity itself. This means
that a filtering process aimed at analyzing textures should be invariant to
changes which preserve the relative order of luminance values. In particular,
a contrast change of an image u(x) is the application to u of any increasing
function, eventually non linear; a contrast invariant filter operates just on
the level curves of the image.

– Rotation and Translation Invariance, as we perceive textures independently
of position and orientation.

– Affine Stretching Invariance, as our perception of textures is influenced by
stretching, i.e. discrimination of textures can be reduced by stretching the
individual textons. Therefore, the invariance to this operation can preserve
the perception of the original texture. Unfortunately, the invariance to gen-
eral stretching is difficult to be formally imposed. However, linear stretching
corresponds to an affine transformation and the model expressed by equa-
tion (1) has been shown by Alvarez et al. (1993) to be invariant under affine
transformations.

These properties allow the model (1) to preserve the structure of the textural
patterns even at coarser scales; this is due to its geometrical behavior, which
moves the level curves of the image with a speed proportional to their curvature.

Starting from a textured image, a multichannel image can be built by using
its smoothed versions generated through the iterative application of model (1).
Indeed, the anisotropy of the filtering process tends to smooth out the level curves
of the image, which eventually collapse into larger groups, but the shape of the
curves which embeds the preferred orientation of the textures is maintained.

2.2 Detail Images

The detail images provide information about how the level curves move during
the evolution of equation (1) and represent the structure of the textural patterns



380 M. Ceccarelli, F. Musacchia, and A. Petrosino

in terms of differences between the level curves at different “times”. The detail
images are obtained as differences between the images analyzed at successive
scales

di(x) = u(x, ti) − u(x, ti−1) (2)

with the scale parameter t discretized at increasing values t0 = 0, t1, t2, ..., tn.
Since the filtering process is influenced by the orientations of the textural pat-
terns, i.e. the model expressed by equation (1) is anisotropic, we do not need to
perform orientation selective smoothing.

The sequence of detail images corresponds to a representation of the motion
of the level curves through time.The discrimination between textural patterns is
performed by applying a multi-scale fuzzy gradient operation to each detail image
followed by a hierarchical clustering algorithm as shown in the next section.

2.3 Morphological Gradient Images and Segmentation

Here, we face the problem of analyzing the detail images in order to extract
textural gradients which indicate the local change of structural relationships be-
tween neighboring pixels. To this purpose, we will use elements of the rough set
theory [16] which is an extension of the set theory dealing with coarse informa-
tion. Here we briefly introduce the main concepts of this theory referring to [2,5]
for the details.

Let X = {x1/μ(x1), ..., xn/μ(xn)} be a fuzzy set F on X defined by adding
to each element of X the degree of its membership to the set through a mapping
μ : X → [0, 1]. A C-set, [2] is defined as a triple C = (X , m, M), where X =
{X1, ..., Xp} is a partition of X into p disjoint subsets X1, ..., Xp, and m and M
are mappings defined by

mk = inf{μ(x)|x ∈ Xk}

and
Mk = sup{μ(x)|x ∈ Xk}

X and μ uniquely define a composite set and

m(X) ≤ μ(X) ≤ M(X)

In addition to usual operations on fuzzy sets, like union and intersection, a basic
operation is valid over these sets, called C-product. The operation C-product
between couple of C-sets is defined as follows. Given two sets C and C′, both
related to different partitions of the same set X , the C-product, denoted as ⊗,
is defined as the new C-set C′′:

C′′ = C ⊗ C′ = (X ′′, m′′, M ′′)

where X ′′ is a new partition whose elements are

X ′′
k,l = Xk ∩ Xl
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and m′′
k,l = max{mk, m′

l}, M ′′
k,l = min{Mk, M

′
l}. The C-product satisfies:

m(X) ≤ m′′(X) ≤ μ(X) ≤ M ′′(X) ≤ M(X)

and
m′(X) ≤ m′′(X) ≤ μ(X) ≤ M ′′(X) ≤ M ′(X)

It has been also demonstrated in [2] that recursive application of the pre-
vious operation provides a refinement of the original sets, realizing a powerful
tool for measurement and a basic signal processing technique. Edge detection,
gray-level image segmentation and image coding have been performed by com-
bining the low-level analysis provided by these operations together with fuzzy
classification [4].

Returning to the problem of image analysis, let us explain how we apply
the above theory to the extraction of textural gradient. Our starting point is
the set of detail images computed according to (2). Let X be the set of pixel
positions, i.e. X is the Cartesian product {0, ..., N − 1} × {0, ..., M − 1}. Let us
define as fuzzy membership function μ over X the singleton membership function
according to which

μ(x) = d(x)

i.e., μ measures just the luminance value of the detail image d. Local properties
can be extracted by a multiresolution mechanism based on C-sets [18]. In partic-
ular, let us consider four different partitions X i, i = 1, 2, 3, 4, of the set-image X ,
such that each element of X i is a subimage of dimension w ×w and X 2,X 3,X 4

are taken as shifted versions of X 1 in the directions of 0o, 90o and 45o of w − 1
pixels. In such a case each pixel of the image can be seen as the intersection
of four corresponding elements of the partitions X 1,X 2,X 3,X 4. Since for each
partition a C-set may be defined, each pixel can be seen as belonging to the
partition obtained by C-producting the original four C-sets:

C = C1 ⊗ C2 ⊗ C3 ⊗ C4 (3)

where Ci is the composite set corresponding to partition X i. In this case the
scale is represented by the size w of each partition element. Let us introduce the
multiscale gradient definition based on the previous operations.

Definition 1. Given the maxima and minima images (respectively M and m)
generated by the application of the operation 3 over four different partition of
an image with a scale w the multiscale gradient at the position (i, j) is

Gw
i,j = Mw

i,j − mw
i,j , (4)

Therefore, this operation corresponds to the difference between the lower and
upper approximation of a fuzzy set. To extract texton gradient information at
different scales, the gradient operation (4) has to be applied to all the detail
images obtained from (2), by using increasing values of w and generating a mul-
tichannel image to be segmented. This means that we first perform a nonlinear
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smoothing depending on the parameter t, which at the first stage represents the
scale of the smoothed image, and then apply the fuzzy gradient operation to
all the images di which are the differences between images at successive scales.
This last fuzzy gradient operation also depends on another scale parameter: the
window size w.

3 Implementation and Results

The fuzzy multiscale image gradients are selected as indexing feature for a tex-
tured image indexing and retrieval system. Here we want to report the obtained
result over a large image database, the Stanford10K Database, consisting of
about 10000 images. The first indexing phase required about 20 hours of run-
ning time over a Linux personal computer. In order to evaluate the system of a
set of queries over the whole database, we adopt as measure of performance the
model reported in [8]. Indeed, the recall precision should depend on the similar-
ity degree between the relevant images and their position over the query results.
Let us define the following parameters:

– R, the number of relevant entries in the database
– Er the number of returned image from the query
– Rr the number of relevant imaged returned from the query
– Mr the number of misses (Mr = R − Rr)

In order to consider the position of the relevant images within the query result,
let us consider the parameter SumR defined as the the sum of the positions of the
relevant images in the results. The normalized effectivenes (EFF) is defined as

EFF =
2∗SumR

R−1 − R−1
2∗Er+R−1

1 − R−1
2∗ER+R−1

In addition, we also use the Relative Weighted Displacement (RWD) measure
from [19]. Let the user label each image in the retrieved set as “a”, “b” or “c”,
where “a” denotes an image that is similar to the query as perceived by the user,
“b” one that is somewhat similar, and “c” one that is dissimilar. Then, RWD is
defined as follows:

RWD =
∑m

i=1 wi‖ri − hi‖∑m
i=1 wi

where wi is 0.8, 0.5 and 0.05 for the cases when the image is labeled “a”, “b”
and “c”, respectively. The weights used in the case of RWD do not punish the
measure if nonsimilar images are ranked high. We therefore modify wi to be 0.8
for the case when the image is labeled “c”.

The testing database contains color JPEG images of size 128× 85, 85× 128,
128×96, or 96×128, etc. The database images have the same dimensions, but not
necessarily the same orientation. Our well-balanced large-scale testbed is very
realistic and helps us to reach a fair evaluation of different methods. The content
of the database images ranges from animals, people, scenery, and architecture,
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Table 1. Risults with the Stanford10K database of the two variants of the algorithm

compared with those obtained by using Gabor features and co-occurence matrces

Algoritmo RWD EFF

Gabor Features 0.982 0.30419

SS1 1.013 0.27863

SSN 0.977 0.30876

Co-Occurence Matrices 0.876 0.18653

Query Pos. 2 Pos. 18

Fig. 1. Some query results with the proposed algorithms; the query correctly returns

the searched image and the other two images in position 2 and 18 respectively

Query Pos. 3

Fig. 2. Some query results with Gabor features; the query returns the searched image

and just one image in position 3

etc. We tested two different variants of the model reported in [5], the first, called
SS1, uses the sequence of multiscale gradients over the detailed images, whereas
the second, referred as SSN , performs a further reduction by combining into a
single datum all the N detail images and then the fuzzy gradient is applied.

Our tests, obtained by averaging the measures over 100 test runs, show that
the the fuzzy mulsiscale feature extraction scheme attains results comparable
or even better than those obtained by using other standard approaches such as
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Gabor features or co-occurence matrices. As a visual example of application of
the proposed method the figure 1 reports the result poduces by a simple query
over the whole database. Our approach returns three images over five relevant
images in the database. Whereas, the Gabor feature approach, implemented in
the GIFT package, returns just two images. Moreover the position and similarity
of the relevant images within the query results are significantly better for our
approach.

4 Conclusions

We have reported an image indexing and retrieval based on a nonlinear multiscale
representation of the input image. The main idea is based on the assumption that
the fundamental cues for image description such as shape and textures should
be considered together within a unified model. We have demonstrated that the
proposed model, in addition to serve as an efficient tool for texture separation,
can be efficiently applied in the field of image indexing. The reported results
show positive comparison with standard approaches.
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Active Acquisition of 3D Map in Robot Brain by

Combining Motion and Perceived Images
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Aoba 01, Aramaki, Aoba-ku, Sendai, Miyagi, Japan

Abstract. In this paper, we propose an active vision strategy for the
construction of a 3D map in a robot brain from its stereo eye images.
We show that, by the direct combination of its action and image change
caused by the action, the robot can acquires a 3D accurate map in
his brain. If the robot stereo cameras and his motion parameters have
been calibrated, the obtained reconstruction of the static scene stays
stationary. But, if not, the reconstructed scene changes according to
the robot action. We utilise this change to modify the robot parame-
ters so as to obtain stationary scene in his 3D map under the action.
We show the feasibility of this idea as an auto-calibration of robot vi-
sion with some simulation experiments and implementation on actual
robots.

1 Introduction

Robots must acquire the 3D map of our environment to act in the real world.
One of the conventional approaches is the CAD based map building, and many
strategies have been proposed in the literatures[1]. However, a complete design
data of the 3D environment of his work space can seldom be prepared before-
hand. The most feasible strategy for the robot will be to construct a 3D map
of an unknown environment by itself using its own eyes (cameras) and its own
intentional actions. This idea is common to the techniques of the self(or auto)-
calibration[2][3][4]. Those techniques have been proposed as the calibration of
the camera parameters. Usually, then, the motion parameters are calibrated.

These two calibrations and the following construction of the 3D map have
been considered separately in the self-calibration. Here we combine them to
achieve totally efficient and accurate calibration and the construction of the
map. The objective of this paper is to introduce a straight-forward strategy for
the robot 3D space perception. In this paper, we do not use any 3D calibration
objects, and only rely on the consistency in the calibration results. We introduce
the fact that “stationary object both in the real environment and on the robot’s
3D map never moves even when the robot moves around”. This means that we
accept some types of the geometric distortion of the constructed 3D map. We
consider that the most important for the 3D map is the consistency between the
intended motion of the robot and the perceived image by the robot.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 386–395, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Robot’s Space Recognition by Combining the Motion
and Perceived Images

2.1 Stereo Camera System

We consider a robot mounting a stereo camera system. We set two cameras
parallel, but the arrangement cannot be accurate and it has small error. The
real arrangement of the stereo cameras is shown in Fig.1(a), for example.

Many techniques have been proposed to calibrate this stereo camera system
and also to calculate 3D reconstructions from uncalibrated stereo cameras [5][6].
The first step of these techniques is to calculate the internal and external pa-
rameters of the cameras. The internal parameters consist of focal length, aspect
ratio, image center and lens skew, and the external parameters consist of the
positions and postures of the cameras. But, here, we claim that we need not
to calculate those individual parameters to directly combine the motion and
perceived images.

2.2 Direct Construction of the Robot’s 3D Map

Although the real arrangement of the parallel stereo camera has error, we assume
that it is accurately parallel(Fig.1(b)). That is, the robot constructs its 3D map
based on the parallel stereo geometry, even though the error between the real
arrangement and the assumed arrangement exists in the external parameters.
As the result, the map may have distortions against the real world.

For example, consider that we are given a point in 3D space and it images on
the stereo image planes as shown in Fig.1(a). Fig.2 shows the stereo image form-
ing and the map construction by the robot under above assumptions. Fig.2(a) is
the real space, where an object point is projected onto the left and right camera
image planes. Fig.2(b) is the 3D map, on which the robot back-projects these
point images with the arrangement of Fig.1(b). The point at the position marked
as “real object” will be believed by the robot to position at “imaginary object”,
because the robot believes that its cameras are arranged parallel as Fig.2(b).

Robot Head

Left Camera

Right Camera

Left Optical
Center

Right Optical
Center

P(X,Y,Z)
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(a)Stereo cameras of actual robot
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(b)Ideal stereo head we assume

Fig. 1. Actual and ideal stereo heads
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Fig. 2. Real space and robot’s 3D map when the robot’s assumption has the error of

the camera arrangement. ((a) shows that the object is projected onto the left and

right camera planes with the arrangement of Fig.1(a), and (b) shows that the robot

back-projects these images with the arrangement of Fig.1(b).)
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Fig. 3. Change of real space and robot’s 3D map when the robot moves advance by

one step

The robot cannot notice that it just is making misunderstanding only from this
situation.

Now, imagine that the robot walks ahead by one step. Then, the spatial posi-
tion of the “imaginary object” changes as shown in Fig.3. If the stereo geometry
model is correct, spatial absolute positions of stationary points will not move
even if the robot moves. This concludes that, if the robot has the idea that “sta-
tionary object both on the real environment and on the robot’s 3D map never
moves even if the robot moves around”, it notices incorrectness of own system
parameters.
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Fig. 4. Flow of the model modification process

Of course, when the robot also has incorrect internal parameters or robot’s
motion parameters, the similar unexpected motions of the “imaginary object”
will occur.

In this paper, we introduce a system model which converts the set of obtained
image coordinates of the stereo cameras into a new set of image coordinates.
Then, we modify the parameters of the system models so that the reconstructed
stationary objects do not move in space. If they are modified correctly, the
robot acquires a consistent geometric model to construct the exact 3D map.
This concept to modify the robot’s system models is summarised in Fig.4. In
this concept, the acquisition of the correct 3D map consists of iterations of the
next three steps as,

I. The robot constructs 3D map according with its system models,
II. The robot moves in the space according with the 3D map, and

III. The robot modifies the system model to reduce the inconsistency of the
successively constructed 3D maps.

2.3 Description of the Robot’s System Model

We introduce the robot’s system model to modify all the camera parameters
simultaneously. Now, we denote the input image coordinates with (xl, yl) and
(xr, yr) for left and right cameras, respectively, and their modified coordinates
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with (x′
l, y

′
l) and (x′

r , y
′
r). The system model is a set of functions generating

(x′
l, y

′
l) and (x′

r , y
′
r) from (xl, yl) and (xr , yr), having the forms of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
l = (Pxl0+Pxl1xl)·(Pxl2+Pxl3xr)·(Pxl4+Pxl5yl)

(Pxl6+Pxl7xl)·(Pxl8+Pxl9xr)·(Pxl10+Pxl11yl)

y′
l = (Pyl0+Pyl1xl)·(Pyl2+Pyl3xr)·(Pyl4+Pyl5yl)

(Pyl6+Pyl7xl)·(Pyl8+Pyl9xr)·(Pyl10+Pyl11yl)

x′
r = (Pxr0+Pxr1xl)·(Pxr2+Pxr3xr)·(Pxr4+Pxr5yl)

(Pxr6+Pxr7xl)·(Pxr8+Pxr9xr)·(Pxr10+Pxr11yl)

y′
r = (Pyr0+Pyr1xl)·(Pyr2+Pyr3xr)·(Pyr4+Pyr5yl)

(Pyr6+Pyl7xl)·(Pyl8+Pyl9xr)·(Pyl10+Pyl11yl)

(1)

These forms are the first order rational approximations for the geometrical
image coordinate transformations between the systems of Figs.1 (a) and (b).
Then, we modify each coefficients of Pxli, Pyli, and Pxri to obtain the ideal
system models by using our assumption of the object’s stationarity.

3 Experimental Simulation

3.1 Experimental Simulation Procedures

We carried out two kinds of experiments. The first experiment is: A set of 100
object points were arranged in the coordinate system centering at the robot’s
head and within the ranges of [-1000,1000] in X-axis, [-1000,1000] in Y -axis, and
[1000,2000] in Z-axis. These points were projected onto the left and right camera
planes according with their internal and external parameters listed on Table 1.
Then, the robot back-projected those images into its front space and identified
their spatial positions based on the stereo geometry which the robot assumed.
Those assumed parameters are also listed on the table.

The robot moved by a step forward and rotated. It was also assumed not to
know correct values of its step lengths and rotation angles. Table 2 shows the
real and assumed motion values. The real parameter values were different from
those the robot believed, and as the result, the spatial points moved, which the
robot constructed with its parameters, although they must be stationary. Then,
we modified the values of the coefficients in Eqs.(1) so as to reduce the motions
of the reconstructed spatial points. We iterate this process starting with the
initial system functions below.

x′
l = xl, y′

l = yl, and x′
r = xr (2)

Next, the second experiment is: The robot moved toward the object by using
its position on the robot’s 3D map. Then, we examined how much were the
differences between the robot position and the object position on the real space
before and after modification.

3.2 Setting-Up of Each Parameter Values

The values set-up in the experimental simulations are also listed in Table 1, where
the unit for lengths is mm and that for angles is degree. In the experimental
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Table 1. Set-up values of the internal and external parameters ((a) is the list of values

of actual robot system, and (b) is the list of the values we assumed.)

Table 2. Set-up values of robot’s motion value (X of second row, Y of third row, and

Z of fourth row mean ”X-axis”, ”Y -axis”, and ”Z-axis”, respectively. And X of fifth

row, Y of sixth row, and Z of seventh row mean ”around X-axis”, ”around Y -axis”,

and ”around Z-axis”, respectively.)

simulations, we carried out three types of the robot motions. The actual motion
values are listed in Table 2 (a), and the corresponding motion values which the
robot believed are listed in (b).

3.3 Results of Experimental Simulations and Discussions

In the first experiments, we modified the coefficients of the system models with
three motions. The 3D map in the Experiment 3 is shown in Fig.5. Fig.5(a)
shows the changes of the object positions by moving before modification, and
Fig.5(b) shows those after modification. “+”s in this figure show the positions
before moving, and “�”s show those after moving. Fig.5 totally shows that the
robot’s 3D map became more correct by the modification of the system model.
Table 3 shows that the motions of the spatial object positions before and after
the modification. These show that the modifications satisfied our assumption.

internal parameters (a) (b)

focal length
left camera 235.0 250.0

right camera 240.0 250.0
other parameters × ×

external parameters (a) (b)

left camera
position X-axis -107.5 -100.0

Y-axis -10.0 0.0
Z-axis -3.0 0.0

posture around X-axis 0.2 0.0
around Y-axis 1.0 0.0
around Z-axis 0.0 0.0

right camera
position X-axis 97.5 100.0

Y-axis -10.0 0.0
Z-axis -3.0 0.0

posture around X-axis 0.2 0.0
around Y-axis -2.2 0.0
around Z-axis 0.0 0.0

(a)Set-up values of actual motion.

experiment translation rotation
number motion motion

X Y Z X Y Z

1 368.8 462.3 269.3 0.0 0.0 0.0

2 0.0 0.0 0.0 5.7 3.9 1.3

3 368.8 462.3 269.3 5.7 3.9 1.3

(b)Set-up values which the robot
believed.

experiment translation rotation
number motion motion

X Y Z X Y Z

1 300.0 300.0 300.0 0.0 0.0 0.0

2 0.0 0.0 0.0 5.0 5.0 0.0

3 300.0 300.0 300.0 5.0 5.0 0.0
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(a)3D map before modification
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(b)3D map after modification

Fig. 5. The change of 3D map by moving (mm)

Table 3. The change values of the ob-

jects on 3D map between before and

after moving (mm)

experiment Modification
number Before After

1 1.73 × 103 1.20 × 10−1

2 2.29 × 102 1.01

3 1.74 × 103 1.04 × 10

Table 4. The accuracy of robot’s ac-

tion (mm). ((a) is the experiment

number. (b) is the disparity between

robot’s position and objects before

modification, and (c) is the disparity

after modification. And (d) is the dif-

ference between (a) and (b).)

(a) (b) (c) (d)

1 2.91 × 103 9.25 × 102 1.99 × 103

2 2.79 × 103 1.52 × 103 1.27 × 103

3 2.95 × 103 8.14 × 102 2.13 × 103

Next, we show the second experimental result. Fig.6 shows the 3D map that
consists of the modified robot’s 3D map and the real 3D map. “×”s in this figure
show the real object positions, “•”s show the constructed object positions before
moving and “◦”s show those after moving. Table 4 shows the improvement of
the accuracy of robot’s action between before modification and after modifica-
tion. The values of (b) are the differences on the real world between the robot’s
position and the object position before modification. Those values must be zero
if the system model is modified accurately. The values of (c) are the differences
after modification. (d) shows the differences between above two. We tried the
second experiment with 100 object points. In this experiment, the robot’s action
were improved by the modification with all object points.

Table 3 shows that we could modify the robot’s system model so that the
object positions on the robot’s 3D map between before and after motion might
not change. Table 4 shows that the robot motion in the Experiment 2 was less
accurate than those in the Experiments 1 and 3. Additionally, the improvement
of the motion accuracy in Experiment 2 is smaller than those in the Experiments
1 and 3. These results suggest that we cannot modify the system model with the
rotation only, and that the motion of the translation is important to obtain the
useful 3D map. Next, the robot’s motion in the Experiment 3 was slightly more
accurate than that in the Experiment 1, and the improvement of the motion
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accuracy in Experiment 3 is also slightly larger than that in the Experiment 1.
Therefore, the motion that consists of both rotation and translation is better
than the rotation only or the translation only.
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Fig. 6. Robot’s 3D maps we adjust to

real world before and after modifica-

tion, and real 3D map (mm)

Fig. 7. Robot system

Fig. 8. Iteration of the image

acquisition and model modifi-

cation processes

(a) (b)

(c) (d)

Fig. 9. Stereo camera images. (a) left image at t = k.

(b) right image at t = k. (c) left image at t = k + 1,

(d) right image at t = k + 1.
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4 Experiments by Actual Robot

4.1 Experiment Procedures

We used a robot arm (MITSUBISHI PA-10) mounting two cameras (SONY
EVI-G20) (Fig.7).

We placed objects in the range of [-300,300] in X-axis, [-100,200] in Y -axis,
and [800,1400] in Z-axis in front of the robot (the unit for lengths is mm).

As shown in Fig.8, the robot took the images by both cameras while moving.
Next, it extracted corresponding points between images before and after motions.
If the total numbers of the corresponding points is less than 100, the above step
is tried again. Then, the robot constructed its 3D map using the parallel stereo
geometry. Finally, the robot modified its system model using our assumption.

Next, we verified how the 3D map changed by the translational motion be-
tween before and after modification of the system models. The coordinate systems
were always centered at the robot’s head. In the experiment, the robot moved
translationally by 100.0mm along X-axis in Experiment 1, by 50.0mm along Y -
axis in Experiment 2 and by 200.0mm along Z-axis in Experiment 3. We assumed
these motion values, and actually we did not know the true motion values.

imaginary objects before modification:
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300
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0
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2000
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-100
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0
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150
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imaginary objects after modification:

Fig. 10. Robot’s 3D map before and

after modification in the experiment by

using actual robot

Table 5. Results of experiment by ac-
tual robots. ((a) experiment numbers.
(b) indexes either before correction or
after correction. (c) directions of its
motion. (d) averages of the disparity of
object positions between before motion
and after motion.)

(a) (b) (c) (d)

1 before correction X-axis −114.81
Y -axis −0.55
Z-axis 40.27

after correction X-axis −100.03
Y -axis −0.10
Z-axis 1.41

2 before correction X-axis 0.59
Y -axis −108.66
Z-axis −13.69

after correction X-axis 0.65
Y -axis −40.99
Z-axis −5.70

3 before correction X-axis −0.66
Y -axis 13.94
Z-axis −462.60

after correction X-axis 4.36
Y -axis −5.65
Z-axis −199.33
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4.2 Experimental Results and Discussions

Fig.9 shows the images on which the corresponding points between k-th images
and (k+1)-th images were numbered. The robot constructed its 3D map by using
the coordinates of these corresponding points. The system model was modified
using our assumption of the stationarity. Before the modification, the positions
of the points on its 3D map changed by 2.24 × 103. But after the modification,
those positions changed by 1.28 × 103. So the change of its 3D map after the
modification became smaller. (Here, these values were the average of the dispar-
ity of the 100 object positions between before motion and after motion.) Fig.10
shows the change of the 3D map before and after the modification. (Here, we
show the half of the object points used in this experiment.)

Table 5 shows how much the object motions changed between before and
after robot’s moving in each experiment. If the objects on its 3D map move by
-100.0mm along X-axis when the robot moves by 100.0mm along X-axis, we
conclude that the robot can recognize the space accurately. Fig.10 shows that
the robot recognized the object positions around actual positions after robot
modified its system model using our assumption. Table 5 shows that robot was
able to move more accurately after the modification than before modification.

5 Conclusion

In this paper, we proposed a strategy to build up the 3D map in robot through
its stereo vision system combined with its active motions. Then, we showed some
simulation experiments and implementation on actual robots with our idea. Still
our experiments were not enough to verify the feasibility of our idea. In order
to improve the robot’s system models and the modification algorithm into more
sophisticated ones is the next problem.
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Abstract. To be able to understand the motion of non-rigid objects,
techniques in image processing and computer vision are essential for
motion analysis. Lateral interaction in accumulative computation for ex-
tracting non-rigid blobs and shapes from an image sequence has recently
been presented, as well as its application to segmentation from motion.
In this paper we show an architecture consisting of five layers based
on spatial and temporal coherence in visual motion analysis with ap-
plication to visual surveillance. The LIAC method used in general task
”spatio-temporal coherent shape building” consists in (a) spatial coher-
ence for brightness-based image segmentation, (b) temporal coherence for
motion-based pixel charge computation, (c) spatial coherence for charge-
based pixel charge computation, (d) spatial coherence for charge-based
blob fusion, and, (e) spatial coherence for charge-based shape fusion. In
our case, temporal coherence (in accumulative computation) is under-
stood as a measure of frame to frame motion persistency on a pixel,
whilst spatial coherence (in lateral interaction) is a measure of pixel to
neighbouring pixels accumulative charge comparison.

1 Introduction

There has been a great deal of research interest in motion tracking [1],[2],[3]
because of its great applicability in a wide variety of applications. Vision is
probable the most powerful source of information used by man to represent a
monitored scene. Visual information is composed of a great deal of redundant
sets of spatial and temporal data robustly and quickly processed by the brain.
There has also been much work carried out on the extraction of non-rigid shapes
from image sequences. In general, all papers take advantage of the fact that the
image flow of a moving figure varies both spatially and temporally.

Little and Boyd [4] found it reasonable to suggest that variations in gaits
are recoverable from variations in image sequences. There have been several
attempts to recover characteristics of gait from image sequences. Polana and
Nelson [5] characterize the temporal texture of a moving figure by summing the
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energy of the highest amplitude frequency and its multiples. Their more recent
work [6] emphasizes the spatial distribution of energies around the moving figure.
Bobick and Davis [7] introduced the Motion Energy Image (MEI), a smoothed
description of the cumulative spatial distribution of motion energy in a motion
sequence. Yang and Ahuja [8] segment an image frame into regions with similar
motion. The algorithm identifies regions in each frame comprising the multiscale
intraframe structure. Regions at all scales are then matched across frames. Affine
transforms are computed for each matched region pair. The affine transform pa-
rameters for region at all scales are then used to derive a single motion field that
is then segmented to identify the differently moving regions between two frames.
Olson and Brill [9] propose a general purpose system for moving object detection
and event recognition where moving objects are detected using change detection
and tracked using first-order prediction and nearest neighbour matching.

Behind all of these papers one can guess the idea of grouping spatially andf
temporally coherent image pixels into regions based on a common set of features.
Coherence is defined as logical and orderly and consistent relation of parts.
Spatial coherence describes the correlation between a set of features at different
points in space. Temporal coherence describes the correlation or predictable
relationship between those (or other) features observed at different moments
in time. Spatial coherence is described as a function of distance (a measure or
a metric), and is often presented as a function of correlation versus absolute
distance between observation points. The same operation can be performed in
time. It is well known that temporal and spatial coherence are involved in the
promotion of perceptual binding.

The goal of this paper is to present our method for spatio-temporally shape
building taking advantage of the inherent motion present in image sequences. In
an indefinite succession of images, our motion-based algorithms allow to obtain
the shape of the moving elements. Somehow, the method is bound to the generic
behaviour of the permanency memories [10]. Specifically, we will say that the
observer is unable to discern any object unless it starts moving. In other words,
the system only acts on those image pixels where some change in the grey level
is detected between two consecutive frames.

2 Lateral Interaction in Accumulative Computation
(LIAC)

Lateral interaction in accumulative computation has recently been introduced
[11],[12], as well as its application to segmentation from motion [13]. For it,
a generic model based on a neural architecture was presented. We shall now
remind of the most important characteristics of this model. The proposed model
is based on accumulative computation function followed by a set of cooperating
lateral interaction processes. These are performed on a functional receptive field
organised as centre-periphery over non-linear and temporal expansions of their
input spaces. A lateral interaction model consists of a layer of modules of the
same type with local connectivity, such that the response of a given module
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does not only depend on its own inputs, but also on the inputs and outputs
of the module’s neighbors. From a computational point of view, the aim of the
lateral interaction nets is to partition the input space into three regions: centre,
periphery and excluded. The following steps have to be done: (a) processing over
the central region, (b) processing over the feedback of the periphery zone, (c)
comparison of the results of these operations and a local decision generation,
and, (d) distribution over the output space.

We also incorporate the notion of double time scale present at sub-cellular
microcomputation. So, the following properties are applicable to the model. (a)
Local convergent process around each element, (b) semiautonomous functioning,
with each element capable of spatio-temporal accumulation of local inputs in
time scale T , and conditional discharge, and, (c) attenuated transmission of these
accumulations of persistent coincidences towards the periphery that integrates
at global time scale t. Therefore we are in front of two different time scales: (1)
the local time T , and, (2) the global time t, (t = n ·T ). Global time is applicable
to steps (a) and (d) of our neuronal lateral interaction model, whereas steps (b)
and (c) use local time scale T .

3 LIAC for Spatio-Temporal Coherent Shape Building

In first place, and in the following figure, the complete structure chosen as the
modular computational solution to apply the model to spatio-temporal shape
building is presented.

In Figure 1, five layers can be appreciated that form the architecture of the
lateral interaction in accumulative computation method.

Lateral Interaction in Accumulative ComputationLateral Interaction in Accumulative Computation

4. Spatial Coherence – Charge-based Blob Fusion4. Spatial Coherence – Charge-based Blob Fusion

3. Spatial Coherence – Charge-based Pixel Charge Computation3. Spatial Coherence – Charge-based Pixel Charge Computation

2. Temporal Coherence – Motion-based Pixel Charge Computation2. Temporal Coherence – Motion-based Pixel Charge Computation

1. Spatial Coherence – Brightness-based Image Segmentation1. Spatial Coherence – Brightness-based Image Segmentation

5. Spatial Coherence – Charge-based Shape Fusion5. Spatial Coherence – Charge-based Shape Fusion

Fig. 1. LIAC architecture for coherent shape building
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Now we are going to explain the role of each of these five layers devoted to
shape building. As it will be easy to appreciate, in each of these layers seeking for
coherence is the main objective. In effect, layers 1, 3, 4 and 5 are based on spatial
coherence, whereas layer 2 is a typical application of temporal coherence. The
consistency of the LIAC method for spatio-temporal coherent shape building
lays on motion-based grouping of pixels and blobs.

3.1 Spatial Coherence – Brightness-Based Segmentation

This layer covers the possibility to segment the image into a predefined group of
n grey level bands just from the brightness of each input image pixel. This layer
enables to smoothening the transitions among neighbouring pixels of the input
image. This may be considered a first step that contributes to spatial coherence.

Let GL(x, y, t) be the input grey level value at element (x, y) at time t, and
let GLS(k, x, y, t) be the presence or absence of grey level k at element (x, y) at
time t. Then

GLS(k, x, y, t) =
{

1, if GL[x,y,t]
GLmax−GLmin+1 + 1 = k,∀k ∈ [0, n − 1]

−1, otherwise
(1)

where n is the number of grey level bands, and, k is a particular grey level
band.

In other words, we are determining in which grey level band a certain pixel
falls. So, we are not evaluating, at this level, if there is motion in a grey level
band for a given pixel, but a brightness-based spatially coherent segmentation
is performed. Coherence, in this case, has to be understood as the relation of
belonging to a same grey level band.

It must be clear that one, and only one, of the outputs of all the detecting
modules of the grey level bands can be activated at a given instant. This fact,
although obvious, is of a great interest at the higher layers of the architecture,
since it will avoid possible conflicts among the values offered by the different
grey level bands. Indeed, only one grey level band will contain valid values.

3.2 Temporal Coherence – Motion-Based Pixel Charge
Computation

This layer has been designed to obtain the permanence value PM(k, x, y, t) [10],
[11] on a decomposition in grey level bands basis. We will have n sub-layers
and each one of them will memorise the value of the accumulative computation
present at global time scale t for each element. Lateral interaction in this layer is
thought to reactivate the permanence charge of those elements partially loaded
and that are directly or indirectly connected to maximally charged elements. The
permanence charge of each element will be offered as the input of the following
layer.

Firstly, at global time scale t, permanence memory charge or discharge due
to motion detection is performed. This information, given as input from the
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previous layer, is associated to sub-layer k of layer 1 (grey level band k). The
accumulative computation equation may be formulated as

PM(k, x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
ldis, if GLS(k, x, y, t) = −1
lsat, if GLS(k, x, y, t) = 1andGLS(k, x, y, t − �t) = −1
max(PM(k, x, y, t − �t) − dv, ldis),

if GLS(k, x, y, t) = 1andGLS(k, x, y, t − �t) = 1
(2)

where ldis is the discharge or Minimum permanence value, lsat is the saturation
or Maximum permanence value, and, dv is the Discharge value due to motion
detection.

Note that t determines the sequence frame rate and is given by the capacity
of the model’s implementation to process one input image. At each element (x, y)
we are in front of three possibilities: (1) The sub-layer does not correspond to
the grey level band of the image pixel. The permanence value is discharged
down to value ldis. (2) The sub-layer corresponds to the grey level band of
the image pixel at time instant t, and it didn’t correspond to the grey level
band at the previous instant t − �t. The permanence value is loaded to the
maximum of saturation lsat. (3) The sub-layer corresponds to the grey level
band of the image pixel at time instant t, and it also corresponded to the grey
level band at the instant t−�t. The permanence value is discharged by a value
dv (discharge value due to motion detection); of course, the permanence value
cannot get off a minimum value ldis . The discharge of a pixel by a quantity
of dv is the way to stop maintaining attention to a pixel of the image that had
captured our interest in the past. Notice that we really are in front of a temporal
coherence mechanism, where coherence depends on the comparison between the
grey level bands of each pixel at two consecutive time instants (two sucessive
frames).

3.3 Spatial Coherence – Charge-Based Pixel Charge Computation

Obviously, if a pixel is not directly or indirectly bound by means of lateral
interaction mechanisms to a maximally charged pixel (lsat), it goes down to the
total discharge with time. That is why, secondly, an extra charge rv (Recharge
value due to neighbouring) is added to the permanence memory in those image
pixels that receive a stimulus from a maximally charged element almost l1 pixels
far away in any of four directions. This recharge can only happen one time, and
provided that none neighbour element up to the maximally charged element is
discharged. l1 is called Number of neighbours in accumulative computation.
This recharge mechanism allows maintaining attention on those pixels directly
or indirectly connected to maximally charge pixels. This mechanism is even able
to reinforce the permanence memory value if the rv > dv.

PM(k, x, y, t) = min(PM(k, x, y, t) + ε · rv, lsat) (3)
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where

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if ∃(i ≤ l1)|∀(1 ≤ j ≤ i)
((PM(k, x + i, y, t)) = lsat

⋂
(PM(k, x + j, y, t)) �= ldis

⋃
(PM(k, x − i, y, t)) = lsat

⋂
(PM(k, x − j, y, t)) �= ldis

⋃
(PM(k, x, y + i, t)) = lsat

⋂
(PM(k, x, y + j, t)) �= ldis

⋃
(PM(k, x, y − i, t)) = lsat

⋂
(PM(k, x, y − j, t)) �= ldis)

0, otherwise

(4)

Lastly, back at global time scale t, the permanence value at each pixel (x, y)
is threshold (θ1) and sent to the next layer.

PM(k, x, y, t) =
{

PM(k, x, y, t), if PM(k, x, y, t) > θ1

θ1, otherwise (5)

In order to explain the central idea of this layer, we will say that the activation
toward the lateral modular structures (up, down, right and left) is again based
on coherence, this time spatial coherence. Spatial coherence is related to the
permanence memory values of neighbouring pixels up to a distance of l1. The
algorithm looks for coherent permanency value paths.

Now here are the basic ideas underlying lateral interaction at this layer.
(1) All modular structures with maximum permanence value lsat (saturated)
output the charge toward the neighbours. (2) All modular structures with a not
saturated charge value, and that have been activated from some neighbour, allow
passing this information through them (they behave as transparent structures
to the charge passing). (3) The modular structures with minimum permanence
value ldis (discharged) stop the passing of the charge information toward the
neighbours (they behave as opaque structures). Therefore, we are in front of
an explosion of lateral activation beginning at the structures with permanence
memory set at lsat, and that spreads lineally toward all the addresses, until a
structure appears in the pathway with a discharged permanence memory.

3.4 Spatial Coherence – Charge-Based Blob Fusion

Layer 4 is also formed of n sub-layers, where, by means of lateral interaction,
charge redistribution among all connected neighbours in a surrounding window
of l2 ∗ l2 pixels that hold a minimum charge, is performed. Besides distributing
the charge C(k, x, y, t) in grey level bands, at this level, the charge due to the
motion of the background is also diluted. The new charge obtained in this layer is
offered as an output toward layer 5. Starting from the values of the permanence
memory in each pixel on a grey level band basis, we will see how it is possible
to obtain all the parts of an object (blobs) in movement. A blob concretely
means the union of pixels that are together and in a same grey level band. The
discrimination of each one of the blobs is equally obtained by lateral co-operation
mechanisms. In case of layer 4, the charge will be homogenised among all the
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pixels that pertain to the same grey level band and that are directly or indirectly
united to each other, providing a means towards spatial coherence.

This way, a double objective will be obtained: (1) Diluting the charge due
to the false image background motion along the other pixels of the background.
This way, there should be no presence of motion characteristic of the background,
but we will rather keep motion of the objects present in the scene. (2) Obtaining
a parameter common to all the pixels of the blobs in a surrounding window
of l2 ∗ l2 pixels with a same grey level band. Initially, at global time scale t,
the charge value at each pixel (x, y) and at each sub-layer k is given the value
of the permanence value from the previous layer. After-wards, at local time
scale T , provided that the neighbour input charge values are high enough, the
centre element (x, y) calculates the mean of its value and the partially charged
neighbours in a surrounding window of l2 ∗ l2 pixels. l2 is denominated Number
of neighbours in charge redistribution.

C(x, y, T ) =

C(k,x,y,T−
T )+

l2∑
i=−l2

l2∑
i=−l2

δx+i,y+j · C(k, x + i, y + j, T − �T )

1 +
l3∑

i=−l3

δx+i,y+j

,

∀(i, j) �= (0, 0)
(6)

where

δα,β =
{

1, if C(k, α, β, T − �T ) > ldis

0, otherwise
(7)

Again at global time scale t, the charge value at each pixel (x, y) is threshold
(θ2) and sent to the next layer.

C(k, x, y, t) =
{

C(k, x, y, t), if C(k, x, y, t) > θ2

θ2, otherwise
(8)

3.5 Spatial Coherence – Charge-Based Shape Fusion

In each element of layer 5, we have an input from each corresponding element
of the n sub-layers of layer 4. This layer has as purpose the fusion into uniform
shapes of the objects in a surrounding window of l3 ∗ l3 pixels. That is why
it takes the input charges of each one of the grey level bands and performs a
fusion of these values, obtaining uniform parts of all the moving objects of the
original image. Its output is a set of shapes S(x, y, t). Up to now attention has
been captured on any moving objects in the scene by means of co-operative
calculation mechanisms in all grey level bands. Motion due to background has
also been eliminated. It is now necessary to fix as a new objective to clearly
distinguish the motion of the different objects. This discrimination is obtained
equally by lateral cooperation mechanisms. Nevertheless, now we will no longer
work with sub-layers, but rather all information of the n sub-layers of layer 4
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end up in a single layer. In layer 5, we will homogenise the charge values among
all the pixels that contain some charge value superior to a minimum threshold
and that are physically connected to each other in a radius of l3 pixels. This is
again the criteria used for spatial coherence. Firstly, the shape charge value at
each pixel (x, y) is given the charge value of the maximally charged sub-layer k
from the previous layer.

S(x, y, t) = max(C(k, x, y, t)), ∀k ∈ [0, 255] (9)

At local time scale, provided that the neighbour input charge values are
high enough, the centre element (x, y) calculates the mean of its value and the
partially charged neighbours in a surrounding window of l3 ∗ l3 pixels. l3 is
denominated Number of neighbours in object fusion.

S(x, y, T ) =

S(x, y, T − �T ) +
l3∑

i=−l3

l3∑
i=−l3

δx+i,y+j · S(x + i, y + j, T − �T )

1 +
l3∑

i=−l3

δx+i,y+j

,

∀(i, j) �= (0, 0)
(10)

where

δα,β =
{

1, if S(k, α, β, T − �T ) > ldis

0, otherwise
(11)

Back to global time scale t, the shape charge value at each pixel (x, y) is
again threshold (θ3).

S(x, y, t) =
{

S(x, y, t), if S(k, x, y, t) > θ3

θ3, otherwise
(12)

4 Data and Results

In this section we offer some results of applying our LIAC method in visual
surveillance to the traffic intersection sequence recorded at the Ettlinger-Tor
in Karlsruhe by a stationary camera, copyright 1998 by H.-H. Nagel, Institut
für Algorithmen und Kognitive Systeme, Fakultät für Informatik, Universität
Karlsruhe (TH), Postfach 6980, D - 76128 Karlsruhe, Germany.

Figure 2 shows two images of the sequence. You may observe the existence of
ten cars and one bus driving in three different directions. At the bottom of the
image there is another car, but this one is still. The parameter values for this
experiment are �t = 0.42 seconds, �t = 64 ∗ T , ldis=0, lsat=255 and dv=32.
Only three frames are needed to obtain accurate segmentation results. Figure 2c
shows the result of applying our model to some images of the traffic intersection
sequence. As you may observe, the system is perfectly capable of segmenting all
the moving elements present on Figure 2. Note that the grey levels of the output
image are consistent with the charge values common to the shapes obtained.
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(a) (b) (c)

Fig. 2. Two images of the traffic intersection sequence. (a) Image number 1. (b) Image

number 26. (c) Result of applying the lateral interaction mechanisms [13].

5 Conclusions

A simple algorithm of lateral interaction in accumulative computation, which is
capable of segmenting all rigid and non-rigid objects in an indefinite sequence of
images in a robust and coherent manner, with application to visual surveillance,
has been proposed in this paper. Our method may be compared to background
subtraction or frame difference algorithms in the way motion is detected. But,
the main difference is that we look for spatial coherence through segmentation
in grey level bands. Then, a region growing technique, based on spatio-temporal
coherence of charge values assigned to image pixels, is performed to define moving
objects. In contrast to similar approaches, no complex image preprocessing has
to be performed, no reference image has to be offered to our model, and, no high-
level knowledge has to be inferred to obtain accurate results. Our model is a 2-D
approach to motion estimation. In these kinds of approaches, motion estimates
are obtained from 2-D motion of intensity patterns. In these methods there is a
general restriction: the intensity of the image along the motion trajectory must
be constant, that is to say, any change through time in the intensity of a pixel is
only due to motion. This restriction does not affect our model at all. This way,
our algorithms are prepared to work with lots of situations of the real visual
surveillance world, where changes in illumination are of a real importance.

The gradient-based estimates have become the main approach in the ap-
plications of computer vision. These methods are computationally efficient and
satisfactory motion estimates of the motion field are obtained. The disadvan-
tages common to all methods based on the gradient also arise from the logical
changes in illumination.

Obviously, a way of solving the former limitations of gradient-based methods
is to consider image regions instead of pixels. In general, these methods are less
sensitive to noise than gradient-based methods. Our particular approach takes
advantage of this fact and uses all available neighbourhood state information as
well as the proper motion information. On the other hand, our method is not
affected by the greatest disadvantage of region-based methods. Our model does
not depend on the pattern of translation motion. In effect, in region-based meth-
ods, regions have to remain quite small so that the translation pattern remains
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valid. We also have to highlight that our proposed model has no limitation in the
number of non-rigid objects to differentiate. Our system facilitates object clas-
sification by taking advantage of the object charge value, common to all pixels
of a same moving element. This way, all moving objects are clearly segmented.
Thanks to this fact, any higher-level operation will decrease in difficulty.
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Abstract. Starting from a gray-level image partitioned into regions by water-
shed segmentation, we introduce a method to assign the regions to the fore-
ground and the background, respectively. The method is inspired by visual per-
ception and identifies the border between foreground and background in 
correspondence with the locally maximal changes in gray-level. The obtained 
image representation is hierarchical, both due to the articulation of the assign-
ment process into three steps, aimed at the identification of components of the 
foreground with decreasing perceptual relevance, and due to a parameter taking 
into account the distance of each foreground region from the most relevant part 
in the same foreground component. Foreground components are detected by re-
sorting to both global and local processes. Global assignment, cheaper from a 
computational point of view, is accomplished as far as this can be safely done. 
Local assignment takes place in the presence of conflictual decisions. 

1   Introduction 

Image segmentation is the first, and possibly the most important, step in any image 
analysis task. The procedure adopted to distinguish from the background and indi-
vidually identify the foreground components depends on the specific image domain as 
well as on the successive processing to be accomplished on the segmented image. 

In the majority of cases, segmentation cannot be achieved by simply thresholding 
the image, i.e., by assigning all pixels with gray-level lower than a given threshold to 
the background and all remaining pixels to the foreground. Different thresholding 
methods can be found in [1-3]. Foreground pixels are all assigned one of two possible 
values (generally 1 for the foreground and 0 for the background), or keep their origi-
nal gray-level values, depending on the successive analysis task. For example, in the 
case of shape analysis, the information derivable from the silhouette of the objects in 
the image is generally sufficient, and hence a binarized segmented image is adequate. 
However, in more complex tasks such as recognition, also information from texture or 
gray-level can be crucial, so that in the segmented image foreground components 
should be distinguished from the background, while keeping gray-level information.  

Segmentation done by thresholding is generally used when the original images are 
perceived as naturally binary, e.g., written documents where there are only two per-
ceived gray-levels that characterize the text and the background. Indeed, after acquisi-
tion and digitization, even a written document image is characterized by a number of 
different gray-levels. However, the gray-level distribution for this kind of images is 
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expected to be such that two peaks, well separated by an evident valley, constitute the 
gray-level histogram and, hence, a threshold value selected in correspondence with 
the valley should be adequate to binarize the document. 

When the original image is not naturally binary, its segmentation becomes more 
complex and methods based on thresholding become ineffective. Often, the threshold 
should assume different values in different parts of the image, to allow correct identi-
fication of foreground components since gray-level values that in a part of the image 
characterize background pixels, in other portions of the image are associated with 
pixels constituting foreground components. This is the case, for example, in images of 
biomedical nature. The digitized version of an histological specimen presents a num-
ber of regions that are characterized by a different gray-level since they correspond to 
regions actually having different intensity, or to portions of the specimen placed at a 
different depth in the slide and so resulting as having different intensity. Also the way 
in which the specimen has been cut has an influence on the light intensity transmitted 
through different portions of the specimen during its acquisition. Segmentation tech-
niques more sophisticated than thresholding, e.g., based on watershed transformation, 
generally produce better result in these cases. See [4,5] for early papers on watershed 
segmentation. These techniques originate a partition of a gray-level image into re-
gions characterized by a common property. This common property can be the almost 
homogeneous gray-level distribution, or a more specific geometrical/morphological 
property to be selected depending on the specific image domain. However, once the 
partition is obtained the problem of correctly assigning the various regions to either 
the foreground or the background still remains to be solved. In this communication, 
we face this problem.  

Starting from a partition of a gray-level image obtained by using watershed based 
segmentation, we introduce a procedure to identify the foreground components. Dif-
ferent solutions are suggested for the same image, depending on the desired detail of 
information to be preserved. The case study is a section of layers of neurons of frog’s 
brain. The gray-level values are in the range [0, 255]. 

The paper is organized as follows. In Section 2, we briefly discuss the method pro-
posed in [6] to obtain a gray-level image partitioned into a set of regions. In Section 3, 
we introduce a graph structure that will be used to accomplish in an efficient manner 
the remaining computation; in Section 4, we describe the method to identify fore-
ground components and show the obtained results on a test image. Finally, some con-
clusions are given in Section 5. 

2   Gray-Level Image Partition 

We start with a 2D gray-level image. This image is interpreted as a 3D landscape, 
where for every pixel in position (x,y), its gray-level plays the role of the z-coordinate 
in the landscape. This interpretation is useful to illustrate in a simple manner the para-
digm on which watershed based segmentation is founded. High gray-levels corre-
spond in the landscape to mountains and hills, while low gray-levels correspond to 
valleys. If the bottom of each valley is pierced and the landscape is immersed in wa-
ter, then valleys are filled in by water. Filling starts from the deepest valleys and then 
continues through less and less deep valleys. These begin to be filled as soon as the 
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water level reaches their bottom. A dam (watershed) is built wherever different basins 
are going to meet, to prevent water to spread from a basin into the close ones. When 
the whole landscape has been covered by water, the basins are interpreted as the parts 
into which the landscape is partitioned. 

Watershed segmentation can be used in different contexts. In general, the gradient 
image is used instead of the image itself, to enhance the differences in gray-level. 
Gray-level information is used to identify the regional minima, and the watershed 
transformation generates a partition of the (gradient) image into regions characterized 
by some common property regarding gray-levels.  

A problem common to all methods based on watershed transformation is the exces-
sive fragmentation of the image, which, in turn, is caused by the presence of a too 
large number of regional minima, many of which are not significant in the problem 
domain. Although any algorithm producing a watershed based image partition would 
be fine for our purposes, we prefer the algorithm presented in [6], since this includes a 
careful selection of the regional minima. In fact, the quality of the partition strongly 
conditions the quality of the results concerned with foreground and background detec-
tion. We briefly illustrate the two techniques (flooding and digging) used to select 
among the regional minima only those regarded as significant. To this purpose, a new 
criterion was introduced to evaluate the significance of the basins, and perform merg-
ing of a non-significant basin only with selected adjacent basins. In this way, non-
significant basins could be removed, while avoiding that non-significant basins were 
grouped to form a new, unexpected, significant basin, or a basin whose shape was al-
tered with respect to the foreseen shape. Merging was obtained by applying again the 
watershed transformation on a suitably modified gradient image, which included a 
smaller number of regional minima with respect to the original landscape. 

In [6], the significance of a basin X is defined in terms of some of its morphologi-
cal properties, and by evaluating the interaction of X with the adjacent basins. The ba-
sin X is significant with respect to an adjacent basin Y if a given condition holds. The 
measurements involved in the significance condition are i) the maximal depth of X 
when the water reaches the pixel (local overflow pixel) having the minimal height 
along the watershed line separating X from Y, and ii) the absolute value of the differ-
ence of altitude between the regional minima in X and Y. Three types of significance 
for X are possible and, correspondingly, decision on merging is taken and different 
procedures are applied, when merging has to be performed. 

1. The significance condition is verified for X in correspondence of every adjacent 
basin Y. Then, X is meaningful and cannot be merged with any adjacent basin. 

2. The significance condition is never verified for X in correspondence of any adja-
cent basin Y. Then, X is not meaningful and should be absorbed by (some) adja-
cent basin(s). The regional minimum of X has to be removed before applying 
again the watershed transformation. A suitable process (flooding) is accom-
plished to this purpose. The lowest local overflow value q is identified, and all 
pixels of X with gray-level lower than q are set to this value. 

3. The significance condition is verified for X only in correspondence of some adja-
cent basins. Then, X has to be merged with selected neighboring basins, with re-
spect to which X is not significant. Any such a basin Y shares with X a watershed 
line with a local overflow pixel, which is not necessarily the lowest local over-
flow pixel. A canal connecting X with Y is opened by a process (digging) which 
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will allow Y to absorb X. This canal is the minimal length path linking the re-
gional minima of X and Y, and passing through the local overflow pixel common 
to X and Y. The gray-level of all the pixels in the path is set to the lower value 
between those of the regional minima of X and Y. Thus, when the watershed 
transformation is newly applied, the water can flow through the canal from X to 
Y, and the desired merging is obtained. The basin resulting after merging is such 
that the watershed lines of X, which were already detected as separating signifi-
cant basins, are still present. 

The process is iterated until all basins are found as significant. The performance of 
the segmentation algorithm can be seen in Fig. 1 on the test image, initially including 
1729 regional minima, which results to be partitioned into 497 regions. 

 

  

Fig. 1. Test image, left. Image resulting after segmentation produced by algorithm [6], right. 
The regions of the partition are colored in different gray-tones. 

3   Graph Representation 

Starting from the image partitioned into, say, N regions, we build a graph with N 
nodes. Each node Ri, i=1,2,...,N, corresponds to a region of the partitioned image and 
the arcs describe the adjacency relations among nodes. In the following, the two terms 
node and region will be used interchangeably. At this stage of the process, back-
ground and foreground nodes are undistinguishable. Of course, it should be a priori 
known which parts of the image, the darker or the lighter, constitute the foreground. 
Here we assume that the foreground be constituted by the lighter parts, i.e., by those 
characterized by locally higher intensity.  

Two parameters are assigned to each node Ri. The first parameter, ri, identifies a 
representative gray-level value for the whole region corresponding to Ri. This value is 
used, in the proposed method, to assign regions to one of the two categories (fore-
ground and background). The second parameter, si, is used to hierarchically rank re-
gions, depending on their perceptual relevance. Ranking can be done for regions of 
both the foreground and the background. We limit ourselves to ranking only fore-
ground regions. Thus, si will remain set to its initial value 0 for background regions.  
 



410 M. Frucci, C. Arcelli, and G. Sanniti di Baja 

 

It will assume increasing values si=1,2,3,... for foreground regions, value 1 indicating 
the maximal relevance. 

To compute ri, we must take into account that any region of the partition is union 
of image subsets, each including pixels with the same gray-level. Which among all 
gray-levels in a region is the most representative one depends on problem domain. 
We have investigated alternative criteria to compute ri and have found the best results 
with the following two criteria, which can be used individually or in combination. 

1. ri is the average of the gray-levels with the maximal occurrence in the region. 
2. ri is the average of the gray-levels of all pixels in the region. 

A possible way to combine the above criteria is to use the first one provided that 
the computed maximal occurrence is at least 30% of the total number of pixels in the 
region, and use the second criterion otherwise. 

Note that two adjacent nodes may result to be characterized by the same value of ri. 
When this is the case, the two nodes are interpreted as constituting a single node. 

When the gray-levels in the original image are replaced by the ri values represent-
ing the regions, a smoothed image is obtained. 

4   Foreground Detection 

The partition has created a mosaic image where regions are distinguished from each 
other, but their membership to either the foreground or the background has not yet 
been established. The model we follow to ascribe regions to the background or to the 
foreground is inspired by visual perception. In a gray-level image one of the two sets, 
say the foreground, is perceived as characterized by locally higher intensity. If all 
nodes characterized by representative gray-level values greater (smaller) than the rep-
resentative values of all their adjacent nodes are ascribed to the foreground (back-
ground) two problems occur. Not all nodes are assigned to a category, and the regions 
ascribed to the foreground are scattered through the image and do not account for the 
perceived foreground. Indeed, to have a better result, other regions taken from the still 
undecided ones should be ascribed to the foreground.  

Since the border between foreground and background is perceived as placed wher-
ever strong differences in gray-level occur, two adjacent nodes Ri and Rj are, hence, 
more likely to belong to distinct categories if the difference Δ=|ri-rj| is large. We use 
this feature to devise a method to discriminate foreground and background. The 
method is based on both global and local processes. We use a global process as far as 
region assignment can be done safely guided by the maximal Δ value in the image. In 
all other cases, we resort to a local process.  

4.1   Step 1 

The first step of the process is the identification of the nodes certainly corresponding 
to regions of the foreground and of the background. These are respectively the nodes 
characterized by locally maximal and locally minimal representative gray-level val-
ues. Values of maxima (i.e., peaks in the landscape representation) and minima (i.e., 
valleys) are not taken into account to decide on region assignment, which is done 
globally on the whole image. 



 Detecting and Ranking Foreground Regions in Gray-Level Images 411 

 

The value of the parameter si is also determined for each node ascribed to the fore-
ground as follows. Let us call rFi and rBi the representative gray-level value of a node, 
depending on whether the node has been ascribed to the foreground or to the back-
ground. Let max denote the largest rBi. We set si=2 for each node such that rFi ≤max, 
and si=1 otherwise. This allows us to assess the different perceptual relevance of the 
nodes in the foreground. In fact, a node with si=2 is a peak, in the landscape descrip-
tion, and as such is worth to belong to the foreground. On the other hand, it results to 
have a gray-level smaller than that characterizing a valley, clearly assigned to the 
background, and as such has a perceptual relevance smaller than that pertaining peaks  
higher than any valley. 

In Fig. 2, the regions ascribed to the foreground at the end of Step 1 are shown in 
two dark gray-tones. 

 

 

Fig. 2. Foreground regions detected after Step 1. Two different gray-tones denote the different 
relevance values of foreground regions. 

4.2   Step 2 

The second step includes both global and local processes to assign not yet decided 
nodes to one of the two categories. Already decided nodes do not change category. 
The process is an iterated one guided by the maximal Δ value, determined at each it-
eration. It is concerned with the assignment to the foreground and to the background 
of regions placed along slopes in the landscape. Only pairs of adjacent nodes out of 
which at least one is still undecided are considered. The process terminates when no 
more undecided nodes exist. For each node Ri assigned to the foreground during each 
iteration, the parameter si is set to ni,j+sj+1, where ni,j is the number of nodes separat-
ing Ri from the closest node, say Rj, assigned to the foreground during previous itera-
tions or during Step 1, and sj is the perceptual relevance of Rj.  

At each iteration, two cases are possible depending on whether only one pair of ad-
jacent nodes has maximal Δ value, or more than one such a pair exists.  

In the first case, Case I, let Ri and Rj constitute the unique pair of nodes and let 
ri<rj. Since in correspondence with these two adjacent nodes Δ has assumed the 
maximal value, a transition from background to foreground occurs between Ri and Rj. 
We interpret this event as the fact that Rj belongs to the foreground and Ri to the 
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background. Moreover, we assume that if the values of the gray-level representatives 
of Ri and Rj have been sufficient for us to ascribe the two regions to the two catego-
ries, the same should hold at any other place in the image. Thus, we assign all regions 
characterized by a representative gray-level value not smaller than rj to the foreground 
and all regions with representative value not larger than ri to the background.  

 

 

Fig. 3. Sections of the landscape representation of an image. Plateaux identify regions. 

In the second case, Case II, when the maximal value of Δ is found in correspon-
dence of more than one pair of adjacent nodes, assignment will be global or local de-
pending on the distribution of representative gray-level values of the pairs of such 
nodes. Fig.3 can help to understand the two cases. There, two sections of the land-
scape representation of an image are shown. Both in Fig.3 top and Fig.3 bottom, three 
pairs of adjacent nodes are characterized by the maximal Δ value. In particular, in 
Fig.3 top, the three pairs of nodes are such that the maximum, maxmin, among the 
three minimal values in the three pairs is smaller than the minimum, minmax, among 
the three maximal values in the three pairs. In this case, the process will be a global 
one. In Fig.3 bottom, this condition does not hold and a local process is necessary.  

When the case exemplified in Fig.3 top occurs, the global process already de-
scribed in Case I is accomplished. This time, however, instead of considering the two 
representative gray-level values ri and rj of two adjacent nodes, the two values maxmin 
and minmax are employed, which do not correspond to adjacent nodes. All nodes with 
associated representative gray-level value not greater than maxmin are ascribed to the 
background and all nodes with representative gray-level not smaller than minmax to the  
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foreground. Note that the same result would have been obtained by processing, in a 
more lengthy way, one after the other all the pairs of nodes with the maximal Δ value.  

When the case of Fig.3 bottom occurs, conflictual assignments could be accom-
plished for the same nodes. For example, the node characterized by minmax could be 
assigned to the foreground, by taking into account the gray-level values in the pair of 
adjacent nodes including it; on the contrary, it could be assigned to the background, 
by taking into account the relation between the gray-level values of the node itself and 
of the node characterized by maxmin. To avoid this conflict, the process cannot be done 
completely in a global way. All nodes with representative gray-level value not smaller 
(not larger) than the maximum maxmax (minimum minmin) among the maximal (mini-
mal) values in the pairs of nodes with the maximal Δ are assigned to the foreground 
(background). For all other nodes, the following local investigation is done. 

For each pair of nodes with maximal Δ, all ascending (descending) paths, consist-
ing of nodes with increasing (decreasing) representative gray-level values, are traced 
until a decided node is met. The so traced surface of the slope includes all the unde-
cided nodes that will be assigned to a category by the local process. Along the slope, 
more than one single pair of adjacent nodes having the maximal Δ can be found. 
Since according to our model, the separation between the foreground and the back-
ground is expected where the maximal difference in gray-level occurs, and more than 
one pair of nodes is likely to satisfy this requirement, a decision should be taken. We 
select the pair of nodes with the maximal Δ, and such that the minimal value in the 
pair is the smallest possible minimal value among all pairs of adjacent nodes with the 
maximal Δ along the slope.  

 

  

Fig. 4. Foreground components found at the end of Step 2. Different gray-tones account for  
different values of the parameter si. 

Our local process favors assignment of most of the slope to the foreground. Note, 
however, that the parameter si allows us to hierarchically rank foreground nodes in 
terms of their distance, measured in number of nodes, from the most relevant fore-
ground regions they are linked to. Thus, even if most of the slope is ascribed to the 
foreground, the nodes constituting it are less and less significant when their distance 
from the most important part of the component increases. 
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In Fig.4, the foreground components found at the end of Step 2 are shown. Again, 
gray-tones denote different values of the parameter si. 

4.3   Step 3 

Though all nodes have been already assigned to either the foreground or the back-
ground, a final local process is accomplished aimed at possibly changing the status of 
some background nodes placed at the border with respect to foreground components 
along the slopes treated during Step 2.  

Background nodes that are adjacent to foreground nodes and have maximal repre-
sentative gray-level with respect to their neighboring background nodes are candidate 
to change their status and become foreground nodes. This status change is done only 
if it causes a topology change. Namely, a background region that acts as a connecting 
link between two foreground components, or as a bridge linking two distinct parts of 
the same foreground component is assigned to the foreground. The corresponding pa-
rameter si is set to ni,j+sj+1, where sj and ni,j respectively denote the parameter set for 
the closest foreground node Rj and the number of nodes between Ri and Rj. 

The final result of the process is illustrated in Fig.5. 

 

        

Fig. 5. Final result of the process to identify foreground components 

5   Conclusion 

We have introduced a method to identify foreground components in a partition of a 
gray-level image obtained by using watershed segmentation. In fact, the partitioned 
image includes regions whose membership to the foreground or the background is 
unknown. Our method is based both on global and local assignment. Since a process 
active on the whole image is computationally more efficient, we use global assign-
ment, based on the maximal difference in gray-level between adjacent regions, as far 
as this can be done with high degree of confidence. We resort to local assignment 
when different decisions should be taken in different parts of the image, though char-
acterized by the same maximal gray-level difference. 
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The performance of the method has been shown on a sample image only, but we 
have tested our procedure on a set of biological images and the obtained results are 
promising. The computational cost of the procedure is modest since all computations 
are actually accomplished on a graph whose nodes correspond to the regions of the 
partitioned image. 

An interesting feature of the method is the fact that foreground regions are hierar-
chically ranked. We can see two different kinds of hierarchy. The first hierarchy ranks 
the regions of the foreground components in at most three levels, since three are the 
steps of the process. Foreground regions detected at Step 1 are the most perceptually 
relevant as they correspond to peaks of mountains and hills in the landscape represen-
tation; regions detected at Step 2 have smaller relevance, since they correspond to 
nodes placed along the slopes of mountains and hills; finally, regions detected at Step 
3 are the less significant ones, as they were actually assigned to the background dur-
ing Step 2 and changed their status only for topological reasons. The second hierarchy 
is driven by the parameter si and by the relative positions of the nodes within a com-
ponent. The two kinds of hierarchies allow us to provide alternative representations of 
the original image to a potential user of the proposed method. 
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Abstract. Inspired by psychophysical studies of the human cognitive
abilities we propose a novel aspect and a method for performance eval-
uation of contour based shape recognition algorithms regarding their
robustness to incompleteness of contours. We use complete contour rep-
resentations of objects as a reference (training) set. Incomplete contour
representations of the same objects are used as a test set. The perfor-
mance of an algorithm is reported using the recognition rate as a function
of the percentage of contour retained. We call this evaluation procedure
the ICR test. We consider three types of contour incompleteness, viz.
segment-wise contour deletion, occlusion and random pixel depletion.
We illustrate the test procedure using two shape recognition algorithms.
These algorithms use a shape context and a distance multiset as lo-
cal shape descriptors. Both algorithms qualitatively mimic human visual
perception in the sense that the recognition performance monotonously
increases with the degree of completeness and that they perform best in
the case of random depletion and worst in the case of occluded contours.
The distance multiset method performs better than the shape context
method in this evaluation framework.

1 Introduction

We can easily recognize the butterflies depicted in Fig. 1, even though 50% of
the contour is removed segment-wise in the left image, the right half of the con-
tour is not visible in the middle image, and 80% of the contour points have been
removed (randomly) in the right image. Psychologist E. S. Gollin [6] investigated
this human ability to recognize objects from incomplete contour representations.
The main objective of his study was to investigate the performance of humans
in recognizing objects with incomplete contours as a function of developmental
characteristics, such as mental and chronological age and intelligence quotient.
As subjects of his experiments he chose children of different age groups and a
group of adults. In his experiments Gollin used sets of contour images with dif-
ferent degrees of incompleteness (Fig. 2) and addressed the following questions:
(1) In order to be recognized, how complete the contours of common objects
need to be? (2) How does training affect the recognition performance in case
of incomplete representations? Through his experiments he found that human
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ability to recognize objects with incomplete contours (a) depends on intelligence
quotient and (b) is improved by training.

This aspect of recognition of objects with incomplete contours is also very
important in the context of processing visual information using computers. A
natural image and two edge images, obtained from it are shown in Fig. 3. The
middle image was obtained by applying a bank of Gabor energy filters [8]. It con-
tains the contours of the object of interest, viz. a gazelle, but it also contains a
large number of texture edges in the background that are not related in any way
to the shape of the gazelle. There would be a devastating effect of these texture
edges on any currently known contour based shape recognition algorithm. Ad-
vanced contour detection methods based on surround suppression [8,9] succeed
in separating the essential object contours from the texture edges, as illustrated

(a) (b) (c)

Fig. 1. A butterfly can be recognized even though (a) 50% of its contour has been

removed segment-wise, (b) one of its wings is not fully visible (occluded), (c) 80% of

the contour pixels have been randomly removed

Fig. 2. Example of image sets used in Gollin’s original test [1]. The images in set V are

complete contour representations and the other sets are derived from set V by removing

segment-wise an increasing fraction of the contour. Reproduced with the permission

from the author and the publisher of: E. S. Gollin, Developmental studies of visual

recognition of incomplete objects. Perceptual and Motor Skills, Vol. 11 pp. 289-298,

1960, copyright Southern University Press.
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(a) (b) (c)

Fig. 3. (a) Image of a gazelle in its natural habitat. (b) Result of edge detection with

a bank of Gabor energy filters. (c) Result of contour detection by a bank of Gabor

energy filters augmented with a biologically motivated surround suppression of texture

edges.

by the right-most image in Fig. 3, but at the same time these methods have a
certain negative side effect of depleting the contours of the objects of interest.
Hence in practical situations the robustness of shape recognition methods to
contour incompleteness is also an issue of importance.

Inspired by Gollin’s study we put forward a novel attribute, viz. robustness
to incomplete contour representations, that any contour based object recogni-
tion system/algorithm should have. We choose an idealized situation where:
(a) complete contour representations of the objects to be recognized form the
reference (training) set or ”memory” of the system/algorithm, (b) incomplete
contour representations of the same objects are derived from the afore men-
tioned complete representations and are used as a test set, (c) the perfor-
mance of the system/algorithm in recognizing the objects from these incom-
plete representations is evaluated. The main reason behind evaluating the per-
formance of object recognition algorithms in such an ideal situation is the
rational logic that in order to perform well in a real world scenario (natu-
ral images) any recognition system should first perform well in such idealized
(simple) situations.

We investigate the performance of two contour based shape recognition meth-
ods, which use a shape context [1] and a distance multiset [7] as shape descrip-
tors, by comparing an object represented by incomplete contours with all objects
in a reference set represented by complete contours and determining the near-
est neighbor. If the nearest neighbor is the object from which the incomplete
contour representation is derived we consider the recognition to be correct, oth-
erwise incorrect. As incomplete contour representations of an object, in addition
to Gollin’s method of segment-wise contour deletion (Fig. 2) we also consider
other types of incompleteness, viz. occlusion and random pixel depletion. We
name the corresponding studies segment-wise deletion test, occlusion test, and
depletion test and collectively call these tests in short Incomplete Contour Rep-
resentation (ICR) tests.

In Section 2 we describe the shape recognition methods which we use for
illustration. The experimental design and the achieved results are discussed in
Section 3. A summary and conclusions are presented in Section 4.
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2 Shape Recognition Methods

The recognition of objects in the methods studied below is done by comput-
ing dissimilarity between the contour representations of two objects by using
a point correspondence paradigm. Shape descriptors associated with the points
are used to find the point correspondences. To maintain brevity and focus on the
illustration of the ICR test framework we use simpler versions of the algorithms
described in [7] and [1].

2.1 Distance Multiset

The distance multiset for a point p in the contour of an object O of N points,
is formally defined as the following vector [7]: DO

N (p) = (ln(d1(p)), ln(d2(p)),
. . . , ln(dN−1(p))) where dj(p) is the Euclidean distance between p and its jth

nearest neighbor in O. In this approach the shape of an object O ≡ {p1 . . . pN}
defined by a set of contour points is described by the set of distance multisets
in the following way: SDM

O ≡ {DO
N(p)|p ∈ O}. Next, a cost c(X, Y ) of matching

two distance multisets X and Y is defined and computed by using the algorithm
described in [13]. Let cDM

i,j be the cost of matching a point pi in an object O1

represented by M contour points to a point qj in an object O2 represented by
N contour points, M ≤ N : cDM

i,j ≡ c(DO1
N (pi), DO2

M (qj)). Then the dissimilarity
between the shapes SDM

O1
and SDM

O2
is defined as follows: dDM (SDM

O1
, SDM

O2
) ≡∑M

i=1 min{cDM
i,j |j = 1 . . .N}.

2.2 Shape Context

The shape context [1] of a point p belonging to the contour of an object is a bi-
variate histogram in a log-polar coordinate system that gives the distribution of
contour points in the surroundings of p. Let an object O be represented by a set
of contour points, O≡ {p1 . . . pN}. Formally, the authors of this method define
the shape context of a point p ∈ O as a vector in the following way: HO

K (p) =
(h1(p), h2(p), . . . , hK(p)), where hk(p) = card{q �= p|q ∈ O, (q − p) ∈ bin(k)} is
the number of contour points in the kth bin bin(k) and K is the total number
of histogram bins. The bins are constructed by dividing the image plane into K
partitions (in a log-polar coordinate system) with p as the origin. In this study we
use 5 intervals for the log distance r, and 12 intervals for the polar angle θ, so K
= 60. As suggested in [1], we randomly choose 100 points (if available) from the
contour of an object and calculate their shape contexts. The shape of the object
is described using the set of shape contexts associated with the contour points in
the following way: SSC

O ≡ {HO
K(p)|p ∈ O}. The cost of matching a point pi that

belongs to the contour of an object O1 of M points, to a point qj from the contour
of an object O2 of N points is defined as follows: cSC

i,j ≡ 1
2

∑K
k=1

[hk(pi)−hk(qj)]2

hk(pi)+hk(qj)
,

which yields an M×N cost matrix of point-wise dissimilarities. Next we compute
the dissimilarity between the shapes SSC

O1
and SSC

O2
of the objects in the following

way: dSC(SSC
O1

, SSC
O2

) ≡∑M
i=1 min{cSC

i,j |j = 1, . . . , N}.
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3 Experiments and Results

3.1 Image Set

We choose the silhoutte images from the MPEG-7 database [10] as our dataset.
In this dataset there are 1400 images divided into 70 classes, each of 20 similar
objects (eg. apple, bird, bat, etc). One object from each class is chosen and the
contours of the objects are extracted using Gabor filters [8]. These 70 contour im-
ages are rescaled in such a way that the diameter (maximum Euclidean distance
between contour pixels) is approximately the same (76 pixels) for all objects (Fig.
4). These 70 rescaled contour images are used as the reference (”memory” of the
recognition system) images in our experiments. These images are analogous to
the complete representations, set V of Fig. 2, used in Gollin’s original study.

Incomplete contour representations of objects for the segment-wise deletion
test are constructed by randomly removing continuous segments of the contours
and retaining a given percentage of contour pixels from the above mentioned com-
plete contour representations. For c percent of retained pixels approximately
 log2(100−c

8 )! segments are deleted. Incomplete representations for the occlusion
test are created by removing a given percentage of consecutive contour pixels
starting from the leftmost (Fig. 5(b)) or the rightmost pixel (Fig. 5(c) ) of an
object. The left and right occlusion are delibarately chosen due to the fact that
in case of natural images the object of interest is most commonly occluded either
from the left or from the right. A rondom pixel deletion is performed to construct
the incomplete representations for the depletion test (Fig. 5(d)). The percentages
of retained pixels are chosen in the following way: from 2% to 4% in steps of 1%,
from 5% to 85% in steps of 5%, and 100% for the depletion test; from 5% to 85% in
steps of 5%, and 100% for the segment-wise deletion and the occlusion tests. For
each type (segment-wise deletion, occlusion and depletion) and degree of contour
degradation 70 test images are created. In the web-site www.cs.rug.nl/∼petkov
the complete dataset for the proposed ICR test is available.

3.2 Methodology

A test image (incomplete contour representation of an object) obtained from one
of the 70 reference images is compared with all 70 reference images using a given

Fig. 4. Rescaled contour images obtained from samples of MPEG-7 silhoutte database.

These images are considered as complete representations that comprise the memory of

the recognition system.
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(a) (b) (c) (d)

Fig. 5. Incomplete contour representations: (a) Segment-wise deleted contour represen-

taion (this type of incompleteness corresponds to incomplete representations of Gollin’s

original study, set I to IV of Fig. 2). (b) Left-occluded contour representation. (c) Right-

occluded contour representation. (d) Depleted contour representation.

shape comparison algorithm, described in Section 2 and a decision is taken about
which reference image the degraded image is most similar to (nearest neighbor
search). If the nearest neighbor is the reference image from which the degraded
image was obtained, the recognition is considered correct, otherwise incorrect.
If the nearest neighbor is found to be not unique then the recognition is also
considered incorrect. For each of the three tests (segment-wise deletion, occlu-
sion, depletion) and for each degree (c percentage of retained contour pixels) of
contour image degradation, the corresponding 70 test images are compared with
each of the 70 reference images and the percentage of correct recognition P (c)
is determined. An average of the recognition rates with left and right occluded
images for a given percentage of retained contour is computed to evaluate the
performance of the algorithms in the occlusion test.

3.3 Results and Discussions

The results of our experiments are illsutrated in Fig. 6. The recognition rate is
a monotonic increasing function of the percentage of contour retainment in all
three tests. In this respect the considered algorithms resemble the human visual
system [3,4,14]. Both methods perform worst in the occlusion test and best
in the depletion test, which also conforms with the recognition performance of
humans, as occluded contour images carry the least amount of shape information
and depleted contour images carry maximum shape information in the context
of human visual perception.

The performance of the distance multiset method is appreciably better than
that of the shape context method for any percentage of retained contour pixels
in the case of the segment-wise deletion test (Fig. 6(top left)) and the occlusion
test (Fig. 6(top right)). From the results of the depletion test (Fig. 6(bottom))
we see that both the shape context method and the distance multiset method
perform very well in recognizing objects with depleted contour representations,
if more than 40% and 5%, respectively, of the contour points are retained. For
higher degree of depletion (c ≤ 40) the distance multiset method outperforms
the shape context method.

The better performance of the distance multiset method in general can be ex-
plained by the fact that the proposed ICR tests give advantage to the algorithms
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Fig. 6. Results of the ICR tests with a subset of MPEG-7 dataset: (top left) Segment-

wise deletion test; (top right) Occlusion test; (bottom) Depletion test

which yield zero dissimilarity in a comparison of two objects represented by two
sets of points where one is a subset of the other. This property of the distance
multiset algorithm is explained in more detail below. Let two sets A, B,⊂ R2

be such that B = {f(x) : x ∈ A}, where f : R2 → R2 is an isometry.

Lemma 1. If B = f(A), C ⊂ B and card(C) ≥ 2. then dDM (SDM
C , SDM

A ) = 0
where SDM

C and SDM
A are the shapes, described by distance multisets, correspond-

ing to C and A, respectively.

For the proof of the lemma refer to [5]. In our study A corresponds to the set of
contour points of a reference object, f is the identity transformation (i.e. B = A)
and C is the set of contour points of an incomplete representation.

The implication of the lemma is two-fold: (1) The recognition will be incorrect
by the distance mutliset method only when the nearest neighbor of a test object
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in the reference set is not unique. (2) The distance multiset method should
perform exactly the same way when f is not the identity transformation [5].

The above lemma does not hold for the shape context method, but this
method can be modified in such a way that the relation dSC(SSC

O , SSC
O′ ) = 0

can be approximately fulfilled if O′
is an incomplete representation (of modest

degree) derived from O. Specifically, we normalize the shape context HO
K(p) by

dividing its elements by the total number of points card(O) in the corresponding
object O. If O′ ⊂ O is an incomplete representation derived from O and if
HO′

K (p) is the normalized (by card(O′
)) shape context of a point p (p ∈ O′

)
in this incomplete representation, the relation HO′

K (p) ≈ HO
K(p) will hold for

modest degrees of contour deletion because the ratio of the number of contour
points in each bin to the total number of points will be approximately the same
for the complete and the incomplete contour representations and hence we have
dSC(SSC

O , SSC
O′ ) ≈ 0 for normalized shape context. In our experiments we found

that the performance of the shape context method is greatly imporved due to
this normalization in the segment-wise deletion and the depletion test [5].

As the scope of this paper is to introduce a new test, it is important to check
if the conclusions drawn from the ICR test are consistent across datasets. We
carried out experiments using a second set of images, the Columbia University
Image Library (COIL-20) dataset and (compared to the MPEG-7 dataset) no
qualitative difference in the performances of the algorithms was observed, c.f [5].

The object size can have effect on the results of an ICR test through (a) the
resolution of the reference objects and (b) a possible mismatch between the size
of a reference object and a test object. Regarding the resolution of the reference
objects, in our experiments we found that for a given percentage of contour
degradation (by any method) the performance of the algorithms grows with the
diameter of the reference objects.To eliminate this effect and to standardize the
test procedure we rescaled the reference contour images to a fixed diameter (76
pixel units). For more detailed discussion on the effect of the object size on the
proposed ICR test refer to [5]. The problem of a possible mismatch between
the sizes of reference and test objects can be dealt with either by using scale
invariance procedures prescribed in [1], [7] or by using a multiscale apporach.

The performance curves obtained in the ICR tests can be used to compare
algorithms as illustrated in Fig. 6. To define a criterion for acceptable perfor-
mance of an algorithm in the ICR test, the performance of humans in similar
experimental [3,4,14] setup can be used as a reference [5].

A good performance in the original ICR test does not guarantee good per-
formance in other respects, e.g. robustness to shape or size variation. Hence, a
good performance in the ICR test should be considered as a necessary condi-
tion for object recognition methods to perform well in a real world scenario but
not as a sufficient one. We are not aware of any evaluation procedure for shape
recognition methods which is sufficient in such respect. The basic framework of
the ICR test proposed in this paper can easily be extended to test robustness
of algorithms to more than one criterion, e.g. a bull’s eye ICR test for evaluat-
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ing robustness to shape variations along with robustness to incomplete contour
representations. We present results of such a bull’s eye ICR test in [5].

4 Summary and Conclusion

Shape descriptor based object recognition methods have been evaluated and
compared using various characteristics like invariance, uniqueness and stability
[12]. Marr and Nishihara [11] proposed three criteria for judging the effective-
ness of a shape descriptor, viz. accessibility, scope and uniqueness, stability and
sensitivity. Brady [2] put forward a set of criteria for representation of shape,
viz. rich local support, smooth extension and propagation. In the current work,
motivated by characteristics of the human visual system [6], we propose an addi-
tional new criterion, viz. robustness to contour incompleteness to compare and
characterize contour based shape recognition algorithms using their performance
in recognizing objects with incomplete contours. We are not aware of any such
comparison and characterization in the present literature.

We put forward the following procedure which we call the ICR test: (1) Take
a set of images of objects and extract contours. Rescale all contour images to the
same object diameter. (2) Train the recognition system with these complete con-
tour representations. (3) Construct different sets of incomplete representations
from the complete contour representations; quantify the level of incomplete-
ness using the percentage of contour pixels retained. (4) Using the incomplete
representations as a test set evaluate the recognition rate as a function of the
percentage of contour pixels retained.

To illsutrate the framework we use two shape recognition methods based on
the shape context and the distance multiset. The two methods tested were chosen
merely for illustrative purposes and we did not aim to prove superiority of any
method. A complete comparative study of the two methods is out of the scope
of this work. In our illustrative experiments we found that: (1) The distance
multiset shape recognition method outperforms the shape context method. (2)
Both methods perform similar to the human visual system in the sense that their
performances are increasing functions of the degree of contour completeness and
are best in the case of the depletion test and worst in the case of the occlusion
test.
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Abstract. This paper presents a shape description method based on contour 
segment curvature (CSC). The CSC is defined as the ratio of the line length 
connecting two endpoints of a contour segment to its curve length. To extract 
consistent contour segment, the concept of overlapped contour segment is in-
troduced. The rotation and scale invariant CSC can be extracted through the use 
of the overlapped contour segment. The proposed method describes the shape 
of objects with feature vectors that represents the distribution of the CSC, and 
measures the similarity by comparing the feature vector acquired from the cor-
responding unit-length segment. The experimental results show that the pro-
posed method is not only invariant to rotation and scale but also superior to the 
NCCH and the TRP method in clustering power. Furthermore, the performance 
improvement is expected by adding the distance information to the CSC. 

1   Introduction 

Content-based image retrieval requires various pattern recognition techniques. In par-
ticular, shape description techniques are essential for successful content-based image 
retrieval [1, 2, 3]. Various shape description methods have been studied. These methods 
are classified according to many different criteria [4]. The first criterion is the part of use 
in shape description: boundary vs. region. The second is the result of shape description: 
the numeric (scalar transform) vs. the nonnumeric (space domain). The third is informa-
tion preservation: accurate reconstruction vs. partial reconstruction. 

In the field of content-based image retrieval, rotation and scale invariant shape de-
scription features are also required. Fourier descriptor and moments are representative 
features in the scalar transformation method. These features can effectively represent 
the global shape. However, they are required to improve the local shape description 
power and to reduce time complexity [5, 6]. Chain code, polygonal approximation, 
and medial axis transformation are typical features in the space domain method. 
Iivarinen [7] proposed a feature of normalized chain code histogram (NCCH). Gaus-
sian filter was used to reduce the contour distortion and each chain code direction on 
contour was counted and normalized by the contour length. Chang [8] used a function 
of distance from the centroid to a feature point on the contour. The feature points are 
extracted based on curvature information. In the case where a contour is approximated 
by a polygon, the vertexes are used as feature points. Tang [9] presented the feature of 
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transformation ring projection (TRP). Unlike Chang’s [8] method, Tang used all the 
points in the region to compute the distance, and the frequency in each distance range 
was counted. 

This paper presents a rotation and scale invariant shape description method using 
contour segment curvature (CSC). Like the NCCH method, the proposed method is a 
scalar transformation method using contour information. The basic concept of the 
CSC is described in section 2. In section 3, the shape description method using the 
CSC is explained. In the two final sections that follow, the experimental results and 
conclusion are presented. 

2   Contour Segment Curvature 

The contour segment curvature (CSC) is defined as the ratio of the line length con-
necting two endpoints of a contour segment to its curve length. A circle has a unique 
CSC regardless of the location of contour segment. However other shapes have dif-
ferent CSC according to the location of contour segment. For a contour segment S of 
length L that has two endpoints A and B, the CSC(S) is defined  by 

L

ABlength
SCSC

)(
)( =  . (1) 

When the topmost left pixel A0 is determined as the base point for segmenting con-
tour into unit-length segments, Si is defined as the i-th segment that has two endpoints 
Ai and Bi. A straight segment like S6 has a CSC close to 1. In contrast, curved segment 
like S5 has a CSC close to 0.5. The range of the CSC is 0 to 1. The CSC(Si) describes 
the feature of a contour segment Si. So the feature of the entire contour can be de-
scribed by combining the CSCs acquired from all the segments composing the  
contour.  

        

(a)                            (b)                            (c) 

Fig. 1. (a) Contour segments; (b) CSCs; (c) Overlapped contour segments 

It is necessary to extract contour segments that are invariant to rotation and scale to 
acquire stable CSCs regardless of these variations. In literature [8], it first extracts the 
special feature points in order to obtain these contour segments. However, it is difficult 
to extract stable feature points. The proposed method divides the contour into unit-
length segments. The unit-length is set in proportion to the entire contour length to cope 
with scale variation. It also defines overlapped contour segment corresponding to each 
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point on a contour. Therefore, a contour consisting of L points has overlapped contour 
segment S0, S1, …, and   SL-1 as described in Fig. 1-(c). 

3   Shape Description Using CSC 

3.1   Preprocessing 

To acquire stable contour segments, preprocessing methods such as binarization and 
contour smoothing is needed. A fixed threshold was used to emphasize the silhouette of 
the image and the outer boundary contour was extracted based on the 8-neighbor con-
nectivity. Image variation and noise partially disrupt contour shape. In particular, the 
proposed CSC feature is sensitive to the minute fluctuation of a contour. Hence contour 
smoothing was performed. The 1-D Gaussian convolution mask was used for contour 
smoothing, where r is plus or minus 13 for σ=5. The r argument gives the distance in 
pixels from the centre of the mask, and σ specifies the ‘width’ of the mask. Fig. 2 shows 
the sequential process and corresponding result of each preprocessing step. 

Fig. 2. (a) An input image; (b) Binarized image; (c) Outer contour; (d) Smoothed contour 

3.2   Feature Vector Generating and Matching 

The unit-length of a contour segment should be set to compute the CSC. To extract 
scale invariant features, the unit-length was set as the quotient of dividing the entire 
contour length L by d. If d increases, the unit-length is shortened and the CSC repre-
sents local feature of a contour. On the contrary if d decreases, the unit-length is 
enlarged and the CSC represents the global feature of a contour. Therefore, extracting 
the local or global feature of a contour shape using the CSC becomes viable through 
the means of changing d. In equation (2), the CSC(l, Si) represents the curvature of i-
th segment of unit-length l. The digital curve length l is computed by the sum of the 
product of each weighted pixel direction’s frequency. The weight of vertical or hori-
zontal direction is 1.0 and the others are 1.414. 

l

length
lCSC BA

S ii
i

)(
),( =  (2) 

Fig. 3 shows the CSC graphs when d is 3, 7, and 11. The graphs show the curva-
ture variation as the base point is moved around the contour. In Fig. 3-(a), the contour 
segment with the base point located at 2L/3 has a CSC smaller than 0.5 because the 
segment is curved in a ‘<’ shape. Although the base points located at 2L/3, 5L/7, and 
8L/11 do not coincide with each other, the figure shows that as the unit-length be-
comes shorter its corresponding curvatures-the CSC(L/3, S2L/3), CSC(L/7, S5L/7), and 
CSC(L/11, S8L/11)  become larger. These are displayed in the CSC graphs. In the CSC 
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         (a) Unit-length L/3                 (b) Unit-length L/7                   (c) Unit-length L/11 

Fig. 3. Contour segments and their corresponding CSC graphs 

graph, moving upward means that corresponding contour segment becomes close to 
being a straight line.  

The CSC(l, Si) is converted into n-dimensional contour segment feature vector 
Vl(Si) according to the equation (3). As shown in equation (4), the entire contour’s 
feature vector is defined as the sum of each feature vector Vl(Si). It means that the 
entire contour shape is described by the frequency count accumulated according to the 
range of the CSC. The sum of each element’s value in feature vector Vl equals to the 
entire contour length L. Hence, it is necessary to normalize the feature vector with the 
length L to cope with scale variation. 
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A similarity measure is needed to search for a similar-shaped image from an image 
database. The similarity measure is described in equation (5), where QVl and TVl refer 
to the normalized feature vectors of query image and target image in the database 
respectively. 

−
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−=
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n

i
ilill vTVvQVD  (5) 

The final feature vector is acquired by using multiple length contour segments as 
the short and long segments effectively represent local and global features. The final 
feature distance is defined as the average distance between corresponding feature 
vectors. 
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4   Experimental Results and Discussion 

4.1   Experimental Environment 

The proposed method was implemented at Pentium4 PC using Visual C++ 6.0, and 
the performance was evaluated using fish images. Two types of experiments were 
performed: one to test the performance and the other to examine the applicability to 
the content-based image retrieval. The fish images selected from a web site 
(http://www.kunsan.ac.kr/fishes/ menu.html) were used for performance testing. Five 
groups of fish images, a total 15 images, were selected according to the boundary 
shape as shown in Fig. 4. To test the robustness for similarity variation, additional 150 
images were generated by rotation (15°, 30°, 45°, 90°, 180°) and scale (50%, 80%, 
110%, 120%, 150%). Fig. 5 shows some sample images among the objects of content-
based image retrieval. A database consisting of 1,100 marine creature images were 
used for the experiment of image retrieval. They were provided at the CVSSP site 
(http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html). 

 

               

                

                

Group-A            Group-B                Group-C                Group-D                 Group-E 

Fig. 4. Fish images: Group-A(A1, A2, A3), Group-B(B1, B2, B3), Group-C(C1, C2, C3), 
Group-D(D1, D2, D3), Group-E(E1, E2, E3) 

Fig. 5. Samples of the database consisting of 1,100 marine creature images 

4.2   Experimental Results and Analysis 

The performance evaluation was performed with two aspects in consideration: clus-
tering power and invariance to rotation and scale variation. The clustering power 
means the ability to make similar shapes locate closely and different shapes locate far 
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away in a feature space. The invariance refers to the degree of closeness between 
original and rotated or scaled image at feature space.  

As explained earlier, the unit-length was determined as the quotient of dividing the 
entire contour length L by d, and multiple unit-length contour segments were used to 
extract local and global features. To reduce the redundant information, prime numbers 
were selected as d values. In this experiment, 3, 7, and 11 were used. The comparison 
with two other methods was performed: the normalized chain code histogram 
(NCCH)[7] and the transformation ring projection (TRP)[9]. For comparison, the two 
methods were implemented. Table 1 shows the absolute feature distance between 
each pair of groups. It is difficult to compare the clustering power with the absolute 
distance shown in table 1, because each method has different feature distance meas-
ures. Therefore it is necessary to introduce a relative distance defined by the ratio of 
average inter-group distance to average intra-group distance. For example, the relative 
distance of group A, RD(A), is computed by equation (6), where D(A,X) is the dis-
tance between group A and X, and Ai is a feature vector of i-th image in group A.  

Table 1. Feature distance at each pair of groups 

 Method 
Group 

A 
Group 

B 
Group 

C 
Group 

D 
Group 

E 
NCCH 109 146 153 469 207 
TRP 298 502 615 431 447 

Group 
A 

CSC 306 1002 495 856 729 
NCCH 146 128 182 396 147 
TRP 502 236 315 374 359 

Group 
B 

CSC 1002 384 845 1246 612 
NCCH 153 182 138 485 218 
TRP 615 315 166 604 588 

Group 
C 

CSC 495 845 269 770 562 
NCCH 469 396 485 80 289 
TRP 431 374 604 46 267 

Group 
D 

CSC 856 1246 770 74 914 
NCCH 207 147 218 289 123 
TRP 447 359 588 267 206 

Group 
E 

CSC 729 612 562 914 192 
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 (6) 

 
To compare the clustering power using relative distance is a feasible option. Fig. 6 

shows the relative distance of each group when three different methods were applied. 
The images at group D were clearly discriminated from the other groups’ images in 
all the three methods. The proposed CSC method demonstrates superior clustering 
power than the NCCH and the TRP method with the exception of group C.  

The rotated or scaled images were used in the experiment to test the invariance 
against these variations. Table 2 shows the absolute feature distance between the 
original image and rotated or scaled image. It is necessary to introduce another rela-
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tive distance to compare the three methods. It is defined by the ratio of average varia-
tion distance to average inter-group distance. The variation distance is the distance 
between the feature vector of the original image and the feature vector of a rotated or 
scaled image. The relative distance of i-th image in group X, RD(Xi), is computed by 
equation (7), where Xi’ is a rotated or scaled image of Xi. 

 

 

Fig. 6. A comparison of clustering power 

Table 2. The absolute features distance according to the variation of rotation or scale 

Rotation angle Scale (%)  Method 
15 30 45 90 180 50 80 110 120 150 

NCCH 173 182 164 25 31 48 45 71 91 176 
TRP 64 228 333 60 85 77 42 38 50 107 

Group 
A 

CSC 162 236 178 140 96 290 60 112 200 397 
NCCH 186 238 176 35 41 69 63 74 107 124 
TRP 84 114 114 32 50 161 37 38 67 58 

Group 
B 

CSC 164 170 184 165 184 486 151 167 205 372 
NCCH 156 188 150 47 57 67 54 69 126 169 
TRP 78 153 202 64 73 210 134 101 70 73 

Group 
C 

CSC 133 186 99 78 116 157 43 111 203 349 
NCCH 369 421 225 15 18 53 36 69 122 192 
TRP 17 23 49 14 19 21 11 23 21 27 

Group 
D 

CSC 28 61 75 34 34 23 19 15 24 44 
NCCH 237 246 155 17 14 37 34 67 106 135 
TRP 43 62 85 56 66 86 30 34 57 44 

Group 
E 

CSC 76 103 108 41 35 296 54 62 106 188 

 

)),((

))',((

XXDAverage

XXDAverage
)RD(X ii

i =  (7) 

A relative distance greater than 1.0 means that the feature distance to the rotated or 
scaled images is greater than the distance out of the different images in the same 
group. Therefore, the relative distance less than 1.0 indicates robustness in rotation or 
scale variation. Fig. 7 shows that the CSC and the TRP feature have superior rotation 
invariance than the NCCH feature. However, as shown in Fig. 8, any one does not 
show distinctive superiority in scale invariance. 

An experiment to diagnose the applicability of content-based image retrieval was 
performed. The retrieval results shown in Fig. 9 show five candidates per query  
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image. The topmost images (A1, B1, C1, D1, and E1) in each group shown in Fig. 4. 
were used as query images. Like the results of the performance test, the retrieval re-
sults show that the CSC and the TRP methods are superior to the NCCH method. 
However, there is no clear distinction in superiority between the CSC and the TRP 
method. The CSC method shows better result than the TRP method for the A1 query 
image, whereas the TRP method shows better than the CSC method for the E1 query 
image. The CSC2 is a refined feature of the CSC combining the TRP feature. The 
CSC features are refined according to the distance between a centroid and the mid-
point of contour segment. It shows better result than any other three methods.  

 

 
Fig. 7. Relative distance to the rotation variation 

 

 

Fig. 8. Relative distance to the scale variation 

(a) Query image: A1 

Fig. 9. Image retrieval results for the marine creatures database 
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(b) Query Image: B1 

(c) Query Image: C1 

 (d) Query Image: D1 

(e) Query Image: E1 

Fig. 9. Image retrieval results for the marine creatures database (cont.) 
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5   Conclusion 

In conclusion, this paper has proposed a rotation and scale invariant shape description 
method. The proposed method has defined the overlapped contour segment in which 
length is in proportion to the entire contour length. The CSC can describe the feature 
of local or global shape according to the unit-length of the segment. For this reason, 
multiple unit-length segments were used to calculate the CSC. The experimental re-
sults show that the proposed method is superior to the NCCH and the TRP methods in 
clustering power. Furthermore, the refined CSC feature shows improved retrieval 
results. This study has focused on the shape description method only, thus a simple 
similarity measure and the nearest neighbor classifier were used. Future work will be 
to refine the CSC feature and to develop an appropriate classifier. 
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Abstract. This paper is a research on the dynamic signature verification of error 
rate which are false rejection rate and false acceptance rate, the size of signature 
verification engine, the size of the characteristic vectors of a signature, the 
ability to distinguish similar signatures, and so on. We suggest feature 
extraction and comparison method of the signature verification. Also, we have 
implemented our system with Java technology for more efficient user interfaces 
and various OS Platforms and embedded system. 

1   Introduction 

The need to be able to identify other individual human beings is fundamental to the 
security of the family unit and has been true since the beginning of human history. 
Members of a tribe needed to be able to identify other members of the tribe quickly, 
easily and usually from a distance. Using the remembered physical or behavioral 
characteristics of each member achieved this. How a person looked, what they were 
wearing, how they moved or combinations of these were used to authenticate the 
person as a member. The biometric technology allows for a greater reliability of 
authentication as compared with badges, card readers or password systems.  

The chances of an individual losing his/her biometric information are far less the 
forgetting a password or losing a card. Through these types of verification, comes an 
increased role of responsibility, and security. 

Dynamic signature verification technology is to verify the signer by calculating his 
writing manner, speed, angle, and the number of strokes, order, the down/up 
movement of pen when the signer input his signature with an electronic pen for his 
authentication.  

Verifying yourself to a machine is the first step of most automated transaction. The 
desire for increasing convenience and security motivates the development of 
biometric techniques in order to replace keys, passwords, and smart cards. Signature 
verification presents four advantages unlike over other physiological biometric 
techniques from the point of view of adoption in the market place. First, it is a 
socially accepted identification method already in use in bank and credit card 
transaction; second, most of the new generation of portable computer, personal digital 
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assistants (PDAs) and especially smart phone use handwriting as the main input 
channel; third, a signature may be changed by the user, similarly to a password, while 
it is not possible to change fingerprints, iris or retina patterns; fourth, group users can 
share signature key with very simple pattern of signature unlike physiological 
biometric technology. That is, physiological biometric technology cannot be shared 
for group users.  

All biometric techniques have false accepts generated by the imperfections of the 
classification method or by errors in the acquisition device. However, dynamic 
signature verification using behavioral biometric technique, compared with 
physiological biometric techniques such as fingerprint, face, iris or retina, have 
additional advantage that a forger with not-enough information about the true 
signature could not deceive the verification algorithm because multi-dimensional 
feature information of dynamic signature, that is, speed of stroke, size of signature, 
pressure, variable shape, pen down/up information and so on decrease the risk of 
accepting skilled forgeries since they are not available to the forger. 

2   Dynamic Signature Verification System 

DSVS, like all other biometric verification systems, involves two processing modes: 
registering and verifying. In the registering mode include three phases: training, 
testing and saving. In the training, the user provides signature samples that are used to 
construct a template (or prototype feature vector) representing some distinctive 
characteristic of his signature. In the testing, the user provides a new signature to 
judge authenticity of the presented sample and choose his own threshold security 
level for him. The performance of a verification system is generally evaluated with 
equal error rate (EER).  

The errors of verification can be classified in two categories; False rejection rate 
(FRR) indicates the rate of genuine signatures rejected that is, evaluates the number of 
false signatures classified as real one False acceptance rate (FAR) indicates the rate of 
accepted forgeries that is, measures the number of genuine signatures classified as 
forgeries. The Equal Error Rate (EER) corresponds to the error value for which FAR 
is equal to FRR. These rates determine the quality of an authentication system, but the 
acceptable values depend on the level of security desired for a specific application.  

Anyway, EER provides an estimate of the statistical performance of the algorithm, 
i.e., it provides an estimate of its generalization error. 

3   Feature Extraction  

We introduce useful feature points in our on-line signature verification system. 
Finding out the best method to calculate the degree of similarity is very important. 
The previous approach for that is to select and arrange distinctive points. For the best 
signature verification, it is important to reduce the range of variation of the true 
signature and to extend distinctiveness between the true and forgeries. Assigning the 
adequate weight for each feature is another important point. 
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The useful feature points are below: 

- Speed, velocity, acceleration, pressure information 
- Shape of coordinates, direction and slope between two points 
- Number of pen down/up points 
- Information of pen down/up movement (Fig. 1) 
- Total time taken in signing 
- Pen down/up time between strokes 
- Number of strokes 
- Total number of coordinates 

Our system primarily uses directions and absolute distances (in Fig. 2) between two 
points for the pen down/up strokes. We know that these two features include many 
information of the signature that is, the shape and speed, information of strokes, 
elapsed time and so on with our experiment and experience. 

 

Fig. 1. Pen Up/Down movement 

 
The feature vectors of pen down movement have values of 1 to 36 directions. And 

the feature vectors of pen up movement have values of 91 to 126 directions. But, 
distances have absolute length of value between two points as Fig. 2. All distances are 
defined less than 128. So, these directions and distances can be stored as byte strings 
in small memory. 

 

 

 

 
 
 
 

Fig. 2. Signature features of direction and distance 
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4   Comparison Method  

One of the most important difficulties in authentication using on-line signatures is the 
choice of the comparison method. On-line signatures are given by a sequence of 
points sorted with respect to acquisition time. Since two signatures of the same person 
cannot be completely identical, we must make use of a measure that takes into 
account this variability. Indeed, two signatures cannot have exactly the same timing, 
besides these timing differences are not linear. Dynamic Time Warping is an 
interesting tool; it is a method that realizes a point-to-point correspondence. It is 
insensitive to small differences in the timing. Calculation distances between 
signatures with DTW allows to achieve a verification system more flexible, more 
efficient and more adaptive than the systems based on neural networks or Hidden 
Markov Models, as the training phase can be incremental. This aspect is very 
important when we must enroll our new signature along the years or new 
environment. 

 

 

 
Fig. 3. Method of Dynamic Time Warping 
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W1 is a weight value adopted in case horizontal path or vertical path, and w2 is a 
weight value adopted in case orthogonal path. Given two sequences A = (a1, a2, ..., 
an) and B = (b1, b2, ..., bm), the distance DTW(A,B ) is similar to edit distance. To 
calculate the DTW distance G(A,B), we can first construct an n-by-m matrix, as 
shown in Fig. 3. Then, we find a path in the matrix which starts from cell (1, 1) to cell 
(n,m) so that the average cumulative cost along the path is minimized. If the path 
passes cell (i, j), then the cell (i,j) contributes cost(ai, bj) to the cumulative cost. The 
cost function can be defined flexibly depending on the application, for example, 
cost(ai, bj) = |ai-bj|*weight. This path can be determined using dynamic 
programming, because the recursive equation holds: G(i, j) = [cost(ai, bj) + min{G(i -
1, j)+w1,G(i -1, j -1)+w2,G(i, j -1)+w1}]*max(i,j)/min(,j)/(i+j). The path may goes 
several cells horizontally along A or vertically along B, which makes the matching 
between the two sequences not strictly one-one but one-many and many-one. This is 
the robustness that DTW provides to align sequences. Also we suggest that w1 and 
w2 are very important weight value for the measure of similarity in DTW.  

5   Java Implementation  

We provide two windows (Fig. 4 and Fig. 6) for the dynamic signature verification 
system. Fig. 4 is a window to save signer’s signature feature vectors in remote 
database. First step: Signer writes his signature on the white rectangle area and then 
click ‘Register’ button. Second step: Signer writes his same signature again and then 
clicks ‘Test&Verify’ button to see recommended security level and degree of 
similarity in Fig. 5 between two signatures. According to the results of several times 
trial, the signer can choose his security level. If the signer clicks ‘Save’ button finally, 
his signature’s feature vectors, security level, ResidentID and password are saved in 
remote sign database.  

 
 
 
 
 
 
 
 
 
 

Fig. 4.  Signature register         Fig. 5. Signature testing           Fig. 6. Signature verification 

 
Above Fig. 6 is user interface window to verify the signer’s authentication and 

‘SignView’ check button is a function to display or disappear the writing signature. 
These interface windows for the DSVS are implemented with JAVA to support 
various OS platforms and anyone can test the DSVS at our web site: 

(http://www.mmigroup.net/en/mmi_products_signq.php)  
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6   Application Fields  

This technology is applicable to various areas as a more enhanced user authentication 
security system than existing methods such as PIN numbers, passwords, simple keys 
and card keys for entrance. Nowadays, mobile electronic payments and transactions 
are increased as well as wired Internet transactions. Personal privacy of ubiquitous 
sensor network is hot issue all over the world. Especially, RFID (Radio Frequency 
Identification) system is used widely and must be considered about the use of 
“selective blocking” by “blocker tags” as a way of protecting consumers from 
unwanted scanning of RFID tags attached to items they may be carrying or wearing. 
In the ubiquitous world, the DSVS technology for user authentication will be one of 
very important things. 

The various application fields are as follows: 

Internet (Wired / Wireless / Mobile) 
-VPN (Virtual Private Network) 
-Internet Banking 
-Internet HTS (Home Trading System) 
-Virtual University LOGIN 
-EC (Electronic Commerce) 
-Client/Server  
-Electronic Approval 
Electronic Money Transaction 
-ATM (Automated Teller Machine)  
-Electronic Money  
-Credit Card Reader 
Computer (PC, PDA, Smart-Phone, WebPad, Tablet PC, Panel PC) 
-Data, Program, File Access. 
-LOGIN 
Business 
-Safer Security 
-Admittance for Building Entrance 
Health Care 
-Electronic Prescription 
Combination with other security technology for more reliable, flexible security 

system  
-Password, Signature, Voice, Fingerprint, Iris, Palm, Vein, DNA, Brain Wave, etc. 

7   Conclusions 

In conclusion, it is quite evident that biometrics is here to say as the most valuable 
form of not only computer-related security, but in a plethora of other forms also. 
Markets to be penetrated include using biometrics for passports, birth certificates, 
forensics, banking, ticket-less air travel, computer log-in, driving licenses, automobile 
ignition and unlocking, anti-terrorism, anti-theft, and to replace the archaic use of PIN 
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and passwords. As the technologies become increasingly produced and the market 
fully embraces the newest forms of biometric security, biometric solutions will 
inevitably become cheaper and more abundant in the information systems market and 
therefore available to almost anybody with a need for enhanced security measures. 

We have implemented the DSVS with Java based various technologies such as 
Java applet, Java servlet, JSP, HTML, servlet container of Resin and MySQL 
database. The importance of security is emphasized more and more at present, this 
system is applicable to the security of a computer, important document, the access 
restriction of network server, on-line shopping, credit card, military secret, national 
administrative security, internet banking, cyber trading, admittance to building, 
personal approval and so on. Government owes people to protect from an unsafe 
transaction in Internet. Also we have to pay attention to adopting the verification 
approval system teenagers to protect from the numerous immoral adult sites. This 
dynamic signature verification technology has been realized as one of the highly 
valued, useful and efficient technology for the security all over the world.  

Descending with years, a useful bibliography is also provided for interested 
readers. 
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Abstract. This paper proposes the spatio-temporal attentive mechanism to track 
multiple objects, even occluded objects.  The proposed system provides an effi-
cient method for more complex analysis using data association in spatially at-
tentive window and predicted temporal location.  When multiple objects are 
moving or occluded between them in areas of visual field, a simultaneous track-
ing of multiple objects tends to fail.  This is due to the fact that incompletely 
estimated feature vectors such as location, color, velocity, and acceleration of a 
target provide ambiguous and missing information.  In addition, partial infor-
mation cannot render the complete information unless temporal consistency is 
considered when objects are occluded between them or they are hidden in ob-
stacles.  Thus, the spatially and temporally considered mechanism using occlu-
sion activity detection and object association with partial probability model is 
proposed.  For an experimental evaluation, the proposed algorithms are applied 
to real image sequences.  Experimental results in a natural environment demon-
strate the usefulness of the proposed method. 

1   Introduction 

Automatic  visual tracking  has a challenging  problem to track multiple objects  re-
liably.  A disadvantage is derived from complex scene and bad noise conditions for 
enhancing an image or representing a scene.  To resolve this problem, the human 
visual system (HVS) shows different color perception sensitivity according to the 
color distribution and attention to a particular location in the scene [1][2].  The HVS 
assumes that perceptual description produces a structured representation of the visual 
field at several levels of spatial scale, and the selection process access the visual 
short-term memory (VSTM) on the basis of the matching between perceived descrip-
tions and internal template.  This assumption provides the factors and possibility to 
handle and describe the composite scene using recently captured information and 
predictable information of near future.  For example, in the monitoring and visual 
surveillance of human activity, this requires complex tracking algorithms because of 
the unpredictable situations which occur whenever multiple peoples are moving, 
stopping, hiding behind obstacles and interacting with each other [3][5]. 

Thus, we propose to address these issues by exploiting spatio-temporal attentive 
mechanism in terms of the human visual system [1].  In pre-attentive mode, motion 
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detection is performed using time difference method between background model and 
currently captured image.  And then, in attentive mode, selective attention mechanism 
that performs the local feature analysis (LFA) is applied to an attention window that 
includes complex scenes such as occluded moving objects, obstacles, and partial 
object information of interests.  In previous work [5], the limitation of some multi-
target tracking algorithm using the JPDA is not specified in occlusion time because 
they does not refer necessary condition for constructing the validation matrix in 
JPDA filter.  This assumes that a moving blob can have only one source, and no more 
than one moving blob can originate from one person [6].  Thus, accurate position of 
each object even in the occlusion time should be recomputed.  To do this, our pro-
posed occlusion predictor using temporal attention enables to re-compute the semi-
accurate position at the predicted position.  In addition, general Kalman tracking 
algorithm has only an iterative innovation and prediction procedure to pursue a target 
trajectory, while we perform the occlusion reasoning procedure by comparing region 
occupancy in predicted position as an extra task with iterative innovation and predic-
tion.  To identify and associate an occluded target for occlusion reasoning, partial 
information of moving object can be used to search the overlapping region of oc-
cluded object in attention window.  Thus, we propose the occlusion activity detection 
algorithm and object association method using successive elimination algorithm 
(SEA) [4] with partial probability model in spatio-temporal attentive mechanism. 

The content of this paper is as follows.  In Section 2, we propose the spatio-
temporal attention mechanism to track multi-targets reliably.  In Section 3, we show 
the result and analysis of multi-target tracking using the proposed method.  Finally, 
concluding remarks are presented in Section 4. 

We assume that  the  moving  blobs  from image  sequences is computed in the stage 
of pre-attentive mode using time difference between adaptive background model and 
currently captured image, and data alignment is applied to image coordinates.  Then, 
spatially sensed region is labeled with attention windows that describes a set of 
minimum bounding rectangles (MBR) employing “object range” and “validation 
region”, as a means to represent the position, size and region of a target for describing 
the accuracy bound and range.  From this, feature selection is followed. 

Each  feature  sets describing  multiple  objects is integrated  into a set of feature map.  
This feature map is used for visual search process to associate each blob with a real 
target.  In this paper, color, location, velocity, and acceleration are used to describe 
object shape and model the kinematics of moving objects [6]. 

Let o = [o1, o2, …, oM] denote the set of objects to track,  denotes the movement 
directions for object oi  and x=[ xi , yi ]

T denote the vector of points of center corre-
sponding to oi , with v= [ ii yx , ]T ,where ix  and iy denote the derivative of xi and yi 

2.1   Feature Selection 
 

2   Spatio-temporal Attention for Multi-target Tracking 
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with respect to t, respectively.  First, center points of moving objects are computed, 
and then movement directions are computed using motion vectors extracted by the 
optical flow method [7].  To obtain the movement directions of objects, we compute 
the direction of motion vector for each pixel.  The direction  of the vector is defined 
and computed using the Lucas-Kanade tracking equation [8] as follows: 
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where vx and vy are motion vectors for x and y direction respectively, and 
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Using Equations (1) and (2), the proposed system model is given by 
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where Omxn is an m x n zero matrix, Im is an m x m identity matrix and s = [xT , vT , aT 
 ]T denote the system state, which is composed of center points, velocity, accelera-

tion and direction of moving object. In the proposed method, the acceleration compo-
nent in state vector is included to cope with maneuvering of object.  The model as-
sumes random acceleration with covariance Q, which accounts for changes in image 
velocity.  As the eigenvalues of Q become larger, old measurements are given rela-
tively low weight in the adjustment of state.  This allows the system to adapt to 
changes in the object velocity.  Since time interval t between one frame and next is 
very small, it is assumed that F is constant over the (tk , tk+1) interval of interest.  The 
state transition matrix is simply given by 
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Let z = [z1, z2, …, zM ] and zi denote the measurement vector for object oi .  In the 
proposed model, center points and movement directions for each object are treated as 
system measurements.  The measurement vector satisfies: 
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where matrix H connects the relationship between zi and s.  After all, the object kine-
matics model is determined by setting the appropriate parameters. 

Temporal information gives the  time  difference information such as time  difference 
energy and motion.  If the modeling of object movement is applied, we can predict 
the object movement from the LTM.  Thus, we can utilize the predicted information 
when the multiple objects are occluded between them or hidden back to obstacles 
even if it is an inaccurate estimation.  For doing this, occlusion activity detection 
algorithm is proposed.  This method predicts the occlusion status of next step em-
ploying kinematics model of moving objects, and notify it for next complex analysis.  
Thus, this describes the temporal attention model.  Then, the occlusion status is up-
dated in current time of captured image after comparing the MBR of each object in 
attention window.  Proposed occlusion activity detection algorithm has two-stage 
strategies as follows. 

- STEP 1: Occlusion Prediction Stage 
As  shown  in  Figure  1, this step predicts the next center points  of blobs employing 
the Kalman prediction [6] using equation (3) as follows: 

)()/(ˆ)()/1(ˆ kukkSkFkkS  (7) 

)/1(ˆ)1()/1(ˆ kkSkHkkZ  (8) 

where S(k+1/k) is the state vector at time k+1 given cumulative measurements to time 
k, F(k) is a transition matrix, and u(k) is a sequence of zero-mean, white Gaussian 

2.2   Temporal Attention Using Occlusion Activity Detection 
 

 
Fig 1. Occlusion prediction method using predicted position information.

process noise.  Using the predicted center points, we can determine the redundancy of 
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The  occlusion  activity  status  can  be  updated  in  the  current frame.  The first, the 
size of the labeled blobs is verified whether they are contained within the validation 
region or not.  If the shape of labeled blobs is contained within the validation region, 
the occlusion status flag is disabled.  Otherwise, we conclude that the occlusion has 
occurred at the region, and the occlusion status is enabled.  At this time, we apply the 
predicted center points of the previous step to the system model and the predicted 
MBR is recomputed as in Figure 2.  Then, the Kalman gain is computed and the 
measurement equation is updated. 

 

Fig  2. Validation region using occlusion reasoning 

Spatial attention mechanism  for more complex analysis can be applied in attention 
window.  When the occlusion status is maintained during some periods, tracking 
system causes a tracking failure due to miss-association or loss of trajectories if there 
is no track association.  For doing this, an object association using partial information 
in spatial attentive mode can be applied for not only decision of the position in the 
occlusion state, but also for the decision of the identity of a target between frames.  
Thus, the spatial attention mechanism considering previous object color model from 
LTM can be described as the process of combining a position and color information 

- STEP 2: Update Stage of Occlusion Status 

.

2.3   Spatial Attention for Object Association 
 

objects using the intersection measure in attention window.  The occlusion activity is 
computed by comparing if or not there is an overlapping region between MBRi of 
each object in the predicted center points as follows. 

mji ,...,1,   where,  
otherwise0

)MBR  (MBR if1
 Fg ji  (9) 

where Fg is an occlusion alarm flag, the subscript i and j are the index of the detected 
target at the previous frame, and m is a number of a target.  If a redundant region has 
occurred at the predicted position, the probability of occlusion occurrence in the next 
step will be increased.  Therefore, the occlusion activity status is notified for next 
complex analysis. 
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incorporating the data from a prior target model, a target dynamic model, and a fea-
ture measurement model.  In addition, for the identity of the occluded blobs, the ob-
ject association technique using only partial information provides the partial possibil-
ity through the association a measured object with a real target when the occlusion 
status is enabled. 

 

Fig 3. Partial probability model for object association using local feature analysis 

To do this, we applied the SEA [4] for an object association between a priori target 
model and a feature measurement model.  The object color data from LTM for the 
prior target model is searched.  This calculates the matching relationship between the 
buffered data in LTM and a candidate block.  If the size of a blob is N N pixels, the 
search window is of size (2N+1) (2N+1) pixels in a basis of the predicted position.  
The mean absolute difference (MAD) is used to measure the match between two 
blocks: Reference (R) and Matching (M) blocks [4].  The match is performed on at-
tention window as follows: 

yxMADyxMyxR ,,,  (10) 

Matching result of a hidden object behind a specific object may result in a false ac-
ceptance.  A hidden object provides only partial information.  Thus, we divide the 
reference block into N sub-blocks, and then calculate a partial probability of candi-
date blocks.  It is an alternative evidential reasoning based approach for identity rea-
soning under the partial probability models.  The concept of a typical sequence is 
defined in terms of a i, j-element partition, Pi, given the true target type Ti. 

 T /  , ... , i11 iji aaP  (11) 

We consider it as a target if the sum of probability values of a sub-window is 
greater than and equal to a given threshold value as follows. 
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The matching probability of an occluded object is computed using an equation (13) 
after dividing into i j partition window as in Figure 3. 
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Fig 4. Proposed system flow for multi-target tracking 

For  multi-target  tracking,  the  joint  probabilistic data association filter (JPDA) is 
applied.  Similarly to the PDA algorithm, the JPDA computes the probabilities of 
association of only the latest set of measurements Z(k) to the various targets [6].  The 
key to the JPDA algorithm is the evaluation of the conditional probabilities of the 
following joint association events pertaining to the current time k. 

k

j

m

j
jt

1

 (14) 

where jt  is measurement j originated from target t (j=1,…,Mk, t=0,…,T) and m is a 

number of a target and subscript k is the current time.  In this filter, we employ the 
process state transition model to differently cope with occlusion status according to 
the state transition mode.  Seven transition modes are applied as follows.  (1) A spe-
cific target enters into the scene.  (2) Multiple targets enter into the scene.  (3) A spe-
cific target is moving and forms a group with other targets, or just moves beside other 
targets or obstacles. (4) A specific target within the group leaves a group.  (5) A spe-
cific target continues to move alone, or stops moving and then starts to move again.  
(6) Multiple targets in a group continue to move and interact between them, or stop 
interacting and then start to move again.  (7) (8) A specific target or a group leaves a 
scene.  The events of (1), (4), (5), and (7) can be tracked using general Kalman track-
ing.  In addition, the events of (2), (3), (6) and (8) can be tracked reliably using pre-
dictive estimation method.  Figure 4 describes the overall proposed system flow. 

The  proposed  scheme was  tested on real image sequences to assess its capabilities 
for tracking multiple moving targets using spatio-temporal attention mechanism in 
complex road scenes.  Two different road scenes with increasing complexity were 
considered.  This system addresses the problem of occlusions in tracking multi-targets 

Thus, we can estimate the occupancy region of the occluded objects.  By using this 
information, the center point of an individual object is calculated again. 

.

2.4   Multi-target Tracking Using Data Association 
 

3   Experimental Results 
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in a known environment by employing spatio-temporal attention such as occlusion 
prediction and object association.  The proposed system showed efficiency to multi-
ple tracking under problems of tracking adjacent, overlapped targets and crossing 
targets. 

Obtained images were sampled at video rate: example 1 (total 640 frames, 15 
frames per seconds, and its size is 240 320) and example 2 (total 570 frames, 15 
frames per seconds, and its size is 240 320) which is processed in a gray level image.  
In the initial value of the JPDA algorithm to track multi-targets in Figure 5, the proc-
ess noise variance = 10 and the measurement noise variance = 25 are used. An occlu-
sion state is maintained for 34, 24 frames respectively.  We assumed that we know 
the size of a target to track within field of view.  Assumed size of target is set with the 
following parameters: validation region is (100 pixel, 60~150 pixel) in example 1.  In 
example 2, validation region is (100~120 pixel, 60~170 pixel).  First, pre-attentive 
mode is performed to obtain the adaptive background model, and time difference 
image.  An obtained image is globally thresholded, and particular region of interests 
is focused.  At this time, attentive mode is performed.  Thus, local threshold is ap-
plied to the focused region of interests, and then MBR is computed.  Using obtained 
MBR, feature selection procedure is computed.  Finally, spatio-temporal attention 
mechanism for multi-target tracking is applied using occlusion prediction in temporal 
attention mode, and object association in spatial attention mode.  If the spatio-
temporal mechanism is not applied to the JPDA filter, tracking failure is notified in 
occlusion times because the necessary condition for constructing the validation matrix 
is not satisfied in the JPDA filter.  In addition, if we apply the general Kanman track-

 

Fig 5. Multi-target tracking of two persons using JPDAF: (a) and (c) show the trajectories of 
tracking two people.  (b) and (d) show ellipses to represent noise variance. 

.
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Robustness has been evaluated mainly in terms of location accuracy and error rate 
of feature extraction and capability to track under occlusion in complex load scenes.  
The table 1 is an error rate that extracted blobs are not targets within field of view.  It 
is computed as 

N

k

f

N

NN

N 1 0

01  (15) 

where N is number of frames, Nf is number of extracted feature sets at frame k, and N0 
is number of moving objects at frame k. 

In addition, we can evaluate the robustness of the object association algorithm us-
ing the RMS (Root Mean Square) error of the computed position values as in Figure 
6.  In example 1, the RMS error is high.  This is due to the fact that the overlapping 
region is large.  Meanwhile, Figure 6 (b) shows that the RMS error is similar with 
that of the non-occlusion frames.  This is due to the fact that it has a small overlap-
ping region between targets. 

Table 1. Simulation results of test image sequences 

Error Rate of Feature Extraction  
 

Error Rate( )
Spatial attention is 
only applied. 

Temporal Attention 
is only applied 

Spatio-temporal 
attention is applied. 

Example 1 22.341 15.8805 0.796 
Example 2 7.421 6.5621 0.341 

ing filter, tracking failure or missing association is obtained in occlusion times.  Thus, 
these general approaches cannot track multiple objects reliably. 

 

Fig 6. RMS errors of test image sequences .
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In this  paper,  we  proposed  the spatio-temporal attention mechanism using occlu-
sion activity detection and object association and the JPDA filter is applied to associ-
ate the relationship between moving blobs and real targets.  When using the JPDA 
filter for multi-target tracking, the necessary condition for constructing the validation 
matrix should be satisfied.  This filter assumes that a moving blob can have only one 
source, and no more than one moving blob can originate from one person.  Thus, 
accurate position of each object even in the occlusion time should be recomputed.  To 
do this, our proposed methods enabled to re-compute the semi-accurate position at the 
predicted position.  Thus, the proposed method tracked multiple objects even in oc-
clusion time, while general Kalman tracking filter resulted in a tracking failure. 

 
The result of blob decision through gating and occlusion reasoning has a smallest 

error rate.  When occlusion activity is enabled, coupled objects are isolated using 
predictive estimation and each of the position of the two objects is re-computed.  The 
computed position value is inputted to the state measurement equation within a JPDA 
algorithm, and then proposed system tracked two people reliably. 

4   Conclusions 
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Abstract. Up to date several strategies of how to retrieve depth infor-
mation from a sequence of images have been described. In this paper a
method that is inspired in Neurobiology and that turns around the sym-
biosis existing between stereovision and motion is introduced. A motion
representation in form of a two-dimensional motion charge map, based
in the so-called permanency memories mechanism is presented. For each
pair of frame of a video stereovision sequence, the method displaces the
left permanency stereo-memory on the epipolar restriction basis over
the right one, in order to analyze the disparities of the motion trails
calculated.

1 Introduction

In general there are several strategies of how to retrieve depth information from
a sequence of images, like depth from motion, depth from shading and depth
from stereovision. In this paper we introduce a new method to retrieve depth
based on motion and stereovision. So far, many algorithms have been developed
to analyze the depth in a scene. Brown et al. [1] describe a good approxima-
tion to all of them in their survey article. In many previous works, a series of
restrictions are used to approach the correspondence problem. The most usual
restriction is the disparity restriction, which considers that is not probable that
there exist objects very close to the camera. The scene uses to be limited to
a medium distance. According to the correspondence techniques used, we may
classify methods into correlation-based [2], relaxation-based [3], gradient-based
[4], and feature-based [5].

In this paper a method that is inspired in Neurobiology and that turns around
the symbiosis existing between stereovision and motion is introduced; motion
minimizes correspondence ambiguities, and stereovision enhances motion infor-
mation. This symbiosis, evident in biological systems, has been studied to get a

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 457–466, 2005.
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major performance in our artificial three-dimensional disparity analysis of mov-
ing non-rigid objects through stereovision. Most methods have as a common
denominator that they work with static images and not with motion informa-
tion, although some approaches have been introduced so far [6],[7],[8]. In this
paper, we have chosen as an alternative not to use direct information from the
image, but rather the one derived from motion analysis. The system proposed
uses as input the motion information of the objects present in the stereo-scene,
and uses this information to perform a depth analysis of the scene, through the
use of a two-dimensional motion charge map.

2 Neurobiological Inspiration

When looking for inspiration in Biology for stereoscopic disparity analysis, some
questions hit our attention. As explained next we have based our method in
motion perception -due to micro-saccadic eye movements and ego-motion of the
targets-, luminescence perception -perception of brightness rather than colour
perception-, and binocular perception, present in most superior primates.

2.1 Motion Perception

The first important question is that all living beings with the capacity of seeing,
only perceive objects that move relatively with respect to their retinas. This
characteristic, which is evident in most mammals, is present also in superior
primates and humans; but this is not as evident in this case. This is due to an
illusion that we are fixing our look in a static object. Nonetheless, the perception
of static objects respect to the retina is only possible thanks to the micro-saccadic
movements of our eyes [9].

On the other hand, these micro-saccadic eye movements only affect in a
sufficient manner the fovea region. That is why it is usual that we do not detect
objects in the periphery of the visual field, if the objects have no ego-motion.
The perception of a moving object in the periphery produces a reflex movement,
so that the object is instantaneously centred in the visual field to be observed in
a correct and detailed way [10],[11]. Motion is really a top cue in our proposal.

2.2 Luminescence Perception

Motion and stereovision perception are closely related as largely demonstrated in
isoluminance experiments [12]. Isoluminant stimuli are stimuli whose luminance
does not change over time; only their wavelength (colour) changes. The magno-
cellular pathway, which relates motion perception with the depth, is practically
insensible to colours and only distinguishes among stimuli whose brightness lev-
els are different. Experiments performed with isoluminant stimuli show that the
isoluminance is a difficulty for the perception of motion and of the depth of the
scene [13],[14]. In our approach motion from brightness difference is calculated,
and colour is not used at all.
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2.3 Binocular Perception

In relation to stereoscopic visual perception, the ocular dominance columns and
the near cells and far cells are a fundamental reference [15]. But it seems that
these are not the only responsible for the complete three-dimensional perception
[16]. Indeed, in humans and superior primates there is no total three-dimensional
perception. There is only a little margin centred on the fixation point. Outside
of this margin there is double vision. Both eyes travel along the tracked object,
converging and diverging in order to fuse into a single image the couple of in-
stantaneous perspectives gotten from the object. In our proposal, for each pair
of frame of a video stereovision sequence, the method displaces the left image
on the epipolar restriction basis over the right one.

3 Disparity Analysis from Motion Charge Map

Starting from these neurobiological evidences, our system for the analysis of the
depth of a scene integrates stereovision and motion. Our proposal is to analyze
motion in the original sequences by means of the so-called permanency effect
[17], and from the resulting charge maps to analyze the disparities. This is an
important contribution to the traditional disparity analysis, where disparity is
gotten from the image luminescence. In our approach, disparity is studied from
a persistency charge measure.

3.1 Motion Charge Map

The input to our system is a pair of stereo image sequences. These sequences
have been acquired by means of two cameras arranged in a parallel configuration.
The central idea behind our approach is to transpose the spatially-defined prob-
lem of disparity estimation into the temporal domain and compute the disparity
simultaneously with the incoming data. This can be achieved realizing that in
a well-calibrated fronto-parallel camera arrangement the epipolar lines are hor-
izontal and thereby identical to the camera scan-lines. Thus, they will capture
two similar, although not exactly equal, scenes. In case the images have been
acquired in a convergent configuration, horizontal epipolar lines can be obtained
by image-rectification techniques [18].

The motion analysis algorithm used in this work has already been tested
in applications such as moving object shape recognition in noisy environments
[19],[20], moving objects classification by motion features such as velocity or ac-
celeration [17], and in applications related to selective visual attention [21]. Mo-
tion analysis performs separately on both stereovision sequences in two phases.
The first analysis phase is based in grouping neighbouring pixels that have sim-
ilar grey levels in closed and connected regions in an image frame. The method
used is segmentation in grey level bands. This method consists in reducing the
resolution of illumination levels of the image, obtaining this way a lower num-
ber of image regions, which potentially belong to a single object in motion. Let
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B(x, y, t) be the grey level band associated to pixel (x, y) at time instant t,
GL(x, y, t) the grey level, n the number of grey level bands, and N the number
of grey levels, then:

B(x, y, t) = #B(x, y, t − 1) · n
N

+ 0.5$ (1)

A detailed analysis of the features and performances of this segmentation
method is described in [22]. Obviously, segmentation in grey level bands performs
in parallel on each couple of images of the stereo sequence.

Once the objects present in the scene are approximated in a broad way, the
second phase has to detect possible motions of the segmented regions. Again,
motion information of both video sequences that form the stereo pair is ex-
tracted. Motion detection is obtained from image pixels change in luminosity as
the video sequence goes on through time. Motion in an image segmented in grey
level bands is detected through the variation of the grey level band of the pix-
els. Notice that it is not that important that regions neither completely adjusts
to the shape of the objects, nor that at a given moment two different objects
appear overlapped in a same region. Consider that the proper relative motion
of the objects will force those regions belonging to a same object to move in a
uniform way, and those regions that hold different objects separate in the future.

From motion detection, we now introduce a representation that may help
to establish further correspondences between different motion information. This
representation finds its basis in the permanency memories mechanism. Precisely,
this mechanism considers the jumps of pixels between bands, and it consists in
a matrix of charge accumulators. The matrix, also called motion charge map, is
composed of as many units in horizontal and vertical direction as pixels there
are in an image frame. This way, a position (x, y) of the image is associated to
a permanency memory charge unit. Initially all accumulators are empty; that is
to say, their charge is minimal. The charge in the permanency memory depends
on the difference between the current and the previous images grey level band
value. An accumulator detects differences diff(x, y, t) between the grey level
bands of a pixel in the current and the previous frame:

diff(x, y, t) =
{

0, if B(x, y, t) = B(x, y, t − 1)
1, if B(x, y, t) �= B(x, y, t − 1) (2)

When a jump between grey level bands occurs at a pixel, the charge unit
(accumulator) of the permanency memory at the pixel’s position - Ch(x, y, t) -
is completely charged (charged to the maximum charge value max). This is the
way to record that motion has just been detected at this pixel. This complete
charge is produced when there is a jump to superior bands as well as to inferior
bands. Thus, charge units of the permanency memory are able to inform on
the presence of motion of the associated pixels. After the complete charge, each
unit of the permanency memory goes decrementing with time (in a frame by
frame basis) down to reaching the minimum charge value min, while no motion
is detected, or it is completely recharged, if motion is detected again.
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This behaviour is described by means of the following formula, where again
B(x, y, t) is the grey level band associated to pixel (x, y) at time instant t. dec is a
fixed application-dependent quantity, which is decremented to the instantaneous
charge of each charge unit each time that a frame is analyzed and no motion
is detected. Thus, this quantity shows the discharge velocity of the permanency
memory.

Ch(x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
max,

if diff(x, y, t) = 1
max[Ch(x, y, t − 1) − dec, min],

if diff(x, y, t) = 0

(3)

Values of parameters dec, max and min have to be fixed according to the
applications characteristics. Concretely, values max and min have to be chosen
by taking into account that charge values will always be between them. dec
defines the charge decrement interval between time instants t − 1 and t. Thus,
notice that the two-dimensional motion charge map stores motion information
as a quantified value, which may be used for several classification purposes.

Thus, obviously, the evolution of charge in space depends on the velocity
of the mobile in a direction. A slow mobile causes a short charge slope, as the
object’s advance from pixel to pixel may last various frames. During this time
elapsed all affected units are discharging. In this case, between the charge and
discharge of a unit, the mobile covers a short distance. On the other hand, a
quick mobile causes that various memory units charge at the same time, such
that there will be many more units affected by this motion. Thus, in this second
case, between the total charge and discharge of a unit of the memory the mobile
covers many pixels.

Fig. 1 shows all these issues. Fig. 1a and Fig. 1b show two images of a
monocular sequence. The advance of a car may be appreciated, as well as a
more slight movement of a pedestrian. In Fig. 1c you may observe the effect of
these moving objects on the permanence memory.

The difference between a quick object as the car, which is leaving a very
long motion trail (from dark grey to white), and a pedestrian whose velocity is
clearly slower and whose motion trail is nearly unappreciable with respect to
the cars one, is presented. Thus, permanency memories enable representing the
motion history of the frames that form the image sequence, that is to say, there
is segmentation from the motion of the objects present in the scene.

Fig. 1. Motion charge map: (a) one image of a sequence, (b) same perspective after

some seconds, (c) motion trails as represented on the bidimensional motion charge map
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However, the dependency of the permanency memories from the segmenta-
tion in grey level bands imposes a restriction. The diminishment of the resolution
in illumination levels produced by the segmentation in grey level bands does not
exactly imply segmentation into objects. Some of the objects of the images are
segmented into various regions, and physically distinct objects may be over-
lapped into a same region. Nevertheless, this issue is not that important when
taking into account that our aim is to characterize motion of the objects and
not their shape.

3.2 Stereovision Disparity Analysis

Motion-based segmentation into a two-dimensional motion charge map, as ex-
plained in the previous section, facilitates the correspondence analysis. Indeed,
motion trails obtained through the permanency memories charge units are used
to analyze the disparity between the objects in the stereo pair in a more easy
and precise way. The set of all disparities between two images of a stereo pair is
called the disparity map.

The retrieval of disparity information is usually a very early step in image
analysis. It requires stereotyped processing where each single pixel enters the
computation. In stereovision, methods based on local primitives as pixels and
contours may be very efficient, but they are too much sensitive to locally am-
biguous regions, such as occlusions or uniform texture regions. Methods based
on areas are less sensitive to these problems, as they offer an additional support
to obtain correspondences of difficult regions in a more easy and robust way,
or they discard false disparities. Although methods based on areas use to be
computationally very expensive, we introduce a simple area-based method with
a low computational cost.

In order to explain our disparity analysis method, it is sufficient to analyze
the process at the level of epipolar lines. The key idea is that a moving object
causes two identical trails to appear in epipolar lines of the permanency stereo-
memories. The only difference relies in their relative positions, affected by the
disparity of the object at each moment.

In Fig. 2, the charge values in two corresponding superimposed epipolar lines
of the memories are represented. In a parallel configuration as the one we have
chosen, there will be no disparity in right and left image for objects that are in
a great depth - imagine in the infinite. Nevertheless, when an object approaches
to the central point of the base line, that is to say, between the two cameras,
the object goes appearing more to the right on the left image and more to the
left on the right image. This is precisely the disparity concept; the more close
objects have a greater disparity than the more distant ones. Looking at Fig. 2
it is possible to analyze the motion of each one of the three objects present
in the permanency memories from their motion trails. This initial analysis is
independent of the epipolar constraint studied. You may observe that object
”a”, which has a long trail and has his maximum charge towards the left, is
advancing to the left at a high speed. Object ”b”, with a shorter trail, is also
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a b c

Left
permanency
memory

Right
permanency
memory

Fig. 2. Disparity by permanency memories

advancing towards the same direction but at a slower velocity. Finally, object
”c”, whose trail is inverted in horizontal, is moving to the right at a medium
velocity, as shown by its trail.

Also from Fig. 2, but now comparing between the motion trails in both
epipolar lines, disparity is analyzed. Motion trail of object ”b” presents a null
disparity. Therefore, we can conclude that this trail corresponds to an object
that is far away from the cameras. Remember that due to our parallel cameras
configuration, pixels with a null disparity are located in the infinite. Object ”a”
has a little greater disparity. Finally, object ”c” offers the greatest disparity.

This simple example draws three main conclusions. Firstly, in order to con-
sider two motion trails to be correspondent, it must only be checked that both
are equal enough in length and in discharge direction in epipolar lines of the
permanency stereo-memories. Secondly, we may affirm that, in order to analyze
disparities, one possibility is to displace one epipolar line over the other one,
until we get the exact point where both lines are completely superimposed. In
other words, an epipolar line has to be displaced over the other until motion
trails coincide. Of course, the right epipolar line can be displaced over the left
or the left epipolar line over the right. When the motion trails coincide, the
displacement value applied to the epipolar line is the disparity value. In third
place, if we consider the representation of a mobile with a high velocity, vari-
ous charge units of the permanence memories may charge simultaneously. This
way, an object may correspond to various disparities. This is the reason why
one single memory unit is not able to establish the disparity of an object. It is
necessary to analyze the correspondence from the values of various units. The
decision of all units has to validate the overall disparity value. The more efficient
way to manage this is that each pixel chooses its disparity in such a way that
the maximum of its neighbouring units confirm the disparity.

All these considerations tell us that the disparity analysis at epipolar line
level consists in superimposing both epipolar lines with different relative dis-
placements and in analyzing the correspondences produced in the neighbourhood
of each unit. The one displacement, which produces that a maximum number of
surrounding elements confirm its correspondence, demonstrates to be the more
trustful disparity value.
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4 Data and Results

In order to test our algorithms, a real stereo sequence is shown. We show
the results of applying our algorithms to a scenario called ”OutdoorZoom”,
downloaded from labvisione.deis.unibo.it/ smattoccia/stereo.htm. The whole se-
quence is 30 seconds long and has been acquired at a rate of 10 images per second.
The values of the main parameters used in our test series were: dec = 128; n =
8; min = 0; max = 255.

Fig. 3 shows the result for some of the more representative results of apply-
ing our algorithms to the ”OutdoorZoom” scenario. In row (a) the segmentation
in grey level bands may be appreciated, in row (b) motion information as rep-
resented in the right permanency memory is offered, and in row (c) the final
output, that is to say, the scene depth as detected by the cameras, is presented.

35 50 65 215 228 245 261

(c)

(b)

(a)

Fig. 3. Results for ”OutdoorZoom” scenario

You may observe on Fig. 3 that light colours in row (c) means that persons
are closer to the cameras. Black means there is no motion detected. The main
information is available in columns (b) and (c). We may observe some details,
as, for example, the following ones:

– In frame 35, a person is entering the scene on the right side, very close to the
cameras. This is why, in column (c), the final output, very light grey levels
appear.

– This person progressively is moving away from the cameras, in such a way
that on frame 50 it is represented by intermediate grey levels.

– In frame 65, the person is now far away from the cameras. Its shape appears
in dark grey values.

– Let us now focus on frame 215. A person is walking down the steps and at
the same time an object is appearing on the right side of the image. It may
be appreciated at the output of the system that the object is a bit lighter
than the person. Thus, the object has to be closer to the cameras than the
walking person.

– From frame 215 to frame 228, the pedestrian is walking horizontally (to
the left). Thus, we appreciate no difference in the grey levels present in
these frames.
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– In frame 245, the person turns around, but there is still no difference appre-
ciated in its depth in the scene.

– Lastly, in frame 261, we may observe the person leaving the scene on the
right side, and at the output very light grey levels. This obviously means
that the man is very close to the cameras.

5 Conclusions

In this paper we have introduced a new method to retrieve depth based on
motion and stereovision with a clear inspiration in Neurobiology. A motion de-
tection representation helps establishing further correspondences between differ-
ent motion information. This representation bases in the permanency memories
mechanism, where jumps of pixels between grey level bands are computed in a
matrix of charge accumulators. Thus, for the purpose to analyze scene depth
from stereo images, we have chosen the alternative not to use direct information
from the image, but rather the one derived from motion analysis.

The biologically-motivated symbiosis between motion and stereovision en-
ables getting two concrete aims. Firstly, it is possible to eliminate all static
information in artificial vision systems. This is really important in dynamic sys-
tems (e.g. robotic vision), where the real important thing is the motion infor-
mation in the environment. In second place, it is easier to correlate the motion
information from both stereoscopic views, as motion is much more robust in
eliminating ambiguities in the correspondence process.

Biological systems use simple cells to detect motion, by tuning characteristic
stimuli; charging and discharging provide relative information of position and
motion. In our case, the permanency effect permits to maintain the history of
each movement of the scene. This effect is really simple and its results have
been successfully explored [19],[20],[21],[22]. Finally, biological systems use the
convergence of the eyes as a means to explore the individual’s environment and
to fuse the information coming from the two perspectives into the ocular domi-
nance columns. In approach introduced, the inspiration leads to the mechanism
of displacing one image over the other looking for the maximum number of cor-
responding elements, which provides an idea of the correspondence confidence.
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Abstract. Combining the predictions of a set of classifiers has shown to
be an effective way of creating composite classifiers that are more accu-
rate than any of the component classifiers; we have performed a research
work consisting of the design, development and experimental use of a
multi-classifier system for image analysis and surface classification of the
different segments that might appear on a given picture in order to help
a Mobile Robot in its navigation task. The presented approach combines
a number of component classifiers which are standard machine learning
classification algorithms, using a second layer paradigm to obtain a bet-
ter classification accuracy. Experimental results have been obtained us-
ing a datafile of cases that contains information about surfaces, extracted
from images obtained by the robot. The classification problem consists
of recognizing to which of the surfaces belongs a n × n size subimage.
The accuracy obtained using the presented new approach statistically
improves those obtained using standard machine learning methods.

Keywords: Supervised Classification, Image Analysis, Image Segmenta-
tion, Machine Learning, Stacked Generalization, Classifier Combination.

1 Introduction

Huge research has been carried out in the field of image segmentation (see [17]
for a detailed introduction); more specifically, some authors have dealt with the
problem of using color and texture information from images to obtain a good
classification of the underlying surface [3]. Supervised image segmentation is a
particular kind of supervised classification, in which the objective is to classify
each image pixel in order to be able to distinct the different surface segments of
the scene in the image. The information obtained from the segmentation process
can be used as a first step towards a high-level processing of visual information
[18,15].

But visual information is complex and it is hard to extract useful data in real-
time in order to, for example, navigate in the robotics area [7]. Some attempts use
optic flow techniques [4] to navigate in semi-structured environments, under the
assumption that the environment has enough features to get good flow vectors.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 467–476, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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But flat colored surfaces with few textures are dominant in actual office-like
indoor environments.

Image segmentation is a basic step to extract useful information from the
global scene and the segmentation process is very dependent on the task to be
performed [12].

In this paper, we present a new multi-classifier construction methodology
based on the well-known stacked generalization paradigm [21,19]. Combining the
predictions of a set of component classifiers has shown to yield higher accuracy
than the most accurate component on a long variety of supervised classification
problems [6,22]. A good review of the state of the art can be found in [5,16].

Classifier combination falls within the supervised learning paradigm. This
task orientation assumes that we have been given a set of training examples,
which are customarily represented by feature vectors. Each training example is
labeled with a class target, which is a member of a finite, and usually small, set
of class labels. The goal of supervised learning is to predict the class labels of
examples that have not previously been seen.

We have designed a two layer classification system in which we use a set
of six standard machine learning algorithms as first layer single classifiers, and
we induce, over the predictions they made, a new model. To build this model
eight different approaches have been tested at the second layer. Once the multi-
classifier is constructed, and given a new case to be classified, we run every single
classifier with the new case as input, and take the prediction given by the second
layer paradigm as the multi-classifier predicted class. Empirical results show that
this multi-classifier outperforms each of the single classifiers used independent
on the classifier used in the second step.

The final objective is to obtain a reliable segmentation method for being used
for robot localization. Therefore, the data used in this study has been obtained by
a Pioneer 3 robot, provided with a Cannon VCC4 camera. In the datafiles used,
the class corresponds to four different surfaces predominant in the environment
the robot moves in: wooden doors, brick walls, blue pladour panels and tiled
floor; Figure 1 shows an image of each of the surfaces.

The rest of the paper is organized as follows: The multi-classifier schemata
and the process of its construction is shown in Section 2. It follows Section 3,
presenting the experimental methodology used, while Section 4 is devoted to
experimental results obtained applying the previous methodology to a collection

Wood Wall Pladour Floor

Fig. 1. Surfaces to classify
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of thirty databases of cases extracted from captured images. Finally, conclusions
are presented in Section 5.

2 Multi-classifier Schemata

Stacked generalization is a framework for classifier combination in which each
layer of classifiers is used to combine the predictions of the classifiers in its
preceding layer [21]. At the top-most layer, a single classifier outputs the ultimate
prediction. In our approach, we use a two-layer system that uses one among eight
different machine learning methods as this final single classifier. The choice is
based on the idea that we can assume we are making a consensus vote system
over the predictions of the first layer single classifiers. Therefore, from the datafile
obtained with the machine learning classifier predictions, we induce a new model
according to each of the eight machine learning inducers.

Test datafile results from the first layer are used to build the training database
for the second layer from which the final model for vote combination is obtained.
This process is depicted in Figure 2(a). We have used six classifiers (Table ma-
jority [8], Ib [1], C4.5 [14], Cn2 [2], Naive Bayes [11] and Oc1 [13]) for the first
layer and seven classifiers (the previous six and NBTree [9]) for the second layer.
The experiments were made using MLC++ [10]. We have also experimented with
a new method for combining the first layer models: a special voting approach
presented in subsection 2.1 here below has been used as second layer eighth
paradigm. Figure 2(b) draws the schemata of our stacked generalization classi-
fier and also shows the operation mode of the multi-classifier: first the new case
to be classified is analyzed by each of the single classifiers belonging to the initial
layer, and then all the six predictions made are considered as predictor variables
by the classification model used in the second layer; this final classifier gives the
output of the whole classification system.

(a) Multiclassifier construction process

Firs Layer
Classifiers

Picture
(nxn pixel slices)

Segmented Picture

X1 X2 X3 X4 X5 X6

Selected model for classification
combination used for each nxn
pixel squares

c4.5 T.Maj
OC1

IB
NBcn2

Individual decisions

Second Layer

(b) Function schemata

Fig. 2. Multi-classifier construction process and function schemata
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2.1 Voting Schema for Classifier Weighting

To obtain the final decision, we use a voting schema where each classifier’s vote
(decision) is weighted inversely proportional to its error rate (as obtained from
the thirty experiments done). Let Eri be the error rate of the i-th classifier;
then, its weight in the decision combination is defined as:

Wi = 1/Eri

Thereby, this schema returns as the predicted class the most voted one,

C = argmax
j

(Oj), j in {floor, wall, bricks, pladour}

where

Oj =
6∑

i=1

{
Wi if (Ci = j)
0 otherwise

In other words, given a new pattern, each first layer classifier gives a vote,
function of its classification power, to its predicted class.

2.2 Multi-classifier Construction

We collected a database containing more than three million of labeled cases
(n × n square pixels). In order to obtain a training datafile to be used for the
machine learning inducers in the second layer, we made a random subsampling
of 20,000 cases from our database and split them into three sets: A, B and C
(see Figure 3). Set A is composed by 16,000 cases and set B and C by 2,000
each.

Our system builds a set of six models using six different inducers (Table ma-
jority, Ib, C4.5, Cn2, Naive Bayes and Oc1), taking A as training set. Then set
B is tested against those six models, and their predictions along with the right

S2 S3DB S1 S28 S29 S30

S i

2,000 2,000

A B Ci i i

16,00020,000

Fig. 3. Extraction of random subsamples from the global database and its decomposi-

tion into A, B and C
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class are combined to form a new database. Each case in this new database has
seven attributes, the first six corresponding to the predictions given by the clas-
sifiers, and the seventh element is the real class. Over this database, consisting
of 2,000 cases, another machine learning inducer is run, in order to build the
second layer model. Set C is then passed through the classifier to obtain the
error rate, i.e. C is used for testing the new classifier. This process is made 30
times to obtain a honest validation of the proposed approach. In that way, we
obtain s1, s2, · · · , s30 datafiles, and their corresponding accuracies in order to be
able to draw statistically significant conclusions.

3 Experimental Methodology

We worked with a Pioneer 3 dual drive holonomous robot from ActivMedia
Robotics provided with a Cannon VCC4 camera. We collected images inside
the building of the Faculty of Computer Sciences, in three different zones: hall,
laboratory and corridor. There was sunlight through the windows as well as
light from the bulbs on the ceiling. These light conditions lead to a wide range
of different values for the pixels in the image, making difficult to recognize a
surface just by RGB, HSI or other color representation values.

We defined four classes, corresponding to four surfaces dominant in the en-
vironment: tiled floor, brick wall, wooden door and blue panel. The goal is to be
able to discriminate among these four surfaces, so the robot could distinguish
them and use this information for localization purposes (landmarks). The kind
of surfaces we want to recognize are not of a uniform color, making the task
difficult. The ideal situation would be to be able to label each pixel with one of
the four classes we previously defined. But with just that granularity it is not
possible to achieve great accuracy. Thus, our approach consists of labelling a
square of n × n pixels, covering a bigger portion of the image.

To obtain the raw data we worked with, we cut slices of the images, so that
just one of the four categories (tiled floor, brick wall, wooden door and blue
panel) was present in each slice.

We chose square sizes of 2×2, 3×3, 4×4 and 5×5. We got all the possible
squares, so from a subimage of width w and height h, we obtain a total amount
of w − (k − 1) ∗ h − (k − 1) squares, where k is the size of the square side.
Characteristics of resulting databases are depicted in Table 1. As it can be seen,
the amount and distribution of the cases into the four classes roughly maintain

Table 1. Surface distribution

Surfaces Floor (41%) Wall (25%) Wooden door (23%) Blue panel (11%) Total (100%)
2 × 2 1, 311, 335 805, 007 730, 440 339, 254 3,186,036
3 × 3 1, 272, 792 785, 873 715, 480 330, 813 3,104,958
4 × 4 1, 242, 509 766, 947 700, 680 323, 646 3,033,782
5 × 5 1, 212, 570 748, 229 686, 040 316, 553 2,963,392
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the distribution of the slices we previously chose. Notice also the huge size of the
databases.

As the size of the square increases, the number of cases in the database
decreases. The relative percentage of each class in each database varies slightly
because of non-uniformity of slices.

4 Experimental Results

Tables 2, 3 and 4 show the average error rates of the thirty times we built the
multiclassifier according to our algorithm.

Table 2 depicts the error rate of each classifier of the first layer when using
set A to learn the inducer and set C to test it. In boldface is shown the min-
imum error rate for each square size. Here, sets A, B and C refer to the sets
obtained after the random subsampling described in subsection 2.2 (Figure 3).
With regard to the obtained accuracies, Oc1 achieves the best performance for
2×2 and 3×3 sized blocks, while for 4×4 and 5×5 square sizes, Ib outperforms
any other classifier.

Table 3 is equivalent to Table 2, but here, instead of using set A to train
the inducer and set C to test it, set A ∪ B is used for training. This is done
in order to provide a fair comparison, because A ∪ B would be the training
set used if only the first layer classifiers would be used to choose the best one.
Relative results among classifiers are equal to those in Table 2, but the error rate
is somewhat lower, as it would be expected, given that more cases are used to

Table 2. Error rates obtained by each individual classifier using A as training set and

C as test set for each of the considered n ×n square sizes

Classifiers Tab-maj Ib C4.5 Cn2 Naive Oc1
2 × 2 59.03 ± 1.18 15.30 ± 0.73 16.11 ± 0.81 28.63 ± 2.78 47.80 ± 1.24 13.96 ± 0.93
3 × 3 58.69 ± 1.08 14.37 ± 1.20 16.82 ± 1.11 30.02 ± 1.90 47.62 ± 1.06 14.11 ± 0.80
4 × 4 58.65 ± 1.18 13.75± 0.83 17.05 ± 0.94 30.63 ± 1.97 47.73 ± 1.14 14.24 ± 0.80
5 × 5 58.77 ± 1.26 12.85± 0.53 16.93 ± 0.94 30.65 ± 2.24 47.74 ± 1.10 14.23 ± 0.80

Table 3. Error rates obtained using A ∪B as training set and C as test set

Classifiers Tab-maj Ib C4.5 Cn2 Naive Oc1
2 × 2 59.01 ± 1.19 15.13 ± 0.75 15.70 ± 0.74 28.30 ± 2.58 47.81 ± 1.23 13.72 ± 0.77
3 × 3 58.69 ± 1.08 14.13 ± 1.17 16.30 ± 0.96 29.86 ± 2.36 47.61 ± 1.06 13.99 ± 0.80
4 × 4 58.65 ± 1.18 13.44± 0.81 16.80 ± 0.68 29.92 ± 2.27 47.75 ± 1.21 13.94 ± 0.75
5 × 5 58.76 ± 1.26 12.62± 0.51 16.74 ± 0.91 30.64 ± 1.88 47.83 ± 1.06 13.89 ± 0.84

Table 4. Bi-layer classifier. Error rates obtained using A to learn the first layer, B to

construct the database used for the second layer model induction, and C as test set.

Classif Tab-maj Ib C4.5 Cn2 Naive Nbtree Oc1 Voting

2 × 2 14.54 ± 0.96 13.53 ± 0.95 13.71 ± 0.97 13.27 ± 1.04 13.02 ± 0.89 12.97 ± 0.90 13.58 ± 1.12 13.01 ± 0.83
3 × 3 14.47 ± 1.43 13.31 ± 1.28 13.46 ± 1.28 13.16 ± 1.20 12.93 ± 1.04 12.90 ± 1.04 13.47 ± 1.28 12.71 ± 1.11
4 × 4 14.15 ± 1.00 13.09 ± 0.91 13.24 ± 0.94 12.79 ± 0.91 12.58 ± 0.61 12.52 ± 0.62 13.26 ± 0.93 12.50 ± 0.71
5 × 5 13.59 ± 0.82 12.43 ± 0.83 12.58 ± 0.76 12.33 ± 0.93 12.14 ± 0.86 12.07 ± 0.85 12.49 ± 0.81 12.10 ± 0.88
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train the inducers. As the size of square grows, the error rate becomes smaller,
with just one exception in Table 2, where the error rate associated to the 3×3
case is bigger than in the 2×2 case.

Experiments show how classifiers induced usingOc1 and Ib algorithmsperform
the best in the first layer. For bigger values of the square size, Ib outperforms Oc1.

Table 4 shows the performance of the bi-layer classifier described in the pre-
vious section. We use the sets A and B to learn the two layers (A to learn the
first layer and B to learn the second layer) and C as test set. Nbtree performs
the best in the databases generated using 2×2 and 5×5 square sizes, and Voting
in the databases corresponding to 3×3 and 4×4 square sizes. Error rates of this
bi-layer classifier are smaller than first layer classifiers’ ones.

We carried out a Wilcoxon signed rank test [20] to check the significance of
differences among performances of one layer classifiers and two layers classifiers,
with a significance level of 95%.

Table 5 shows the results of the Wilcoxon test. Each cell represents the
result of the test confronting two classifiers. There, a plus sign means that the
classifier labelling that row outperforms the classifier labelling the corresponding
column. A minus sign means the opposite case and a equal sign means there is
no significant difference at this level (95%).

The classifiers are divided into two groups: the six in the first group corre-
spond to the case where A is used as training set (Table 2) and the six in the
second group to the case where A ∪ B is used as training set (Table 3).

The classifiers heading rows are the classifiers used in the second layer. As we
can see, every classifier in the second layer outperforms almost every classifiers in
the first layer, with very few exceptions. Only Table majority loses against Oc1,
while C4.5, Naive, Nbtree and Voting outperform every classifier in the first layer.

We carried out the same statistical test (Wilcoxon signed rank) to measure
the relative performance of the classifiers in the second layer among themselves.
Voting and Nbtree seem to be the best ones, not losing against any other one,
and performing significatively better than the rest.

Table 5. Second layer vs. first layer

(2 × 2) case (3 × 3) case

A as training set A ∪ B as training set A as training set A ∪ B as training set
Classif Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1

Tbm + + + + + - + + + + + - + = + + + - + = + + + -
Ib + + + + + + + + + + + = + + + + + + + + + + + +
Cn2 + + + + + = + + + + + = + + + + + + + + + + + +
C4.5 + + + + + + + + + + + + + + + + + + + + + + + +
Nb + + + + + + + + + + + + + + + + + + + + + + + +
Oc1 + + + + + + + + + + + = + + + + + + + + + + + +
Nbtree + + + + + + + + + + + + + + + + + + + + + + + +
Voting + + + + + + + + + + + + + + + + + + + + + + + +

(4 × 4) case (5 × 5) case

A as training set A ∪ B as training set A as training set A ∪ B as training set
Classif Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1 Tbm Ib C4.5 Cn2 Nb Oc1

Tbm + - + + + = + - + + + = + - + + + + + - + + + +
Ib + + + + + + + + + + + + + + + + + + + = + + + +
Cn2 + + + + + + + = + + + + + + + + + + + = + + + +
C4.5 + + + + + + + + + + + + + + + + + + + = + + + +
Nb + + + + + + + + + + + + + + + + + + + + + + + +
Oc1 + + + + + + + = + + + + + + + + + + + = + + + +
Nbtree + + + + + + + + + + + + + + + + + + + + + + + +
Voting + + + + + + + + + + + + + + + + + + + + + + + +
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Table 6. Experimental results of the relative performance of second layer classifiers

among themselves

Size 2 × 2 3 × 3 4 × 4 5 × 5

Classifiers + - = + - = + - = + - =

Tab-maj 0 7 0 0 7 0 0 7 0 0 7 0
Ib 2 4 1 3 4 0 3 4 0 2 3 2
Cn2 1 5 1 1 5 1 1 5 1 1 5 1
C4.5 4 3 0 4 3 0 4 3 0 2 1 4
Nb 5 1 1 5 2 0 5 1 1 4 1 2
Nbtree 6 0 1 6 0 1 6 0 1 5 0 2
Oc1 1 4 2 1 5 1 1 5 1 1 3 3
Voting 5 0 2 6 0 1 5 0 2 5 0 2

Fig. 4. Original and segmented images

In Table 6 the results for the four databases are shown. As we can see,
there is little change among these databases. In the case of 2×2 and 4×4 square
sizes, Nbtree defeats six out of seven other classifiers, tying with the remaining
(Voting), while Voting defeats five out of seven, tying with the remaining two. In
the case of 3×3 and 5×5 square sizes, both classifiers (Nbtree and Voting) make
the same global results: in the case of 3×3, six wins out of seven tests and one
tie; in the case of 4×4, five wins out of seven tests and two ties. As it is obvious
from this data, Nbtree and Voting tie in their particular ’match’.

Looking to the numerical results, it has to be said that the best results are
obtained for the 5 × 5 pixel squares, both by Nbtree (12.07±0.85) and for Voting
(12.10 ± 0.88) as showed in Table 4.

Figure 4 shows some real examples of the segmentation obtained by this
procedure using a square size of 5×5 and Voting as second layer classifier. It has
to be said that bricks and floor tiles have very similar color and therefore, the
multiclassifier has problems to discriminate between those surfaces. Fortunately,
other surfaces and specially wooden doors are very well segmented.

5 Conclusions and Further Work

In this paper, we develop and test a new bi-level classifier to segment indoor
surfaces. Improvements over first layer classifiers are achieved, even in the case
of using a very simple method to combine the predictions of the compound of
classifiers: a weighted vote inversely proportional to the error rate.
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A different line of research involves taking less squares from a given subimage,
so that one pixel would be present in just one square. This would reduce the
amount of squares to w/k ∗ h/k, where w and h are the width and the height
of the subimage, respectively, and k the size of the square side, speeding up the
whole segmentation process. Balance between amount of squares, computation
time and accuracy could be subject of further work.

We also pretend to divide a n × n square into smallest squares, so that the
class assigned to the n × n square would be computed according to the classes
assigned to the smaller ones.

The final goal is to integrate this multiclassifier in the robotic control archi-
tecture and test its performance under real-time constraints, to be able to use
the surface recognition behavior for robot localization during navigation.
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15. I. Rañó, E. Lazkano, I. Zarautz, I. Monasterio, and B. Sierra. Mobile robot navi-

gation using color image segmentation. Systems Science, 4(27):97–108, 2001.
16. Fabio Roli, Josef Kittler, and Terry Windeatt, editors. Multiple Classifier Sys-

tems, 5th International Workshop, MCS 2004, Cagliari, Italy, June 9-11, 2004,
Proceedings, volume 3077 of Lecture Notes in Computer Science. Springer, 2004.

17. J. C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, FL, 2nd
edition, 1995.
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Abstract. Graphical libraries are used usually in augmentation process in order to 
merge together virtual and real objects. This paper focuses on a new type of 
virtual objects and their visual manipulation by a user. They are the captured real 
objects’ images and are not graphically generated. We call them virtualized real 
objects (VRO). They are important for cases where real objects’ 3D models are 
not available. They are also useful to test heavy or big real objects adaptation to 
some places. The paper presents one foundation of an augmentation that uses 
VRO and a camera’s auto-calibration related on a 2D pattern. In the occurrence, 
how real objects’ images can be inserted in a sequence and how to allow their 
manipulation for an operation of a visual disposition. 

1   Introduction 

The augmentation of a scene is the addition, in real time, to the related video sequence 
one or several virtual objects. The objects are assumed virtual because they are visual 
computer generated entities added to the video flow. Their accurate registration is an 
important objective for the major works in this research area. This relates to the 
respect of some aspects in order to keep the apparent realism of the generated scene. 

Scene’s marks are always used for the alignment of virtual objects. They can be 
introduced explicitly in the scene and then used in augmentation process. In contrast, 
some natural characteristics of a mark-less scene can be deduced in order to serve the 
purposes of the application, especially for outdoor environments. The foremost 
solutions used without explicit marks suffer from computation time-consuming and 
do not allow a real time augmentation [2]. However, most solutions using an explicit 
mark are typical patterns constrained despite the reached real time augmentation [13]. 

Accurate registration of real and virtual objects is a difficult process, and to reach 
such augmentation, a set of problems must be solved. There are ones of algorithmic 
type, related to static and dynamic parameters errors cited by Azuma [11], and others 
related to semantic nature of the scene. Our most important objectives are to maintain 
the scene real aspect once augmented. 

The reached realism can be improved by a possible user manipulation of inserted 
objects. It would differ from the objects’ natural manipulation by the absence of their 
feeling. Virtual manipulation must preserve all physical real aspects of real objects [7]. 
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It allows the user to improve the meaning of expressed ideas by a visual manner and 
facilitates the achievement of any particular task. 

Several areas are invested by researchers [11], [12]. Medicine, maintenance [14], 
repairs, historical sites reconstruction [6], conception, orientation of a user in 
meticulous environments and many other areas are largely covered by works. The 
objective for the totality of these areas is to provide new means of communication and 
to allow the improvement of tasks achievement. 

Our work can be inserted in the framework of virtual objects manipulation in a 
collaborative environment. According to user's objectives, she/he may be able to 
adjust them into a scene. These objects can be either constructed using any graphical 
library [1], [10] or used directly as captured real object's images related to different 
views and merged into captured frames. We call the former 'virtualized real objects'. 
To do so, we use a monitor-based display augmentation system implemented by using 
a video-based approach. This consists of 2D patterns added in the scene in order to 
serve as a reference for the registration of virtual elements. Initially, the virtual object 
is projected onto the pattern’s detected region so as to appear in the augmented scene 
nearby it [13]. After that, the user will be able to move it anywhere in the scene and to 
orientate it according to some objectives. The used algorithm allows an acceptable 
visual approximation of the scene's 3D features. These last allow the projection of 3D 
objects in different dispositions. Although, virtualized real objects are projected as 2D 
images and do not need 3D characteristics. This is because of the 3D aspect is 
deducted visually by objects' images related to their different views. 

This work’s objective is to show an object anywhere without having to displace it 
really. For example, a commercial organization should develop a database of images 
related to its products and allow its customers to visualise them at target places. In 
that way, we have developed a platform allowing the handling of virtual objects in a 
network. It summarises in three translations following the pattern’s coordinate system 
and three rotations following the object’s coordinate system centred on its gravity 
centre. A central module provides the augmentation of the scene. It allows the sharing 
of virtual objects by two users. The objects’ manipulation follows a simple principle 
of mutual exclusion. This means that processed events getting from one user’s module 
inhibit those getting at the same time from the other. The user can handle virtual 
objects by using only the mouse and the keyboard. The advantage of this approach is 
its simplicity and the affordability of its required means [10]. 

To present this approach and our obtained results, the paper is divided into four 
more sections. The next one presents a state of the art of the augmented reality and 
states our work relatively to current works. The third section conveys the theoretical 
framework used for virtualized real objects augmentation. It presents a realized 
prototype through its advantages and limits. The fourth section brings out the solution 
used for the manipulation of virtual objects and particularly virtualised real ones in 
implemented platform. The last section, as conclusion, presents points not yet 
covered, insufficiencies and future work orientations. 

2   Vision-Based Techniques Related Works 

Two technologies are used to accomplish augmentation: optic and video [11]. Optical 
technology uses a see-through HMD device with transparent glasses. They let the user 
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see the real world above which virtual objects are superimposed. The video technology 
is either an ordinary screen or a closed-view HMD which totally occludes user’s eyes 
and in which a small screen exists. The filmed scene by HMD’s cameras or independent 
ones is projected on the screen after having been augmented by virtual objects. 

A video augmentation begins by analyzing the generated numerical scene to find its 
correspondence with the real world and to augment it. Several techniques are used 
following that the environment is prepared or not [2], [6], [11]. A prepared environment 
is a scene containing some known properties added explicitly. They are used in 
augmentation process. Our work is concerned by a prepared environment because of its 
simplicity, affordability and accuracy. More aver, it allows real time augmentation. It 
consists of adding explicitly indices or markers (2D patterns) whose form and size are 
known. The augmentation process loops in searching for them in each frame of the 
generated sequence. Once found, they will allow to auto calibrate the camera [13], to 
deduce the geometry of the scene and to proceed with augmentation. 

Camera calibration procedure determines its intrinsic and extrinsic parameters. 
They allow the establishment of the relationship between what is generated in images 
and its position in the real environment. Intrinsic parameters represent a camera’s 
features. Extrinsic parameters are concerned with the position and orientation 
information of a camera in the real world’s system coordinates. 

A perspective transformation is required in order to determine analytic relations 
allowing the projection of virtual elements. Some cameras’ models are used, and the 
simplest and the mostly used one is the pinhole camera model (Fig. 1). It allows 
finding different transformations (To, Tc, Ti) which can convert a 3D point into 2D 
image space. The disadvantage of this approach is the loss of the realistic perspective. 
 

 

Fig. 1. Correspondence model used in augmentation 

   

Fig. 2. Binarisation using dynamic threshold and corners detection: (from the left to the right) 
despite the darkness of the original image,  it is possible to binarize it correctly and to detect 
pattern and its corners successfully 
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More over, virtual objects are distorted when they are observed close-by the camera 
video. However, other models can be used for refine cameras [9]. 

Extrinsic parameters constitute the transformation ‘To’. It reflects a rotation R and a 
translation T to apply to each point po(xo, yo, zo) of any real or virtual object. It is 
called camera viewpoint. The transformation ‘Ti’ defines a projection from each 3D 
point p(x, y, z) in the camera coordinates into image coordinates, such as a projection 
p’(x’, y’, d), where ‘d’ is the focal length. Then, a transformation between world 
coordinates and image coordinates is possible to compute in homogeneous matrix 
form by using the relationship (1). Mint and Mext are respectively intrinsic and extrinsic 
matrices and the matrix M = Mint . Mext is called the perspective projection matrix. It is 
used for projection of a 3D object in a desired position in the real world [13]. 
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The application of these concepts begins by searching for the pattern in the 
sequence. The process thresholds the captured frame into binary image. Dynamic 
thresholding method is used based on lighting scene conditions. It uses the middle 
value of the minimum and maximum intensity peaks of the greyscale image’s 
histogram. The binary image is then prospected for connected black regions having 
four corners as shown in Fig. 2. The candidate region which returns the smallest value 
related to subtract with the real binary image of the pattern and respects some 
predetermined threshold would be the pattern’s region. That allows the evaluation of 
homography matrix H. Using it, it is possible to proceed directly with 2D 
augmentation or to compute the projection matrix’s terms. For the next frames of the 
sequence, a tracking of localized pattern’s corners or bounds is made in order to 
update the homography matrix from frame to frame. 

3   Non-synthetic Object Projection 

Most researchers use virtual objects as a 3D computer generated entities by using a 
graphical library, such as OpenGL. They are called synthetic. They are designed and 
arranged according to the camera viewpoint and then projected into image space 
using explained concepts [1] (Fig. 3). The use of real object’s images is used by some 
researchers in 2D augmentation. An image will then appear mapped on the desired 
plan in the scene. Our approach is where virtual objects reflect real objects’ images 
according to their different viewpoints. Thus, the augmentation will simulate a 3D 
real object using its different views in the form of 2D images (Fig. 4). This is what we 
call virtualized real objects. 

The challenge to insert real pictured objects is important since a novice user is not 
able, otherwise difficult for her/him to have a graphical model of each used object. 
Also, this way has an advantage of suppressing the complicated programming of 3D 
models related to complex real objects. For example, art objects presented for sale 
have no evident underlying model. 
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Fig. 3. Projection of synthetic object 

       

Fig. 4. Images of real objects associated to different views 

4   Visual Realism Constraints 

For the purpose to project different object’s views, we have to acquire related images 
from a spherical 3D view space. Each taken image is linked to a property indicating 
the camera viewpoint. Then, during augmentation session, each frame is augmented 
with the image related to user’s request orientation. Hence, obtained visual realism of 
an object in its movement is bind to the number of taken images and to their qualities. 

4.1   Size Adaptation 

To get such augmentation visual realism, the relative real size of object and printed 
pattern has to be respected; otherwise, the object’s apparent size will be warped and 
consequently, scene realism too. This aspect ratio is translated to their images’ size 
proportion during object’s projection. Fig. 5 shows this problem. 

Therefore, homography projection is used on a scaled detected pattern’s position. 
Let us assume that So and Sp represent respectively object and pattern measured real 
sizes. The object’s size is considered related to a chosen reference direction view 
which is pictured as a reference image (Fig. 6). So as well as Sp must either be given as 
an input session in order to compute the proportion real size por SSP = . Similarly, 

let us assume that the extracted object region from the reference image has its size 
equal to Sio and the image size is Si. The scale of object’s region in its image 
is iioi SSP = . This hypothesis remains true if all object’s images have similar sizes. 

By taking into account that the size is made up of two components, width (W) and 
height (H), and placing the equation into matrix form, we obtain two constants: 
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Fig. 5. On the left, the two relative images’ size, on the right the real proportion of the pattern 
and real objects (not projected) 

    

Fig. 6. Measurement principles 

 

Fig. 7. Example of evaluated proportion in object projection 

The use of these constants in a process session, each four detected corners will be 
scaled relatively to their estimated gravity centre O(ox, oy). In other words, each 
detected point pi(x, y), where x and y are relative to frame origin, will be firstly 
expressed relatively to O as pio(xo, yo) and scaled using a proportion Ps. More over, the 
aspect ratio of the object’s region in the reference image view, compared to the 
detected size of the pattern, remains constant, it is right to write

ds pro SPS ⋅= , 

where
soS represents the scaled object’s size to use in the current frame relatively to 

detected pattern’s size 
dpS . Likewise, knowing that the aspect ratio of the object’s 

region into the image’s reference view remains constant after scaling (Fig. 7), the 
former should have as size, with respect to the detected pattern’s 
size, iprioi PSPPSS

dss
⋅== . The current scale proportion is then expressed 

as irpis PPSSP
ds

== . Expressed into matrix form, we obtain: 
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Hence, each detected corner pio(xo, yo) will be translated to ),(
sss ooio yxp and 

expressed relatively to pattern’s detected centre: 
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We indicate here that all these expressions are established under the hypothesis that 
the pattern is always being viewed front-facing the camera. If it is inclined, at least 
one side decreases in size due to the effect of the geometrical projection. At this time 
and as a primary solution, we require a square form of the pattern. Thus, the four lines 
connecting detected corners are evaluated. The longest one is then the closest to the 
camera video and will be used for the projection and aspect ratio computation. 
Generally, the associated errors have no effects on the visual aspect. 

4.2   Projection Process 

Therefore, the projection virtualised real object is done as a 2D augmentation and 
relatively to pattern’s gravity centre. Firstly, a not oriented virtual square frame is 
built around the computed centre having its sides parallel to those of the image plane. 
Each side is scaled by using the factor Ps. After all, the selected object’s image is 
projected after the user’s manipulation requests application. 

There are no possible geometrical rotations in x and y directions. The only possible 
one, in z direction, means the rotations in image plane. Rotations in x and y directions 
stand for the different real object’s images to be projected. 

  

Fig. 8. VRO is mapped to the rearranged and scaled plan of the pattern’s detected region front-
facing the camera video 

4.3   Images Choice 

The images related to object’s different views are taken from a spherical equidistant 
positions 'd' around and in direction of its gravity centre. The procedure consists in 
sweeping the object by fixed angles from the low towards the upper, following its 
horizontal axes and picturing consequent views. Each taken image forms a different 
view related to the camera position during its plug (Fig. 9). The reference view should 
have (d, 0, 0) as polar coordinates. We notice that the quality of the obtained realism 
during the manipulation is good depending on the smallness of sweeping angle. 
However, a very small one would create very slow displacements despite the obtained 
visual aspect. On the other side, a great angle loses the manipulated object’s visual 
realism. After tests, we found out that π/9 value gives an optimal augmentation.  
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Fig. 9. A sample of images related to views of an object having polar coordinates. From left to 
right, coordinates are: (d, 0, 0), (d, -π/4, 0), (d, -π/3, π/4), (d, -π/2, π/4). 

    

Fig. 10. Objects’ surrounding regions declared as transprente after internal region extraction 

 

Fig. 11. Virtualized real object disposed by a user on a chair 

Also, we notice that the chosen angle affects the number of images and 
consequently the size of the manipulated database containing them as well as the time 
of an image search. For example, for an angle of π/12, the total number of images to 
take for all views is 312. If each image size is 43.200 bytes, as an RGB bitmap 24 bits 
having a dimension of 120x120, the total size for images will be 13.478.400 bytes. 
Even so, some heuristics can be applied so as to optimize this total size. Objects 
having meaningless views or are symmetrical are an example. It is an open problem. 
Certainly, the most evident technical optimization is to use compressed images. 

Each object’s image is pre-processed before its storage. It consists of declaring 
object’s external region as transparent in order to be ignored during augmentation; 
this means it is not projected. The pre-processing is a segmentation which delimits the 
internal region from the external one. This last is normally uniform. The internal 
region is assumed to be the object form (Fig. 10). The external one is set to white or 
black according to the object is whether dark or clear (Fig. 11). 

5   Virtual Object Manipulation 

The interest of the manipulation of virtual objects in an augmented scene is to give the 
possibility to place it somewhere in the scene according to the user’s need and not in 
predefined position (Fig. 11). These adaptations consist of a set of applicable geometrical 
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transformations to apply to an object; in the occurrence rotations and translations. The 
pattern’s region is then used as a geometrical reference mark. 

For a computer generated 3D virtual object, the theoretical detail is explained in 
[1]. As for virtualized real objects, rotations following x and y axes are used for image 
search. It must reflect the correspondent object’s view when it is rotated. Their values 
serve as index value search expressing the current camera viewpoint. In case where 
the search could not match any image, the first one having the nearest coordinate 
parameters is used. This problem is related to initial database construction during real 
object’s views acquisition, where the user is free to choose the value of the angle step. 
For example, in the acquisition of only six views: front, behind, left, right, top and 
down, the angle between each consecutive two views is π/2 and all searches for 
intermediary rotations will fail. 

6   Conclusion and Perspectives 

This paper presents a basis of a new method for an augmented reality application 
which superimposes real objects’ images. We have shown how it is possible to 
augment a video sequence in real time. Virtual object is then simply the real object’s 
different views. We call it: ‘virtualized real object’. We have equally shown how it is 
possible to manipulate it and how an acceptable realism is obtained related to 
composition and user’s different actions. The adopted principle is a video 
augmentation. It consists of an insertion of a planar pattern that allows us deducing 
the 3D aspects of the scene. This deduction gives principally the possibility of a 3D 
synthetic virtual objects insertion. Also, we have presented how just 2D aspects is 
used for augmentation of virtualized real object. 

The major problem relative to scene augmentation with 3D computer generated 
virtual objects is their correct registration. The orientation is then to 3D modelling 
domain research. Virtualized real objects orient the problem of their incrustation. 
Proportion size of the real object and the printed pattern, search for the current image 
view, extraction of the object from its image and so on, are opened problems. 

The manipulation of inserted objects strengthens the sentiment of the augmentation 
realism. For virtualized real objects orientations, it is reflected by several images 
linked to several views. The problem of the number of taken object’s images, 
expecting realism in object’s manipulation appearance, is an opened problem. If for a 
single object, the manipulated size is important, what about several objects? It is 
surely possible to import a number of solutions from other domains’ research. The 
problem here is that we must remain in respect of real time augmentation constraint. It 
is for this objective that we have used a very simple and modest solution with low 
process time consuming. 

In our work, some points have not been covered. The most important are related to 
visual aspect. They are related to virtualized real object translation following z axis. 
Indeed, this translation would make enlarge or narrow the appearance of the object 
following the perspective law. The second problem is that the view of the object does 
not change when the camera is moved around the scene. We notice in the same way 
the lack of controls giving natural effects to inserted objects. Especially, we have not 
studied the occlusion of real objects by virtual ones and their lighting. 
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Our future work is related mainly to above points and opened problems. The 
realistic effect relative to lighting, shading, rendering, as well as the correct occlusion 
of virtual objects by real ones will be equally some points of the objectives of our 
research. Obviously, our works make to improve current results. 
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Abstract. Dominant plane is an area which occupies the largest domain
in an image. Estimation of the dominant plane is an essential task for
the autonomous navigation and the path planning of the mobile robot
equipped with a vision system, since the robot moves on the dominant
plane. In this paper, we develop an algorithm for dominant plane de-
tection using optical flow and Independent Component Analysis(ICA).
Since the optical flow field is a mixture of flows of the dominant plane
and the other area, we separate the dominant plane using ICA. Using the
initial data as a supervisor signal, the robot detects the dominant plane.
For each image in a sequence, the dominant plane corresponds to an in-
dependent component. This relation provides us a statistical definition
of the dominant plane. Experimental results using real image sequence
show that our method is robust against a perturbation of the motion
speed of robots.

1 Introduction

In this paper, we aim to develop an algorithm for detection of a dominant plane
using the optical flow observed through a vision system mounted on a mobile
robot. The dominant plane is a planar area which occupies the largest domain
in the image observed by a camera. Assuming that the robot moves on the
dominant plane (e.g., floors and ground areas) and avoids collision to obstacles,
dominant plane detection is an essential task for the autonomous navigation of
the mobile robot.

Recently, mobile robots are widely used in various environments. If these
robots can move autonomously, they are of great benefit for collaboration with
human beings. However, a payload of mobile robots is restricted since a lim-
ited power supply are provided to mobile robots. Therefore, autonomous mobile
robots are required to use simple mechanisms and devices.

For the autonomous navigation of mobile robots, vision sensors are low cost
devices and provide a simple system for the robot navigation. Stationary vision
sensors are difficult to obtain range information for detection of obstacles. How-
ever, vision sensors mounted on a mobile robot can obtain an image sequence
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since a camera/cameras mounted on the robot moves/move with the robot.
The image sequence provides the motion and structure from correspondences of
points on successive images [1]. Additionally, vision sensors are fundamental de-
vices for the understanding of the environment for the robot which collaborates
with human beings.

There are many methods for the detection of obstacles or planar areas us-
ing vision systems [2]. For example, the edge detection of omni and monocular
camera systems [3] and the observation of landmarks [4] are the classical ones.
However, since these methods are dependent on the environment around a robot,
they are difficult to apply in general environments without any specified features
which are used as markings and targets for motion. If a robot captures an image
sequence of moving objects, the optical flow [5] [6] [7], which is the motion of the
scene, is obtained for the fundamental features in order to construct environment
information around the mobile robot. Additionally, the optical flow is considered
as fundamental information for the obstacle detection in the context of biological
data processing [8]. Therefore, the use of optical flow is an appropriate method
from the viewpoint of the affinity between the robot and human being.

The obstacle detection using optical flow is proposed in [9] [10]. Enkelmann
[9] proposed an obstacle-detection method using the model vectors from motion
parameters. Santos-Victor and Sandini [10] also proposed an obstacle-detection
algorithm for a mobile robot using the inverse projection of optical flow to ground
floor, assuming that the motion of the camera system mounted on a robot is pure
translation with a uniform velocity. However, even if a camera is mounted on a
wheel-driven robot, the vision system does not move with uniform velocity due
to mechanical errors of the robot and unevenness of the floor.

Independent Component Analysis(ICA) [11] provides a powerful method for
texture analysis, since ICA extracts dominant features from textures as indepen-
dent components [12][13]. Optical flow is a texture yielded on surfaces of objects
in an environment observed by a moving camera. Therefore, it is possible to ex-
tract independent features from flow vectors on pixels dealing with flow vectors
as textons. Consequently, we use ICA to separate the dominant plane and the
other area from a sequence of images observed by moving camera.

Our algorithm is separated into two phases; learning phase and navigation
phase. In the learning phase, ICA employs input values for the computation of
features. In this scene, our algorithm is a statistical version of Santos-Victor’s
algorithm. However because of the adaption of statistical method, our algorithm
is stable against a perturbation of the motion speed of robots.

2 Separation of Texture by ICA

In this section, we briefly present ICA, and we show that ICA can separate
optical flow vectors in an image sequence.

ICA [11] is a statistical technique for the separation of original signals from
mixture signals. Assume that the mixture signals x1(t) and x2(t) are expressed
as a linear combination of the original signals s1(t) and s2(t), that is,
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Camera motion

dominant plane obstacles

= +a1 a2

Fig. 1. Top: Example of camera displacement and the environment. Bottom-left: Op-

tical flow observed through the moving camera. Bottom-middle: The motion field of

the dominant plane. Bottom-right: The motion field of the other objects. The optical

flow(bottom-right) is expressed as the linear combination of the bottom middle one

and the bottom right one. a1 and a2 are scale coefficients.
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u(t0)

u(t1)

u(t5)

u(t2)

u(t3)
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Fig. 2. Dominant vector detection in a sequence of images. u(ti) corresponds to the

dominant vector which defines the dominant plane at time ti.

x1(t) = a11s1(t) + a12s2(t), (1)
x2(t) = a21s1(t) + a22s2(t), (2)

where a11, a12, a21, and a22 are weight parameters of the linear combination. Us-
ing only the recorded signals x1(t) and x2(t) as an input, ICA can estimate the
original signals s1(t) and s2(t) based on the statistical properties of these signals.

We apply ICA to the optical flow observed by a camera mounted on a mobile
robot for the detection of a feasible region on which the robot can move. The
optical-flow field are suitable for the input signals to ICA, since the optical flow
observed by the moving camera is expressed as the linear combination of the
motion field of the dominant plane and the other objects, as shown in Fig. 1.
Assuming that the motion field of the dominant plane and the other objects are
spatially independent components, ICA enables us to detect the dominant plane
on which robot can moves. For each image in a sequence, we assume that optical
flow vectors in the dominant plane corresponds to an independent component.
as shown in Fig. 2.
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3 Dominant Plane Detection from Image Sequence

3.1 Camera Geometry

When the camera mounted on the mobile robot moves on the ground plane, we
obtain successive images which include a dominant plane area and obstacles.
Assuming that the camera is mounted on a mobile robot, the camera moves par-
allel to the dominant plane. Since the computed optical flow from the successive
images describes the motion of the dominant plane and obstacles on the basis
of the camera displacement, the difference between these optical flow vectors
enables us to detect the dominant plane area. The difference of the optical flow
is shown in Fig.3.

Camera

Dominant plane

Camera displacement T

Obstacle

Image Plane

T

T

Optical flow

Fig. 3. The difference of the optical flow between the dominant plane and obstacles. If

the camera moves in the distance T parallel to the dominant plane, optical flow vector

at the obstacles area in the image plane shows that the obstacle moves in the distance

T , or optical flow vector at the dominant plane area in the image plane shows that

the dominant plane moves in the distance T . Therefore, the camera observes difference

optical flow vector between the dominant plane and obstacles.

3.2 Learning Supervisor Signal

We capture image sequence Î(x, y, t) at time t without obstacles and compute
optical flow û(t) = (dx

dt , dy
dt ) as

û(t)�∇Î(x, y, t) + Ît = 0, (3)

where x and y are the pixel coordinates of a image. For the detail of the com-
putation of this equation, see references [5], [6], and [7].

After the optical flow û(t) for frame t = 0, . . . , n−1 are computed, supervisor
signal û,

û =
1

n − 1

n∑
t=0

û(t). (4)

is created.
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3.3 Dominant Plane Detection Using ICA

We capture image sequence I(x, y, t) with obstacles and compute optical flow
u(t) in the same way.

The optical flow u(t) and the supervisor signal û are used as an input signal
for ICA. Setting v1 and v2 to be the output signals of ICA, v1 and v2 are
ambiguity of the order of the each components. We solve this problem using the
difference between the variance of the length of v1 and v2. Setting l1 and l2 to
be the length of v1 and v2,

lj =
√

v2
xj + v2

yj , (j = 1, 2) (5)

where vxj and vyj are arrays of x and y axis components of output vj , respec-
tively, the variance σ2

j are

σ2
j =

1
xy

∑
i∈xy

(lj(i) − l̄j)2, l̄j =
1
xy

∑
i∈xy

lj(i), (6)

where lj(i) is the ith data of the array lj . Since the motions of the dominant plane
and obstacles in the image is different, the output which expresses the obstacle-
motion has larger variance than the output which expresses the dominant plane
motion. Therefore, if σ2

1 > σ2
2 , we detect dominant plane using output signal l

as l = l1, else we use output signal l = l2.
Since the dominant plane occupies the largest domain in the image, we com-

pute the distance between l and the median of l. Setting m to be the median
value of the elements in the vector l, the distance d = (d(1), d(2), . . . , d(xy))� is

d(i) = |l(i) − m|. (7)

We detect the area on which d(i) ≈ 0, as the dominant plane. Our algorithm is
separated into two phases, say learning phase and navigation phase.

3.4 Procedure for Dominant Plane Detection

Learning phase is described as:

1. Robot moves on a plane without any obstacles in the small distance.
2. Robot captures a image Î(u, v, t) of the plane.
3. Compute the optical flow û(t) between the images Î(u, v, t) and Î(u, v, t−1).
4. If time t > n, compute the supervisor signal û using Eq.(4), else go to step

1, where n is number of images for creation of the supervisor signal.

Next, dominant plane recognition phase is described as,

1. Robot moves in the environment with obstacles in the small distance.
2. Robot captures a image I(u, v, t).
3. Compute the optical flow u(t) between the images I(u, v, t) and I(u, v, t−1).
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...

Camera Camera motion

Without obstacles

Image sequence

Camera Camera motion

Ground plane with obstacles

Supervisor signal Image sequence Optical flow with obstacles

Separation using ICA

Dominant plane detection

Determination of the order

Learning phase Recognition phase

Fig. 4. Procedure for the dominant plane detection using optical flow and ICA

...

Camera Camera motion

Without obstacles

Image sequence

Camera Camera motion

Ground plane with obstacles

Supervisor signal Image sequence Optical flow with obstacles

Learning phase Recognition phase

Obstacle detection

Matching

Fig. 5. Procedure for the obstacle detection using optical flow and matching
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4. Input the optical flow u(t) and the supervisor signal û to ICA, and output
the signal v1 and v2.

5. Determine the output’s order using the variance of output signals.
6. Detect the dominant plane using the median value of flow vector.

Figure 4 shows the procedure for dominant plane detection using optical
flow and ICA. The left part of Fig.4 is learning phase and the right part of
Fig.4 is recognition phase using the supervisor signal obtained in learning phase.
Figure 5 shows the procedure for obstacle detection used in [8], [9], and [10]. This
algorithm detects obstacles using matching operation between the flow images
in database and the observed flow fields, though our algorithm separates the
obstacles region using ICA.

4 Experiment

We show experiment for the dominant plane detection using the procedure in
Section 3.

First, the robot equipped with a single camera moves forward with uniform
velocity on the dominant plane and capture the image sequence without obstacles
until n = 20. For the computation of optical flow, we use the Lucas-Kanade
method with pyramids [14]. Using Eq.(4), we compute the supervisor signal û.
Figure 6 shows the computed supervisor signal û.

Next, the mobile robot moves on the dominant plane toward the edge of the
table, and the captured image sequence is shown in Fig.7.

In order to demonstrate that our method is robust against the non-unique
velocity of the mobile robot, we compute the optical flow u(t) between the
image sequence I(x, y, 0) and I(x, y, t) (t = 1, 2, 3). Computed optical flow u(t)
is shown in the first rows in Fig.8. The optical flow u(t) and supervisor signal
û are used as an input signal for fast ICA. We use the Fast ICA package for
MATLAB [15] for the computation of ICA. The output signal v(t) of ICA and
the detected dominant plane are shown in the second, third, and fourth rows
in Fig.8, respectively. In images of the dominant plane, the white region is the
dominant plane, and the black area is the other area. The results show that

Fig. 6. Optical flow û used for the supervisor signal
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Fig. 7. Image sequence I(x, y, t). Starting from the left image, the image is I(x, y, 0),

I(x, y, 1), I(x, y, 2), and I(x, y, 3), respectively.

Fig. 8. The first, second, third, and fourth rows show computed optical flow u(t),

output signal v1(t), output signal v2(t), and image of the dominant plane D(x, y, t),

respectively. In the image of the dominant plane, the white areas are the dominant

planes and the black areas are the obstacle areas. Starting from the left column, t =

1, 2, and 3.
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the dominant plane area can be correctly detected comparing with the original
image of Fig.7. Furthermore, we our method is robust against the non-unique
velocity of the mobile robot.

5 Conclusion

We developed an algorithm for the dominant plane detection from a sequence of
images observed through a moving uncalibrated camera. The use of the ICA for
the optical flow enables the robot to detect a feasible region in which robot can
move without requiring camera calibration. These experimental results support
the application of our method to the navigation and path planning of a mobile
robot with a vision system. For each image in a sequence, the dominant plane
corresponds to an independent component. This relation provides us a statistical
definition of the dominant plane.

The future work is autonomous robot navigation using our algorithm of dom-
inant plane detection. As shown in Fig. 9, if we project the dominant plane of
the image plane onto the ground plane using a camera configuration, the robot
detects a feasible region for a robot motion in front of the robot in an environ-
ment. Since we can obtain the sequence of the dominant plane from optical flow,
the robot can move the dominant plane in a space without collision to obstacles.

Movable region

Camera displacement

Image sequence of dominant plane

Ground plane

Obstacle

Fig. 9. Projection of the dominant plane onto the ground plane
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Abstract. We propose an algorithm that groups points similarly to how human 
observers do. It is simple, totally unsupervised and able to find clusters of com-
plex and not necessarily convex shape. Groups are identified as the connected 
components of a Reduced Delaunay Graph (RDG) that we define in this paper. 
Our method can be seen as an algorithmic equivalent of the gestalt law of per-
ceptual grouping according to proximity. We introduce a measure of dissimilar-
ity between two different groupings of a point set and use this measure to com-
pare our algorithm with human visual perception and the k-means clustering al-
gorithm. Our algorithm mimics human perceptual grouping and outperforms the 
k-means algorithm in all cases that we studied. We also sketch a potential appli-
cation in the segmentation of structural textures. 

1   Introduction 

One of the remarkable properties of the human visual system is its ability to group 
together bits and pieces of visual information in order to recognize objects in complex 
scenes. In psychology, there is a long tradition of research devoted to perceptual 
grouping. This tradition has been largely formed and is still very much influenced by 
gestalt laws that name factors, such as proximity or similarity in orientation, colour, 
shape, or speed and direction of movement which play a role in perceptual grouping 
(see e.g. [1-4]). The sole naming of these factors, however, is not sufficient for a 
quantitative analysis of an image aimed at grouping features together automatically, 
i.e. without the involvement of a human observer. Such automatic grouping is essen-
tial for the computerized recognition of objects in digital images.  

In the current paper we describe an algorithm for the grouping of points (Section 
2) and demonstrate that this algorithm delivers results that are in agreement with hu-
man visual perception (Section 3). To quantify the degree of agreement we introduce 
a measure of dissimilarity between two possible groupings of the points of one set. 
We also compare the performance of our algorithm in mimicking human visual per-
ception with the performance of the k-means clustering algorithm, commonly used in 
computer vision (Section 4). Our algorithm is closely related to the gestalt law of 
proximity but it goes beyond that law in that it has predictive power. In Section 5 we 
refer to some related previous work, draw conclusions and outline future work on 
possible applications in computer vision.  
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2   Grouping Algorithm 

2.1   Voronoi Tessellation and Delaunay Graph 

Given a set S = {p1, …, pN} of N points in the plain, we partition the plain in cells 
C1, …, CN (bound or unbound) such that the points which belong to cell Cj, associated 
with point pj ∈ S, are closer to pj than to any other point pk ∈ S, k j≠ :  

 

 ( ) ( ), , , , ,j j k j kq C d q p d q p q p p S∈ ⇔ ≤ ∀ ∀ ∈ . (2.1) 
  

Such a partition of the plain is called the Voronoi Tessellation (VT) or Voronoi dia-
gram related to S. The dual of the Voronoi tessellation, called the Delaunay Graph 
(DG), is obtained by connecting all pairs of points of S whose Voronoi diagram cells 
share a boundary (Fig. 1). More details about Voronoi tessellation and Delaunay 
graph can be found in the standard literature (see for example [5]). 

 

Fig. 1. Voronoi tessellation and Delaunay graph of a set of points 

2.2   Reduced Delaunay Graph 

Perceptually, a group of points in S is a subset of points, which are much closer to 
each other than to the other points of S. However, the concept of  “much closer” is 
subjective and it is not well defined mathematically. We propose an algorithm which 
partitions S in disjoint subsets, and show that this partitioning corresponds to human 
visual perception of groups. We compute the Delaunay Graph DG of the set S and 
eliminate some edges from it to obtain a new graph that we call the Reduced Delau-
nay Graph; then, we regard the connected components of that graph as groups. This is 
illustrated by Fig. 2. In order to choose which edges must be removed, for each edge 
pq of the DG we first compute the distance d(p, q) (Fig. 2a); then we normalize it with 
the distances of p and q to their respective nearest neighbours:  

 

 ( ) ( )
( ){ } ( ) ( )

( ){ }
, ,

, ; ,
min , min ,

x S x S

d p q d q p
p q q p

d p x d q x
ξ ξ

∈ ∈

= = . (2.2) 

 

Note that in general ξ(p, q) ≠ ξ(q, p). In this way, we assign two ratios, r1(e) = ξ(p, q) 
and r2(e) = ξ (q, p), to each edge e of the DG (Fig.2b). 

Next, we reduce the two above mentioned numbers to a single quantity, computed 
as their geometric average: 

 

 ( ) ( ) ( )1 2r e r e r e= ⋅  . (2.3) 
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and remove from the DG every edge e for which r(e) is larger than a fixed threshold 
rT. We call the remaining graph Reduced Delaunay Graph (RDG). 

More precisely, RDG = (VRDG, ERDG) is a graph whose vertex set VRDG is the same 
as the vertex set of the DG, and whose edge set ERDG contains those edges e ∈ EDG for 
which r(e) is less than or equal to a given threshold vlaue rT:  

 

 ( ){ };RDG DG RDG DG TV V E e E r e r= = ∈ ≤ . (2.4) 
 

   Finally, we regard the connected components of the RDG as groups. 
This is illustrated in Fig. 2, where the value chosen for rT is 1.65. The two nor-

malized distances assigned to edge p1p2, for instance, are ξ(p1, p2) = 4.95 and ξ(p2, p1) 
= 2.48. Their geometrical average is 3.5, larger than rT, so p1p2 must be removed. The 
other edges that must be removed are shown in dashed line in Fig.2c. The remaining 
edges (shown in solid line) produce two connected components, {p1,p3,p4} and 
{p2,p5,p6}, which we regard as groups. 

 

Fig. 2. (a) A set of points and its Delaunay graph. The numbers assigned to the edges are equal 
to the distances between the corresponding vertices. (b) A pair of normalized distances is as-
signed to each edge of the DG. (c) The pair of normalized distances assigned to an edge is re-
placed by a single number, computed as their geometric mean. The dash lines represent the 
edges removed from the DG; these are the lines that are assigned numbers larger than the 
threshold (1.65). The vertices and the remaining edges define the reduced Delaunay graph; its 
connected components are regarded as groups.  

3   Results 

In this section we apply our algorithm to several sets of points (see Figures 3-5); in all 
these examples we take a threshold value rT = 1.65 that is empirically chosen.  

In the cases shown in Fig.3a-b the RDG is connected and all points are grouped 
together in one single group; this corresponds to the human visual perception of these 



500 G. Papari and N. Petkov 

 

dot patterns; the examples of Fig.3c-f are point configurations in which distinct 
groups, arranged both regularly and randomly, are formed. In the case shown in 
Fig.4a the points arranged in a circle and the points inside that circle form separate 
groups. Fig.4b-c present examples of sets in which there are isolated points. Fig. 4d-f 
illustrate the ability of our algorithm to find clusters of complex shape that are not 
necessarily convex. 

Fig.5a-b show examples of point sets in which groups of points are immersed in a 
group that covers the whole image. In Fig.5a, for instance, we perceive a set of 
crosses immersed in a square grid, and it is exactly what the RDG reveals. Similarly, 
in Fig.5b we perceive small squares surrounded by a grid of octagons and big squares. 
In Fig.5c the RDG reveals the lines traced by the points. This example has a certain 
relation to the gestalt law of good continuation. The arcs of the RDG not only allow 
identifying groups but also reveal the order of continuation. 

4   Quantitative Comparison to Human Observers 

We claim that our algorithm mimics the grouping properties of the human visual sys-
tem. To quantify this claim, we now compare the grouping results obtained with this 
algorithm with the groupings defined by human observers. For this purpose we first 
introduce a measure of dissimilarity between two possible groupings of the points of 
one set.  

4.1   Dissimilarity Between Two Partitions of a Point Set 

Let { }1 1, , NC U U= K be a collection of disjoint subsets of a point set S, such that the 

union of these subsets is identical with S. Each such subset defines a group of points, 
and C1 defines a possible grouping or partitioning of the points of S into different 
groups. Let { }2 1, , MC W W= K  be another such grouping of S. We introduce the fol-

lowing quantities: 
 

 
( ) ( ) ( )

,

card card card
; ;

card( ) card( ) card( )
i k i k

i k i k

U W U W
u w

S S S
α

∩
= = = . (4.1) 

In analogy with probability theory, we call αik joint probability and ui and wk marginal 
probabilities; we also say that C1 and C2 are independent if αik = uiwk. We also define 
the following formal entropies [6]: 

 

   ( ) ( ) ( )1 2 1 2 , ,
,

ln ; ln ; , lni i k k i k i k
i k i k

H C u u H C w w H C C α α= − = − = − .  (4.2) 

We now define the dissimilarity coefficient ( )1 2,C Cρ  between the two partitions C1 

and C2 as follows: 
 

 ( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 2 1 2
1 2

1 2

, min ,
,

max ,

H C C H C H C
C C

H C H C
ρ

−
=  . (4.3) 
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(a)  (b)  (c) 

 

 

 
 

 

 
 

 
(d)  (e)  (f) 

Fig. 3. Six point sets (first and third rows) and their corresponding RDGs (second and fourth 
rows). In cases (a-b) the RDGs are fully connected and all points belong to the same group. In 
cases (c-f) the points are clustered in groups, both regularly and randomly arranged, which are 
correctly detected by the respective RDGs. 
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(a)  (b)  (c) 

 

 

 
 

 

 
 

 
(d)  (e)  (f) 

Fig. 4. Other six point sets (first and third rows) and their corresponding RDGs (second and 
fourth rows). In case (a) the points that form a  circle belong to a different group than the point 
inside that circle. Cases (b-c) are examples of RDGs that have isolated points; in examples (d-f) 
the shape of the clusters is complex and not necessarily convex. 
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(a)  (b)  (c) 

Fig. 5. Point sets (above) and their corresponding RDGs (below). (a-b) A system of groups is 
immersed in a group that covers the whole image. (c) A case related to the gestalt principle of 
good continuation. The edges of the RDG reveal the connectivity of that continuation. 

 
 

It can easily be shown that ρ  is symmetric, positive, equal to zero iff C1 = C2, and 
that it satisfies the triangular inequality; therefore, it defines a metrics in the space of 
the groupings. ρ has also the property to be always between 0 and 1, with ρ = 1 if and 
only if the two concerned groupings are independent. Fig.6 illustrates that the concept 
of dissimilarity between two groupings is related to their correlation. 

4.2   Results 

We used the dissimilarity coefficient defined above to compare the results of our 
grouping algorithm with the perceptual grouping as done by human observers. For 
each of the images named in the first column of Table 1, we asked eight human ob-
servers (male, age varying between 25 and 48) to group the points of the correspond-
ing set. Originally, we used a larger number of point sets but then we excluded sets 
for which the observers produced different groupings; the set shown in Fig. 4d is one 
such case that is included here for illustration; the maximum dissimilarity coefficient 
of two groupings produced by two observers for this set was 0.026. For all other point 
sets included here the groupings produced by different observers are identical. 

In all the cases but the ones presented in Fig.4d and Fig.5c our algorithm produces 
groupings that are identical with the groupings defined by the human observers. Con-
sequently, the dissimilarity coefficients of the groupings obtained by the algorithm 
and by perceptual grouping are 0 in these cases, Table 1. One case in which a  
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difference arises is shown in Fig.7. As can be seen, this difference is small which is 
well reflected in the small value of the corresponding dissimilarity coefficient. For the 
case shown in Fig.4d the dissimilarity coefficient is computed as the average of the 
dissimilarity coefficients between the algorithmic grouping on one hand and each of 
the human perceptual groupings on the other hand. The average value obtained in this 
way is smaller than the maximum value of dissimilarity between the perceptual 
groupings by two different observers. 

Table 1 shows also the results achieved by another algorithm - the k-mean cluster-
ing [7]. Since this algorithm requires a number of clusters to be specified, this number 
has been selected to be equal to the number of groups drawn by the human observers. 
In all cases, the RDG algorithm outperforms the k-means algorithm in its ability to 
mimic human perception. The performance difference is especially large for point sets 
in which the groups (as defined by human visual perception) are not convex and have 
complex form, Fig.7.  

 

Fig. 6. (a) The groupings/partitions C1 = {U1, U2, U3} and C2 = {U1, U2, U3} defined by the con-
tinuous and dashed lines, respectively, are strongly correlated and consequently their dissimi-

larity ( )1 2,C Cρ  is small. (b) The partitions C1 and C3 = {U1, U2, U3} are totally uncorrelated 

and their dissimilarity coefficient is maximal. 

           

Fig. 7. (left) The RDG grouping algorithm mimics human perception while (right) the k-means 
algorithm clusters points in a very different way 
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Table 1. Dissimilarity coefficient values between perceptual grouping by humans and two 
grouping algorithms, RDG and k-means 

 

Point 
set 

ρ 

(RDG to human) 

ρ 

(k-mean to human) 
Fig. 3c 0 0.08 

Fig. 3d 0 0.04 

Fig. 3e 0 0.05 

Fig. 3f 0 0.05 

Fig. 4a 0 0.24 

Fig. 4d 0.007 0.48 

Fig. 4e 0.21 0.85 

Fig. 4f 0 0.68 

Fig. 5c 0.17 0.30 

5   Summary and Conclusion 

Attempts to identify perceptually meaningful structure in a set of points have been 
made in previous works. Voronoi neighbourhood is used in [8]. A discussion in [9] 
motivates a graph-approach to detect Gestalt groups. In [10] the following concept is 
introduced: two points p and q of a set S are considered relatively close if d(p,q) < 
max{d(p,x), d(q,x)}, ∀x∈S; linking all points of S which are relatively close, we ob-
tain what is called the Relative Neighbourhood Graph [11]. In [11] it is shown by 
some examples that points are linked in a way that is perceptually natural for human 
observers. However, this algorithm cannot be used to find groups of points, which is 
the goal of the current paper. A nice algorithm, presented in [12], repeatedly splits the 
convex hull of the point set, until clusters are found; but it is unable to find clusters 
which are one inside the other. 

We introduced the concept of a RDG that we use to group points. We demonstrated 
that this algorithm mimics human visual perception. For this purpose we introduced a 
quantitative measure of dissimilarity between two possible groupings of the points of 
a set. The dissimilarities between groupings produced by our algorithm and percep-
tual groupings done by human observers are zero or very small for a number of point 
sets that we studied. In contrast, the popular k-means clustering algorithm groups 
points in a way that is quite different from visual perception. Our algorithm is very 
simple, totally unsupervised, and is able to find groups of complex  shape. 

In future work we will apply this algorithm to computer vision problems, such as 
segmentation of structural textures. Such textures cannot be treated adequately with 
traditional filter based approaches (see e.g. [13]). Our idea is to first reduce a texture 
(Fig.8a) to one or more sets of points that indicate the positions of structural elements, 
using morphological filters, and to group them using the RDG approach, Fig.8b-c.   
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 (a) (b) (c) 

Fig. 8. (a) A texture in which the regions are defined by different structural elements. (b) The 
positions of the + elements are identified by a morphological filter selective for the + shape, 
and the points are connected in a RDG to identify regions of + elements. (c) The regions that 
contain L elements are identified in a similar way using another morphological filter. 
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Abstract. Tracking of objects is a basic process in computer vision. This 
process can be formulated as exploration problems and thus can be expressed as 
a search into a states space based representation approach. However, these 
problems are hard of solving because they involve search through a high 
dimensional space corresponding to the possible motion and deformation of the 
object. In this paper, we propose a heuristic algorithm that combines three 
features in order to compute motion efficiently: (1) a quality of function match, 
(2) Kullback-Leibler measure as heuristic to guide the search process and (3) 
incorporation of target dynamics for computing promising search alternatives. 
Once target 2D motion has been calculated, the result value of the quality of 
function match computed is used in other heuristic algorithm with the purpose 
of verifying template updates. Also, a short-term memory subsystem is included 
with the purpose of recovering previous views of the target object. The paper 
includes experimental evaluations with video streams that illustrate the 
efficiency for real-time vision based-tasks. 

1   Introduction 

Tracking of moving objects in video streams [1] is a critical task in many computer 
vision applications such as vision-based interface tasks [2], visual surveillance or 
perceptual intelligence applications.  

In this paper, it is proposed a template-based solution for fast and accurate tracking 
of moving objects. The main contributions are focused on: (1) an A* search algorithm 
for computing shape motion, (2) dynamic update of the search space in each image 
whose corresponding dimension is determined by target dynamics, (3) updating 
templates only when the target object has evolved to a new shape change significantly 
dissimilar with respect to the current template and (4) representation of the most 
illustrative views of the target evolution through a short-term memory subsystem. As 
a result, the two first contributions provide a fast algorithm to apply over a 
transformations space for computing target 2D motion and the other two contributions 
provide robust tracking because accurate template updating can be performed. In 
addition to these contributions, the paper contains experimental evaluations with 
                                                           
∗ This work has been supported by the Spanish Government and the Canary Islands 

Autonomous Government under projects TIN2004-07087 and PI20003/165. 
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indoor and outdoor video streams of number of nodes explored, average runtime and 
comparison of the proposed search approach with conventional search strategies, 
demonstrating that A* heuristic search based approach is faster and the computational 
time requirements are under the time restriction on real-time situations. Also, the 
experimental results reveal that updating templates using combined results focused on 
the value of the quality of function match and the use of a short-term memory 
subsystem leads to accurate template tracking.  
 This paper is organized as follows: Section 2 illustrates the problem formulation. 
In Section 3, the heuristic algorithm for computing target position is described. The 
updating reference template problem is detailed in Section 4. Experimental results are 
presented in Section 5 and Section 6 concludes the paper.  

2   Problem Formulation 

The template tracking problem of objects in 3D space from 2D images proposed in 
this paper is formulated in terms of decomposing the transformations induced by 
moving objects between frames into two parts: (1) a 2D motion, corresponding to the 
change of the target position in the image space, which is referred to as template 
position matching problem and (2) a 2D shape, corresponding to an actual change of 
shape in the object, which is referred to as template updating problem. 

2.1   Template Position Matching 

Let { } 2
1 ,, ℜ⊆= rttT K  be a set of points that represents a template, let { } 2

1 ,, ℜ⊆= siiI K  be 

another set of points that denotes an input image, let a bounded set of translational 
transformations G(.) be a set of transformations 22: ℜ→ℜG , and let a bounded error 
notion of quality of match ( )ε ,, ITGQ ;  be a measurement for computing the degree of 

match between a template T and a current input image I, where the dependence of Q 
on T, I and/or ε  is omitted for sake of simplicity but without lost of generality. That 
is, the quality of match assigned to a transformation G is represented by the allowed 
error bound, ε , when template points are brought to point’s image using a 
transformation G. This quality of match function assigned to a transformation G is 
expressed as: 
 
 ( ) ( ) ε<−=

∈ ∈
itGGQ

Tt
Ii

max  (1) 

Given a template T, an input image I and an error bound ε , template position 
matching problem can be viewed as the search process in the space of transformations 
in order to find the transformation, Gmax, that maximizes the quality of match Q(G) 
between the transformed template G(T) and the current image I: 

 ( ) ( )εε ,,maxarg,,max IG;TQITG
G G∈

=  (2) 
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2.2   Template Position Updating 

Once the new position of the target has been computed, the template is updated to 
reflect the change in its shape. Since, template matching position problem determines 
translational motion between consecutive frames, all the non-translational 
transformations are considered to be a change in the 2D shape of the object. New 2D 
shape change between successive frames is computed as the measure of the 
discrepancy between Gmax(Tk), which denotes the translated points set of template Tk 
by the translation Gmax, and the given input image in step time k, denoted as Ik, under a 
certain error bound δ . That is, the new template Tk+1 is represented by all those 
points of input image Ik that are within distance δ of some point of Gmax(Tk) according 
to the following expression: 
 
 ( )

∈
+ <−=

Ii
kk iTGT δmax1

 (3) 

3   Heuristic Search Algorithm for Template Position Matching 

Formulation of problem solving under the framework of heuristic search is expressed 
through a state space-based representation approach [3], where the possible problem 
situations are considered as a set of states. The start state corresponds to the initial 
situation of the problem, the final state, goal or target state corresponds to problem 
solution and the transformation between states can be carried out by means of 
operators. Next, the elements of the problem are described in order to formalize the 
heuristic search framework: 
 

– State: each state n is associated with a subset Gk of the space of transformations 
G(.). Each state is represented by the transformation that corresponds to the 
center of the partial set of transformations, Gk, which is referred to as Gc. 

– Initial state: is represented by a bounded set of translational transformations, 
which allow matching the current template position in the current scene.  

– Final state: is the transformation that best matches the current template in the 
current scene, according to Q(G). The quality of function match assigned to a 
transformation G is expressed in terms of the partial directed Hausdorff 
distance (see appendix) between the transformed template T and the current 
image I: 

 

 ( ) ( )( ) ε<= ITGhGQ k ,  (4) 

 
    Where the parameter k represents the kth quartile value selected according to 
expression 10 and ε denotes that each point of G(T) must be within distanceε of 
some point  of I.   

– Operators: are the functional elements that transform one state to another. For 
each current state n, the operators A, and B are computed: 

• Function A. The current state is partitioned into four regions by vertical 
and horizontal bisections, that is, four new states. 
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• Function B. The quality of function match (equation 4) is computed for 
each one of the new states generated. It is referred to as hk(Gc(T), I), 
where Gc(T) represents the transformation of template points by the 
central translation of the corresponding state. 

Splitting each current state into four new states leads to the representation of the 
search tree to be a quaternary tree structure; where each node is associated to a 2i x 2j 
region. The splitting operation is finished when the quadrisection process computes a 
translational motion according to the quality of function match Q(G) or all the regions 
associated with the different nodes have been partitioned in cells of unit size. Figure 1 
illustrates the search process. Each one of the four regions computed is referred to as 
NW, NE, SE and SW cells. The best node to expand from these cells at each tree-level 
l is computed using an A* approach [3], which combines features of uniform-cost and 
heuristic search. The corresponding value assigned to each state n is defined as: 

 ( ) ( ) ( )nhncnf *+=  (5) 

Where c(n) is the estimated cost of the path from the initial node n0 to current node n, 
and h*(n) is the heuristic estimate of the cost of a path from node n to the goal. 

 

 

Fig. 1. Search tree: hierarchical partition of the space of states using a quadrisection process. 
The nodes at the leaf level define the finest partition. 

3.1   Heuristic Evaluation Function h*(n) and Estimated Cost Function c(n) 

The heuristic value h*(n) is estimated by means of evaluating the quality of the best 
solution reachable from the current state n. Desirability of the best state is estimated 
measuring the similarity between the distribution functions P and Q that respectively 
characterize the current and goal state. The definition of both functions is based on the 
quality of function match assigned to the target transformation Gmax. Since the quality 
of function match is denoted by the partial directed Hausdorff distance, the 
distribution function P can be approximated by a histogram of distances{ } riGcH

K1=
, 
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which contains the number of template points T at distance dj with respect to the 
points of I, when the transformation Gc of the current state n is applied on T and the 
distribution function Q can be modelled by approximating { } riGcH

K1=
by an exponential 

distribution function ( ) ankenf −= , which represents the highest number of distance 

values dj near to zero values and lower than error bound ε , when the transformation 
Gmax corresponds to the transformation Gc . 

Given the distribution functions P and Q, and let R be the number of template points, 
the Kullback-Leibler distance (KLD) between the two distributions is defined as: 

 ( )
i

i
R

i
i q

p
pQPD log

1=

=||  (6) 

According to [4], ( )QPD ||  has two important properties: (1) ( ) ;0≥|| QPD  and (2) 

( ) QPiffQPD ==||   0 . These properties show that when the template points do not 

match to the input image points, the values of KLD will be non-zero and positive 
because the distributions are not similar, QP ≠ . On the other hand, if the template 

points match to the input image points, then the value of KLD is equal or near to zero. 
An estimated cost function c(n) is added to the f(n) function (expression 5) for 

generating a backtracking process when the heuristic function leads the search process 
towards no promising solutions. This depth term is based on the number of operators 
A type applied from the initial state to the current state n. 

3.2   Initial State Computation 

The initial dimension MxN of G(.) is computed by means of incorporating an alpha-beta 
predictive filtering [5] into the search algorithm. The parameters estimated by the filtering 
approach are represented by the 2D opposite coordinates of the bounding box that 
encloses the target shape and are expressed as a four-dimensional vector [ ]T

41 ,, θθθ L= . 

The location and velocity vector are jointly expressed as a state vector [ ]TTTx θθ &,= . The 

state vector estimation using a constant velocity model is formulated as: 

 ( ) ( ) ( )
T

T
kvkkxkkx

Δ
+++=++ βα  11ˆ11ˆ  (7) 

Since v(k) represents the residual error between the predicted value at time step k-1 
and the current measurement z(k), a decision rule focused on this uncertainty 
measurement can be obtained in order to compute the dimension of G(.). Two main 
criteria are considered in the decision rule design. The first one is that small values of 
the residual factor indicate low uncertainty about its estimate and therefore, a reduced 
size of G(.). The second criterion is that the definition of MxN must be a  2p x 2q value 
in order to assure that each terminal cell of G(.) will contain a single transformation 
after the last quadrisection operation had been applied. Assuming these requirements, 
the dimension M x N of G(.) is computed as:  

 
 ( )

( )>+
≤+

=
kvif

 kvif
M

M

M

min2,2

2,2
max

minmin

ω
ω
   

    ( )
( )>+

≤+
=

kvif

 kvif
N

N

N

min2,2

2,2
max

minmin

ω
ω
   

    (8) 
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Where ( ) ( )( )kvkvkv NM ,)( = , 2min, 2max represent the nearest values to v(k) and ω  is 

calculated according to the expression: ( )minmax 22 −= φω , where φ  weights the influence 

of the difference between 2min and 2max. The figure 2 and 3 show respectively the 
computation of MxN and the heuristic search algorithm. 

 

( ) ][
( ) ( )kkxkkx

kkx
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Fig. 2. Alpha-beta filtering stages and computation of MxN dimension of G(.) 

Input 
G(.): initial set of transformations. 
ε : distance error bound allowed when template points are brought to point’s image using a 
transformation G. 

( )QPD || : value of Kullback-Leibler distance.  

η : number of operators of type A applied from the initial search state to current state n. 
 

Algorithm 
Step 1) Compute MxN dimension of G(.): 
Step 2) Find Gmax that verifies ( ) ( )( ) ε<= ITGhGQ k , : 
 While ( ( ) ε>GQ ) Do 

2.1) Split current state n into four new states { } 41K=in  
2.2) Compute ( ) ( )( )ITGhGQ ckc ,←  for each new ni 
2.3) Expand the best state ni according to the evaluation function ( ) ( ) ( )nhncnf *+= : 

2.4.1) ( ) ( )QPDnh ←*  
2.4.2) ( ) ( ) η+−← 1ncnc  

 End While 
 

Fig. 3. Heuristic algorithm for computing template motion 

4   Template Update Approach 

The new template is only updated when the target object has evolved significantly to 
a new shape. Since, heuristic search computes only 2D motion component and the 
best matching between the current template T and the input image I is expressed 
through the error bound distanceε of the quality of function match, a low error bound 
ε  will denote that the target is moving according to a translational motion. However, 
the target object will have evolved towards a new shape when a large value of the 
error bound ε  is computed. In order to detect an appreciable shape change, we define 
a minimum and maximum boundary for ε  from the analysis of different processed 
sequence images that represent deformable and rigid objects. Let 

minε be the minimum 
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distance value that does not denote shape changes and let
maxε be the maximum 

distance value that is acceptable for a tolerable matching. Thus, all the solutions 
values computed between ( ) maxmin εε ≤≤ GQ  will denote a 2D shape change. 

At the same time, in certain situations, the target will show previous views that are not 
represented by the current template. Recovery of previous views is achieved by means of a 
short-term memory subsystem (STMS). The different templates that compose STMS must 
be represented by the more common views of the object. With the purpose of minimizing 
redundancies, the problem about what representative templates must be stored is 
addressed as a dynamic approach that removes the less distinctive templates according to 
leave space to the new ones when the capacity of the visual memory is achieved and a new 
template must be inserted in STMS. In order to determinate the weight of every template, 
we introduce a relevance index, which is associated to every template. This index is 
defined according to the following expression: 

 ( ) ( )
( )kTk

kT
ikR

s

p

−+
=

1
,  (9) 

Where k represents the time step, i corresponds to identification symbol template, 
Tp(i) characterizes the persistent parameter of the ith template and represents the 
frequency of use as current template. Ts(i) denotes the obsolescence parameter and 
corresponds to the time from the last instant it was used as current template. A new 
template is inserted into STMS, when the value of Q(Gmax) between the current 
template T and input image I ranges from 

minε  to 
maxε . On the other hand, a template is 

removed of STMS when the stack of templates is full and a new template must be 
added into the short-term memory, removing the template that has the less index of 
relevance and inserting the new template. 

4.1   Template Updating Algorithm 

According to the value of Q(Gmax), every template Tk is updated as Tk+1 based on one 
of the steps of the following heuristic algorithm: 

 

Step 1) If ( ) minmax ε≤GQ , the new template in time step k+1, Tk+1, is equivalent to the 

best matching of Tk in I. That is, the edge points of I that are directly 
overlapping on some edge point of the best matching, Gmax(Tk), represents 
the new template Tk+1: 

 
 ( ){ }0min/ max1 =−∈←

∈+ itGIiT
kTt

kk
 

 
Step 2) If some template of STMS computes the best matching when the current 

template Tk cannot match the target object with an inferior or equivalent 
distance value minε , ( ) minmax ε>GQ , this template of STMS is selected as the 

new template Tk+1. Otherwise, the current template, Tk is updated by 
incorporating the shape change by means of the partial directed Hausdorff 
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                distance measure [see appendix]. In this context, we denote 
( ){ }N

iiSTMSTSTMS 1==  as the different templates that integrate the iconic 

visual memory subsystem, Q(G; T(STMS)i,I, ε ) as the best error bound 
distance ε computed for the ith template of STMS, where this template is 
referred to as T(STMS)i. The updating process is expressed as: 

 
( ){ } ( ) ( )( )

( ) ( )( ) ( )<

≤≤−∈
←

∈

+ εε

εεδ

,,;,,;,

,,;,,;,min/

maxmax

maxmaxmax

1 ITGQISTMSTGQifSTMST

ISTMSTGQITGQifitGIi

T
kii

ik
Tt

k

k

k

   

      

Step 3) If the best matching computed using the current template Tk and all 
templates of STMS is superior to the error bound distance

maxε , no template 

is updated: 
 

( ) ( )( ){ }maxmaxmaxmax1 ,,;,,; εεεεφ ≥≥←+ ISTMSTGQandITGQifT ikk           

5   Experiments and Results 

Diverse experiments have been carried out with 24 different sequences that contain 
800 frames as average rate, with deformable and rigid objects, achieving the same 
behaviour for all of them on a P-IV 3.0 GHz.  Particularly, indoor and outdoor video 
streams, “People” (855 frames) and “Motorcycle” (414 frames) are illustrated. The 
average size of each frame is 280x200 pixels and average size of templates is 
170x149 pixels. The first reference template is computed from initial image areas that 
exhibit coherent movement among the two first frames. Initial states evaluated 
correspond to: (1) Fixed search area (A1): a 64x64 pixels 2D translations set ranging 
from (-32, -32) to (32, 32); (2) Fixed search area with motion prediction (A2): a 
64x64 pixels 2D translations set computed from the predicted target position and (3)  
 

 

  

  

 
Fig. 4. People and Motorcycle Sequence (frames 150, 200 and 250 are shown) 
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Adjustable search area (A3): the dimension of each initial state is computed 
according to expression 8. The goal state is defined as the translation G that verifies 
that 80% (parameter k = 0.8) of template points are at maximum 2 pixels distance 
(ε = 2.0) from I. Heuristic thresholds minε , maxε and δ are respectively settled up to 2, 

10 and 8. The dimension of STMS is settled up to 6. Figure 4 illustrates three sample 
frames of the sequences mentioned above. First and third column show original 
frames; second and fifth column depict edge image using Canny approach [7]; third 
and sixth column show edge located template. 

5.1   Computation of Initial Search State and Comparative Analysis 

The performance of the approaches for computing initial search state is measured by 
means of nodes to be explored and the time required for processing each sequence. The 
results of Figure 5 show that the number of nodes to be explored and the temporal cost 
are reduced considerably by incorporating a filtering approach into the search algorithm. 

 

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

44000

48000

Fixed search area without
prediction motion (A1)

Fixed search area with
prediction motion (A2)

Adjustable-size search area
(A3)

(a)

N
um

be
r 

of
 n

od
es

 t
o 

be
 e

xp
lo

re
d

People (855 frames)

Motorcycle (414 frames)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

Fixed search area without
prediction motion (A1)

Fixed search area with
prediction motion (A2)

Adjustable-size search area
(A3)

(b)

S
ec

on
ds

People

Motorcycle

Fig. 5. Computation of initial search state: Nodes explored and total time required for 
processing each frame of the sequences People and Motorcycle 

In order to compute the robustness of template updating algorithm, we evaluate the 
number of template updates for each sequence, testing: (1) our approach based on 
updating templates only when the target has evolved to a new shape and the use of a 
short-term memory and (2) the template updating approach used in [6] based on 
continuous updating at every frame using the directed Hausdorff measurement. 
Results reported in Table 1 for the sequences illustrated in this paper show that the 
number of required updates is minimized in relation to other updating approaches [6]. 
This situation leads to minimize the drift risk. Concretely, no target was drifted using 
the proposed approach; however, templates were drifted using continuous updating 
approach in every frame. On the other hand, templates of STMS were used when the 
current template did not reflect the target object in the next frame. These situations 
corresponded to: an imprecision error of the edge detection process in the current 
frame, and disappearance and reappearance conditions of the target in the video 
stream. In order to evaluate the average runtime behaviour of both algorithms, the 
motion computation and the update of templates, we compute runtime in seconds. 
Average time measured for processing each frame for the 24 sequences is 0.028 
seconds using general purpose hardware, which is lower than real-time requirements. 
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Table 1. Results of Template Updating 
 

Sequence People (855 frames) Motorcycle (414  frames) 

Number of updates 430 196 
Number of different templates stored in STMS 84 10 

Number of templates used of STMS 16 3 
Number of frames where the target was 

retrieved using STMS 
10 5 

6   Conclusions  

This paper is concerned with fast and accurate tracking of objects. The heuristic 
search proposed to compute shape motion is faster than previous search strategies [6] 
in an average rate three times better. Dynamic update of templates minimizes the drift 
risk. However, the target evolution in the spatial-temporal domain, introduces in 
certain situations of disappearance and appearance of the object from scenes, views 
represented by a reduced set of sparse edge points that cannot be matched. In these 
situations, the use of colour cue is required in order to avoid the loss of the target.   
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Appendix. Partial Directed Hausdorff Distance 

The partial directed Hausdorff distance between two sets of points A and B ranks 
each point of A based of its distance to the nearest point in B and uses the kth quartile 
value ranked point as the measure of distance. It is defined as:  
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Abstract. This paper describes how a facial albedo map can be recov-
ered from a single image using a statistical model that captures vari-
ations in surface normal direction. We fit the model to intensity data
using constraints on the surface normal direction provided by Lambert’s
law and then use the differences between observed and reconstructed im-
age brightness to estimate the albedo map. We show that this process is
stable under varying illumination and use the process to render images
under novel illumination.

1 Introduction

Shape-from-shading provides an alluring yet somewhat elusive route to recover-
ing 3D surface shape from single 2D intensity images [1]. This has been partially
motivated by psychological evidence of the role played by shape-from-shading
in human face perception [2]. In addition, the accurate recovery of facial shape
would provide an illumination and viewpoint invariant description of facial ap-
pearance which may be used for recognition. Unfortunately, the method has
proved ineffective in recovering realistic 3D face shape because of local convexity-
concavity instability due to the bas-relief ambiguity [1]. This is of course a well
known effect which is responsible for a number of illusions, including Gregory’s
famous inverted mask [3]. The main problem is that the nose becomes imploded
and the cheeks exaggerated [4]. It is for this reason that methods such as pho-
tometric stereo [5] have proved to be more effective.

One way of overcoming this problem with single view shape-from-shading is
to use domain specific constraints. Several authors [6,7,8,4,9] have shown that,
at the expense of generality, the accuracy of recovered shape information can
be greatly enhanced by restricting a shape-from-shading algorithm to a partic-
ular class of objects. For instance, both Prados and Faugeras [9] and Castelan
and Hancock [4] use the location of singular points to enforce convexity on the
recovered surface. Zhao and Chellappa [7], on the other hand, have introduced
a geometric constraint which exploited the approximate bilateral symmetry of
faces. This ‘symmetric shape-from-shading’ was used to correct for variation in il-
lumination. They employed the technique for recognition by synthesis. However,
the recovered surfaces were of insufficient quality to synthesise novel viewpoints.
Moreover, the symmetry constraint is only applicable to frontal face images.
Atick et al. [6] proposed a statistical shape-from-shading framework based on a
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low dimensional parameterisation of facial surfaces. Principal components anal-
ysis was used to derive a set of ‘eigenheads’ which compactly captures 3D facial
shape. Unfortunately, it is surface orientation and not depth which is conveyed
by image intensity. Therefore, fitting the model to an image equates to a com-
putationally expensive parameter search which attempts to minimise the error
between the rendered surface and the observed intensity. This is similar to the
approach adopted by Samaras and Metaxas [8] who incorporate reflectance con-
straints derived from shape-from-shading into a deformable model.

A desirable feature of such models is the ability to separate the underlying
shape and reflectance properties of the observed face from the imaging and illu-
mination conditions, which combine to produce the observed image. There has
been a considerable effort in the computer vision literature aimed at developing
generative statistical models that can be used to learn the modes of appearance
variation [10,11,12,13]. This is, of course, a complex problem where the devil
resides in the detail. The appearance of a face is determined by a number of
complex factors. The first of these is the three-dimensional shape of the face
[14]. The second is the albedo map which captures effects such as local varia-
tions in skin pigmentation and the distribution of facial hair [15]. Finally, there
is the process by which light is reflected from the skin. Skin reflectance is a com-
plex process, which is thought to be governed by subsurface scattering processes
and is strongly affected by blood flow beneath the skin [16]. In particular, the
pattern of reflectance is strongly non-Lambertian [17]. For these reasons, much
of the effort here has been aimed at developing generative statistical models
that can be used to learn the modes of appearance variation [10,13], and then
subsequently used to synthesise face appearance. Statistical methods are used
since they are usually robust, have well understood parameter estimates and
can be used in a flexible way [18,19]. Moreover, they allow the complex phys-
ical processes which give rise to variable face appearance to be subsumed into
a parametrically efficient model [11]. Although this can be viewed as a merit
from the computational standpoint, it circumvents the direct modelling of the
underlying shape and reflectance effects that give rise to variable appearance.

In this paper we focus on one aspect of this problem and develop of means
of estimating the albedo map of a face from a single image. Albedo estimation
from a single image is an under-constrained problem. Previous approaches have
been based on the assumption that reflectance changes lead to much stronger
image gradients than shading effects [20] or, in the case of faces, that albedo is
piecewise constant [7]. Neither approach has yielded results of sufficient quality
to allow realistic image-based rendering or to allow useful information to be
drawn from the estimated albedo map.

Our approach is based on two observations. First, that facial albedo is fairly
constant across much of a face’s surface. Second, that facial shape is sufficiently
constrained that it may be captured by a low-dimensional space [6]. We choose
to model facial shape using a statistical model which captures variations in
surface normal directions. This allows us to estimate the field of normals using
shape from shading and simplifies the imposition of data closeness locally at each
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point in the image. We train the model on range data. We begin by iteratively
fitting the model to an image using the hard constraint of the image irradiance
equation assuming constant albedo. Since albedo is constant across much of a
face’s surface, the imposition of data closeness in areas of actual albedo variation
does not overly disrupt the parameter estimate. We also use an image based
reflectance estimation process [21] to remap Lambertian reflectance onto the
input face to reduce the effect of specularities. After the fitting process converges,
the best fit field of surface normals satisfies data-closeness except in areas of
actual variation in albedo. We may then use the differences between observed
and reconstructed image brightness to account for albedo variations.

We begin by summarising how we construct the statistical model of surface
normal variation. We describe how the model is fitted to intensity images and
how this process is used to estimate facial albedo. Finally, we apply the technique
to real world images and show that the albedo map is stable under varying
illumination and that the process may be used for realistic reilluminations under
novel lighting.

2 A Statistical Surface Normal Model

A “needle map” describes a surface z(x, y) as a set of local surface normals
n(x, y) projected onto the view plane. Let nk(i, j) = (nx

k(i, j), ny
k(i, j), nz

k(i, j))T

be the unit surface normal at the pixel indexed (i, j) in the kth training image. If
there are T images in the training set, then at the location (i, j) the mean-surface
normal direction is n̂(i, j) = n̄(i,j)

||n̄(i,j)|| where n̄(i, j) = 1
T

∑T
k=1 nk(i, j).

On the unit sphere, the surface normal nk(i, j) has elevation angle θk(i, j) =
π
2 −arcsinnz

k(i, j) and azimuth angle φk(i, j) = arctan ny
k
(i,j)

nx
k(i,j) , while the mean sur-

face normal at the location (i, j) has elevation angles θ̂(i, j) = π
2 − arcsin n̂z(i, j)

and azimuth angle φ̂(i, j) = arctan n̂y(i,j)
n̂x(i,j) .

To construct the azimuthal equidistant projection we commence by con-
structing the tangent plane to the unit-sphere at the location corresponding
to the mean-surface normal. We establish a local co-ordinate system on this
tangent plane. The origin is at the point of contact between the tangent plane
and the unit sphere. The x-axis is aligned parallel to the local circle of latitude
on the unit-sphere. Under the equidistant azimuthal projection at the location
(i, j), the surface normal nk(i, j) maps to the point with co-ordinate vector
vk(i, j) = (xk(i, j), yk(i, j))T . The transformation equations between the unit-
sphere and the tangent-plane co-ordinate systems are

xk(i, j) =k′ cos θk(i, j) sin[φk(i, j) − φ̂(i, j)]

yk(i, j) =k′
{

cos θ̂(i, j) sin φk(i, j) − sin θ̂(i, j) cos θk(i, j) cos[φk(i, j) − φ̂(i, j)]
}

where cos c = sin θ̂(i, j) sin θk(i, j)+cos θ̂(i, j) cos θk(i, j) cos[φk(i, j)−φ̂(i, j)] and
k′ = c

sin c .
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The equations for the inverse transformation from the tangent plane to the
unit-sphere are

θk(i, j) = sin−1

{
cos c sin θ̂(i, j) − 1

c
yk(i, j) sin c cos θ̂(i, j)

}
φk(i, j) =φ̂(i, j) + tan−1 ψ(i, j)

where

ψ(i, j) =

⎧⎪⎪⎨⎪⎪⎩
xk(i,j) sin c

c cos θ̂(i,j) cos c−yk(i,j) sin θ̂(i,j) sin c
if θ̂(i, j) �= ±π

2

−xk(i,j)
yk(i,j) if θ̂(i, j) = π

2
xk(i,j)
yk(i,j) if θ̂(i, j) = −π

2

and c =
√

xk(i, j)2 + yk(i, j)2.
For each image location the transformed surface normals from the T dif-

ferent training images are concatenated and stacked to form two long-vectors
of length T . For the pixel location indexed (i, j), the first of these is the long
vector with the transformed x-co-ordinates from the T training images as compo-
nents, i.e. Vx(i, j) = (x1(i, j), x2(i, j), ..., xT (i, j))T and the second long-vector
has the y coordinate as its components, i.e. Vy(i, j) = (y1(i, j), y2(i, j), ...,
yT (i, j))T . Since the equidistant azimuthal projection involves centering the lo-
cal co-ordinate system, the mean long-vectors over the training images are zero.
If the data is of dimensions M rows and N columns, then there are M×N pairs of
such long-vectors. The long vectors are ordered according to the raster scan (left-
to-right and top-to-bottom) and are used as the columns of the T ×(2MN) data-
matrix D = (Vx(1, 1)|Vy(1, 1)| Vx(1, 2)|Vy(1, 2)| . . . |Vx(M, N)|Vy(M, N)).
The covariance matrix for the long-vectors is the (2MN) × (2MN) matrix
L = 1

T DT D.
We follow Atick et al. [6] and use the numerically efficient method of Sirovich

[22] to compute the eigenvectors L. Accordingly, we construct the matrix L̂ =
1
K DDT . The eigenvectors êi of L̂ can be used to find the eigenvectors ei of L
using ei = DT êi.

We deform the equidistant azimuthal point projections in the directions de-
fined by the 2MN × K matrix P = (e1|e2| . . . |eK) formed from the leading K
principal eigenvectors. This deformation displaces the transformed surface nor-
mals on the local tangent planes in the directions defined by the eigenvectors
P. If b = (b1, b2, ...., bK)T is a vector of parameters of length K, then since the
mean-vector of co-ordinates resulting from the equidistant azimuthal projection
is zero, the deformed vector of projected co-ordinates is vb = Pb. Suppose that
vo is the vector of co-ordinates obtained by performing the azimuthal equidis-
tant projection on an observed field of surface normals. We seek the parameter
vector b that minimises the squared error E(b) = (vo −PTb)T (vo −PTb). The
solution to this least-squares estimation problem is b∗ = PT vo. The best fit
field of surface normals allowed by the model is v∗

o = PPT vo. The deformed
vector of azimuthal equidistant projection co-ordinates can be transformed back
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into a surface normal on the unit sphere using the inverse azimuthal equidistant
projection equations given above.

3 Fitting the Model to an Image

We may exploit the statistical constraint provided by the model in the process
of fitting the model to an intensity image and thus help resolve the ambiguity in
the shape-from-shading process. We do this using an iterative approach which
can be posed as that of recovering the best-fit field of surface normals from
the statistical model, subject to constraints provided by the image irradiance
equation.

If I(i, j) is the measured image brightness at location (i, j), then I(i, j) =
ρ(i, j) [n(i, j).s] according to Lambert’s law, where s is the light source direc-
tion and ρ is the albedo. We begin by assuming constant and unit albedo (the
Lambertian remapping process [21] normalises the brightest point to unity) and
return to this in the next section. In general, the surface normal n can not be re-
covered from a single brightness measurement since it has two degrees of freedom
corresponding to the elevation and azimuth angles on the unit sphere.

In the Worthington and Hancock [23] iterative shape-from-shading frame-
work, data-closeness is ensured by constraining the recovered surface normal to
lie on the reflectance cone whose axis is aligned with the light-source vector s and
whose opening angle is α = arccos I. At each iteration the surface normal is free
to move to an off-cone position subject to smoothness or curvature consistency
constraints. However, the hard irradiance constraint is re-imposed by rotating
each surface normal back to its closest on-cone position. This process ensures
that the recovered field of surface normals satisfies the image irradiance equation
after every iteration. The framework is initialised by placing the surface normals
on their reflectance cones such that they are aligned in the direction opposite to
that of the local image gradient.

Our approach to fitting the model to intensity images uses the fields of surface
normals estimated using the geometric shape-from-shading method described
above. This is an iterative process in which we interleave the process of fitting
the statistical model to the current field of estimated surface normals, and then
re-enforcing the data-closeness constraint provided by Lambert’s law by mapping
the surface normals back onto their reflectance cones. The algorithm can be
summarised as follows:

1. Initialise the field of surface normals n.
2. Each normal in the estimated field n undergoes an azimuthal equidistant

projection to give a vector of transformed coordinates v.
3. The vector of best fit model parameters is b = PT v.
4. The vector of transformed coordinates corresponding to the best-fit param-

eters is v′ = PPTv.
5. Using the inverse azimuthal equidistant projection find n′ from v′.
6. Find n′′ by rotating each normal in n′ back to their closest on-cone position.
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7. Test for convergence. If
∑

i,j cos−1 [n(i, j).n′′(i, j)] < ε, where ε is a predeter-
mined threshold, then stop and return b as the estimated model parameters
and n′′ as the recovered needle map.

8. Make n = n′′ and return to step 2.

4 Albedo Estimation

Fig. 1. Angular dif-

ference between final

n′ and n′′

The fitting process typically converges within 20 to 25 iter-
ations. We find that the constraint provided by the model
is sufficiently strong that the constant albedo assumption
does not overly disrupt the fitting process. Our claim is
that the final best fit needle map in the model space (n′)
satisfies the image irradiance equation except in areas of
true albedo variation. Moreover, the model allows recov-
ery of the shape of these areas based on the statistical
information contained in the rest of the needle map. To
demonstrate this in Figure 1 we show the angular change
as data-closeness is restored to a typical final best fit nee-
dle map, i.e. the angular difference between n′ and n′′.
From the plot it is clear that the changes are almost solely due to the variation
in albedo at the eyes, eye-brows and lips. Aside from these regions there is very
little change in surface normal direction. We therefore assume n′ represents the
true underlying shape.

We can now use the differences between observed and reconstructed image
brightness to estimate the albedo map. If the final best-fit field of surface normals
is reilluminated using a Lambertian reflectance model, then the predicted image
brightness is given by I(i, j) = ρ(i, j)[s.n′(i, j)]. Since I, s, and n′ are all known
we can estimate the albedo at each pixel using the formula:

ρ(i, j) =
I(i, j)

s.n′(i, j)
. (1)

The technique puts no constraint on the albedo being piecewise constant and is
estimated on a per-pixel basis. The combination of the final best-fit needle map
and estimated albedo map allows for near photo-realistic reilluminations under
novel illumination. The process also shows considerable stability under varying
illumination.

5 Experiments

We commence by building a “ground truth” model using fields of surface nor-
mals extracted from range data. This allows us to show the utility of the model
in capturing facial shape in a compact manner when trained on relatively ‘clean’
data. We used the 3DFS dataset [24] which consists of 100 high resolution scans
of subjects in a neutral expression. The scans were collected using a CyberwareTM
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3030PS laser scanner. The database is pre-aligned, registration being performed
using the optical flow correspondence algorithm of Blanz and Vetter [25]. Fields of
surface normals were extracted by orthographically projecting the 3 surface nor-
mal components onto a view plane positioned fronto-parallel to the aligned faces.

Mode −3σ Mean +3σ

1

2

3

4

5

Fig. 2. The first five modes of variation of a sta-

tistical surface normal model trained on a set of

facial needle maps extracted from range data

We begin by examining the
principal modes of variation for
a model trained on fields of sur-
face normals derived from range
images of faces. In Figure 2 we
show the first 5 modes of vari-
ation of this model. In each
case we deform the points under
azimuthal equidistant projec-
tion by ±3 standard deviations
along each of the first 5 princi-
pal axes. We then perform the
inverse azimuthal equidistant
projection before reilluminating
the resulting needle maps with
a point light source situated
at the viewpoint and Lamber-
tian reflectance. The modes en-
code shape only, since the nee-
dle maps are invariant to illumi-
nation conditions and the train-
ing set contained no variation in
expression. The modes clearly
capture distinct facial charac-
teristics. For example, mode
1 encodes head size and also
seems to be correlated with gen-
der. This is manifested in the
broader jaw, brow and nose in
the negative direction, all of
which are masculine features. The third mode encodes the difference between
long, narrow faces and short, wide faces, whereas the second mode encodes the
difference between a pointy and a rounded chin.

We apply the albedo estimation method described above to real world face
images drawn from the Yale B database [26]. In Figure 3 we begin by demon-
strating the stability of the process under variable lighting. The first row shows
the input images of a single subject under varying illumination. The subject is a
challenging choice due to the large albedo variations caused by facial hair. The
light source is moved in an arc along the horizontal axis to subtend an angle
of −50◦, −25◦, 0◦, 25◦ and 50◦ with the viewing direction. In the second row
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Fig. 3. Top row: input images, second row: estimated albedo maps, third row: synthe-

sised images under frontal illumination

Fig. 4. Column 1: input images, Column 2: estimated albedo maps, Columns 3-6:

synthesised views of the subjects under novel illumination. The light source directions

are [-1 0 1]T , [1 0 1]T , [0 1 1]T and [0 -1 1]T respectively.
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we show the estimated albedo maps. The results of the albedo estimation process
appear intuitively convincing. For instance, the albedo map identifies the eyes,
eyebrows, facial hair, nostrils and lips. Moreover, there are no residual shading
effects in the albedo map, for example the nose is given constant albedo. The
albedo maps are consistent under varying illumination apart from the obvious
errors caused by cast shadows as the lighting direction becomes more extreme.
In columns 1 and 5, the shadows cast by the nose have been erroneously in-
terpreted as albedo variations. This problem may be overcome by integrating
the estimated field of normals to recover a surface. Using a ray-tracer, areas in
shadow may be identified. Without a statistical model of albedo distribution,
we could assume unit albedo in these shadow regions. The third row of Figure
3 shows the recovered normals rendered with the estimated albedo map and
frontal illumination, effectively correcting for lighting variation. Apart from the
errors caused by cast shadows, these synthesised images are of a good quality,
even under large changes in illumination.

In Figure 4 we apply the albedo estimation process to 5 subjects from the
Yale B database illuminated by a light source coincident with the viewing di-
rection. The first column shows the input images and the second shows the
estimated albedo maps. As in the previous figure, the estimated albedo maps
are qualitatively convincing. In columns 3 to 6 we show the recovered fields of
surface normals rendered with the estimated albedo map under varying illumi-
nation. The images are near photo-realistic in quality under fairly large changes
in illumination.

6 Conclusions

In this paper we presented a statistical approach to estimating the albedo map
of a face from a single image. The results are qualitatively convincing and the
process is stable under varying illumination apart from the misclassification of
cast shadows. The process has a number of potential applications. The estimated
albedo map allows realistic reilluminations of the input face under novel illumi-
nation. In addition, the albedo map decouples subject identity from illumination
conditions and may thus prove more useful for face recognition than raw image
intensity. In future work we intend to address the issue of cast shadows. We also
plan to improve the fitting process and develop ways of aligning the model with
images which are not in a frontal pose.
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Abstract. This paper focuses on variational optical flow computation
for spherical images. It is said that some insects recognise the world
through optical flow observed by their compound eyes, which observe
spherical views. Furthermore, images observed through a catadioptric
system with a conic mirror and a fish-eye-lens camera are transformed
to images on the sphere. Spherical motion field on the spherical retina
has some advantages for the ego-motion estimation of autonomous mo-
bile observer. We provide a framework for motion field analysis on the
spherical retina using variational method for image analysis.

1 Introduction

It is said that some insects, for instance dragon flies, observe spherical images
through their compound eyes [1,2]. Furthermore, the compound eye systems of
insects detect moving objects using optical flow computed as the difference of
neighbouring ommateum in the compound eyes. Compound eyes collect light
rays from the world to a spherical retina. Spherical camera captures images on
a sphere by collecting light rays from the objects to the centre of the spherical
retina. Therefore, it is possible to consider images captured by compound eyes
as spherical images.

Motion analysis and tracking of obstacles and targets are fundamental re-
quirements for robot vision. Spherical motion field on the spherical retina has
some advantages for ego-motion estimation of an autonomous mobile observer
[3,4]. In this paper, we introduce a mathematical model for optical flow com-
putation [5,6,7] of spherical images using variational method for image anal-
ysis [8,9,10,11]. A catadioptric omni-directional vision system captures omni-
directional views using a conic mirror and a pin-hole camera [12,13,14,15]. The
fish-eye-lens camera systems, which are dioptric, capture omni-directional im-
ages which are similar to images observed by the eyes of a fish. Images captured
by these omni-directional imaging systems are geometrically equivalent to im-
ages captured on the spherical retina. Since the omni-directional imaging system
is widely used as imaging system of mobile robots, image analysis on a sphere is
required in robot vision. Therefore, both in robot vision and in biological vision,
spherical views are fundamental tools for studies on ego-motion estimation of
cameras and eyes mounted on robots and animals.

M. De Gregorio et al. (Eds.): BVAI 2005, LNCS 3704, pp. 527–536, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Optical Flow Computation on the Sphere

Setting x = (x, y, z)� to be a point on a space R3, for 0 ≤ θ ≤ π and 0 ≤ φ < 2π,
a point on the unit sphere is parameterised as x = cosφ sin θ, y = sin φ sin θ, and
z = cos θ. Therefore, a function on the unit sphere S2 is parameterised as I(θ, φ).
The vector expressions of the spatial and spatio-temporal gradients on the unit

sphere are ∇S =
(

∂
∂θ , 1

sin θ
∂

∂φ

)�
and ∇St =

(
∂
∂θ , 1

sin θ
∂

∂φ , ∂
∂t

)�
, respectively. For

temporal image I(θ, φ, t) on the unit sphere S2, the total derivative is

d

dt
I = q�(∇SI) + It = s�(∇StI). (1)

The solution q = (θ̇, φ̇)� of the equation s�(∇StI) = 0, for s = (q�, 1)� =
(θ̇, φ̇, 1)�, is optical flow of image I on the unit surface S2. The computation of
optical flow from s�(∇StI) = 0, is an ill-posed problem. Horn-Schunck criterion
for the computation of optical flow [5,7] on the unit sphere is expressed as the
minimisation of the functional

J(θ̇, φ̇) =
∫

S2

(
|s�(∇StI)|2 + α(||∇S θ̇||22 + ||∇Sφ̇||22)

)
sin θdθdφ, (2)

where L2 norm on the unit sphere is defined by

||f(θ, φ)||22 =
∫

S2
|f(θ, φ)|2 sin θdθdφ. (3)

The Euler-Lagrange equations of this minimisation problem are

∇�
S · ∇S θ̇ =

1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
,

∇�
S · ∇Sφ̇ =

1
αsinθ

∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
. (4)

From this system of equations, we have the system of diffusion-reaction equations
on the sphere,

∂

∂τ
θ̇ = ∇�

S · ∇S θ̇ − 1
α

∂I

∂θ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
,

∂

∂τ
φ̇ = ∇�

S · ∇S φ̇ − 1
αsinθ

∂I

∂φ

(
∂I

∂θ
θ̇ +

1
sinθ

∂I

∂φ
φ̇ +

∂I

∂t

)
(5)

for the computation of optical flow. For numerical computation, setting the right-
hand-side equations of this system of equation to be qn+1−qn

Δτ and digitised
the right-hand-side equation for the step (n + 1), we have the system of linear
equations(

Δτ 1
α (∂I

∂θ )2 + 1 Δτ 1
αsinθ

∂I
∂φ

∂I
∂θ

Δτ 1
αsinθ

∂I
∂φ

∂I
∂θ Δτ 1

αsin2θ
( ∂I

∂φ )2 + 1

)(
θ̇n+1

φ̇n+1

)

=

(
θ̇n + Δτ∇�

S ∇S θ̇n − Δτ 1
α

∂I
∂θ

∂I
∂t

φ̇n + Δτ∇�
S ∇Sφ̇n − Δτ 1

αsinθ
∂I
∂φ

∂I
∂t ,

)
, (6)
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for qn := θ̇n, φ̇n, where

Δτ∇�
S ∇Sqn(θ, φ)

=
qn(θ + Δθ, φ − Δφ, t) +qn(θ + Δθ, φ, t) +qn(θ + Δθ, φ + Δφ, t)
+qn(θ, φ − Δφ, t) −8qn(θ, φ, t) +qn(θ, φ + Δφ, t)
+qn(θ − Δθ, φ − Δφ, t) +qn(θ − Δθ, φ, t) +qn(θ − Δθ, φ + Δφ, t)

(7)

is the discrete Laplacian of 8-neighbourhood on the sphere.
Since q is a function of the time t, we accept the smoothed function

q(t) :=
∫ t+τ

t−τ

w(τ)q(τ)dτ,

∫ t+τ

t−τ

w(τ)dτ = 1, (8)

as the solution. Furthermore, instead of the M -estimator 1 in the form, for
s = (q�, 1)� = (θ̇, φ̇, 1)�

Jρ(q) =
∫

S2

(
ρ(|s�∇StI|2) + α(||∇S θ̇||22 + ||∇Sφ̇||22)

)
sin θdθdφ, (9)

where ρ(·) is an appropriate weight function, we adopt an operation Θ, such that

JΘ(q) = Θ
(
J(θ̇, φ̇)

)
. (10)

This operation allows us to achieve the minimisation operation before statistical
operation. As an approximation of the operation Θ, we achieve the operation

q∗ = argument
(
medianΩ(q) {|q| ≤ T |medianM(minJ(q))|}) , (11)

which we call the double median operation [16,17].

3 Sphere Image Transform

3.1 Catadioptric System

As illustrated in Figure 1 (a), the focal point of the hyperboloid Sh is located
at the point F = (0, 0, 0)�. The centre of the pinhole camera is located at the
point Ch = (0, 0,−2e). The hyperbolic-camera axis lh is the line which connects
Ch and F . We set the hyperboloid

Sh :
x2 + y2

a2
− (z + e)2

b2
= −1, (12)

1 For the estimation of y = f(x) from noisy data (xi, yi)
�, for 1 ≤ i ≤ n in the interval

[a, b], the function f , which minimises the criterion

Jρ(f) =

n∑
i=1

ρ(yi − f(xi)) + α

∫ b

a

|fxx(x)|2dx,

where ρ(x) is an appropriate convex function of x, is called M -estimator.
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where e =
√

a2 + b2. A point X = (X, Y, Z)� in a space is projected to the point
xh = (xh, yh, zh)� on the hyperboloid Sh according to the formulation,

xh = λX, λ =
±a2

b
√

X2 + Y 2 + Z2 ∓ eZ
. (13)

This relation between X and xh is satisfied, if the line, which connects the focal
point F and the point X, and the hyperboloid Sh have at least one real common
point. Furthermore, the sign of parameter λ depends on the geometrical position
of the point X. Hereafter, we assume that the relation of equation (13) is always
satisfied. Setting mh = (uh, vh)� to be the point on the image plane π, the point
xh on Sh is projected to the point mh on π according to the equations

uh = f
xh

zh + 2e
, vh = f

yh

zh + 2e
, (14)

where f is the focal length of the pinhole camera. Therefore, a point X =
(X, Y, Z)� in a space is transformed to the point mh as

uh =
fa2X

(a2 ∓ 2e2)Z ± 2be
√

X2 + Y 2 + Z2)
,

vh =
fa2Y

(a2 ∓ 2e2)Z ± 2be
√

X2 + Y 2 + Z2)
. (15)

For the hyperbolic-to-spherical image transform, setting Ss : x2 + y2 + z2 = r2,
the spherical-camera centre Cs and the the focal point F of the hyperboloid
Sh are Cs = F = 0. Furthermore, the axis connecting Cs and north pole of
the spherical surface is ls. For the axis ls and the hyperbolic-camera axis lh,
we set ls = lh = k(0, 0, 1)� for k ∈ R, that is, the directions of ls and lh are
the direction of the z axis. The spherical coordinate system expresses a point
xs = (xs, ys, zs) on the unit sphere as

xs = sin θ cosϕ, ys = sin θ sin ϕ, zs = cos θ (16)

where 0 ≤ θ < 2π and 0 ≤ ϕ < π. For the configuration of the spherical
camera and the hyperbolic camera which share axes ls and lh as illustrated in
Figure 1 (b), the point mh on the hyperbolic image and the point xs on the
sphere satisfy

uh =
fa2 sin θ cosϕ

(a2 ∓ 2e2) cos θ ± 2be
, vh =

fa2 sin θ sin ϕ

(a2 ∓ 2e2) cos θ ± 2be
. (17)

Setting I(uh, vh) and IS(θ, ϕ) to be the hyperbolic image and the spherical image,
respectively, these images satisfy the equation

I(uh, vh) = I(
fa2 sin θ cosϕ

(a2 ∓ 2e2) cos θ ± 2be
,

fa2 sin θ sin ϕ

(a2 ∓ 2e2) cos θ ± 2be
) = IS(θ, ϕ). (18)
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Fig. 1. Transforms between hyperbolic- and spherical-camera systems and parabolic-

and spherical-camera systems. (a) illustrates a hyperbolic-camera system. The camera

Ch generates the omnidirectional image πh by the central projection, since all the rays

corrected to the focal point F are reflected to the single point. A point X in a space is

transformed to the point xh on the hyperboloid and xh is transformed to the point mh

on image plane. (b) illustrate the geometrical configuration of hyperbolic- and spherical-

camera systems. In this geometrical configuration, a point xs on the spherical image and

a point xh on the hyperboloid lie on a line connecting a point X in a space and the focal

point F of the hyperboloid. (c) illustrates a parabolic-camera system. The camera Cp

generates the omnidirectional image πp by the orthogonal projection, since all the rays

corrected to the focal point F are orthogonally reflected to the imaging plane. A point

X in a space is transformed to the point xp on the paraboloid and xp is transformed to

the point mp on image plane. (d) illustrate the geometrical configuration of parabolic-

and spherical-camera systems. In this geometrical configuration, a point xs on the

spherical image and a point xp on the paraboloid lie on a line connecting a point X

in a space and the focal point F of the paraboloid.

As illustrated in Figure 1 (c), the focal point of the paraboloid Sp is located at
the point F = (0, 0, 0)�. The parabolic-camera axis lp is the line which connects
F and the centre of the parabolic image Op. We set the paraboloid

Sp : z =
x2 + y2

4a
− a, (19)

where a is the parameter of the paraboloid. A point X = (X, Y, Z)� in a space
is projected to the point xp = (xp, yp, zp)� on the paraboloid Sp according to
the formulation,

xp = λX . (20)

This relation between X and xp is satisfied, if the line, which connects the focal
point F and the point X, and the paraboloid Sp have at least one real common
point. Furthermore, the λ has two solutions. The geometrical configuration of
the space point and the paraboloid leads that the solution is always positive
expressed as
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λ =
2f√

x2 + y2 + z2 − z
. (21)

Setting mp = (up, vp)� to be the point on the parabolic image plane πp, the
point xp on S is orthogonally projected to the point mh on π expressed by the
equations

up = xp, vp = yp. (22)

Therefore, a point X = (X, Y, Z)� in a space is transformed to the point mp as

up =
2aX√

X2 + Y 2 + Z2 − Z
, vp =

2aY√
X2 + Y 2 + Z2 − Z

. (23)

For the parabolic-to-spherical image transform, setting Ss : x2 + y2 + z2 = r2,
the spherical-camera centre Cs and the the focal point F of the paraboloid
Sp are Cs = F = 0. Furthermore, the axis connecting Cs and north pole of
the spherical surface is ls. For the axis ls and the parabolic-camera axis lp, we
set ls = lp = k(0, 0, 1)� for k ∈ R, that is, the directions of ls and lh are
the direction of the z axis. The spherical coordinate system expresses a point
xs = (xs, ys, zs) on the unit sphere as

xs = sin θ cosϕ, ys = sin θ sin ϕ, zs = cos θ (24)

where 0 ≤ θ < 2π and 0 ≤ ϕ < π. For the configuration of the spherical camera
and the parabolic camera which share axes lp and lh as illustrated in Figure 1
(b), the point mp = (up, vp)� on the hyperbolic image and the point xs on the
sphere satisfy the equations

up = 2a
sin θ cosϕ

1 − cosϕ
, vp = 2a

sin θ sin ϕ

1 − cosϕ
. (25)

Setting I(up, vp) and IS(θ, ϕ) to be the parabolic image and the spherical image,
respectively, these images satisfy the equation

I(up, vp) = I(2a
sin θ cosϕ

1 − cosϕ
, 2a

sin θ sinϕ

1 − cosϕ
) = IS(θ, ϕ). (26)

3.2 Dioptric System

Fish-eye-lens camera generates an image on the basis of stereographic, equisolid
angle, orthogonal, and equidistance projection as shown in Figure 2.

Setting x = (x, y)� to be a point on an image acquired by fish-eye-lens
camera, the point on the fish-eye-lens camera image is transformed to a point
(θ, ϕ)� on an image on a sphere as

θ = tan−1(y/x) , ϕ = 2 tan−1(|x|/2f), (27)
θ = tan−1(y/x) , ϕ = 2 sin−1(|x|/2f), (28)
θ = tan−1(y/x) , ϕ = sin−1(|x|/f), (29)
θ = tan−1(y/x) , ϕ = |x|/f. (30)
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Fig. 2. Imaging geometry of the dioptric system and the pinhole systme. (a) In dioptric

system, the light ray from point X is imaged on a plane after passing through fish-eye-

lens. Images on imaging plane is transformed to images on the sphere. (b) A pin-hole

system collects light rays which pass through a point in a space to the imaging plane.

The pin-hole system collects light rays in a narrow area around the north pole of the

sphere, although the dioptric systems collect light rays in a wide area using a lens

system as shown in (a).

4 Numerical Examples

In this section, we show examples of optical flow detection for omni-direction
images to both synthetic and real world image sequences. We have generated
synthetic test pattern of image sequence for the evaluation of algorithms on the
flow computation of omni-directional images. Since a class of omni-directional
camera using catadioptical systems observes images on middle latitude images on
the sphere. we accept direct numerical differentiation for numerical computation
of the system of diffusion reaction equations 2.

We show numerical results of both synthetic and real world images for the
Horn-Schunck criterion on the sphere. In these examples, the algorithm first
computed optical flow vectors of each point for successive three intervals us-
ing the successive four images, second computed the weighted average at each
point selecting weight as 1/4, 1/2, and 1/4, and third applied non-linear statistic
analysis selecting T = 4.

We set the parameters as shown in the table 2. For Figure 3 (e), every two
frame images are accepted for the optical flow computation. Figure 3 (b) shows
the the ideal patterns of optical flow on the imaging plane of the catadioptic cam-
era for the camera translation with synthetic patterns in Figure 3 (a). Specially,

2 In meteology [18], to avoid the pole problem in the discritization of partial differential
equations on the sphere, the discrete spherical harmonic transform [19] and the quasi-
equi-areal domain decomposition are common [20]. However, in our problem, imaging
systems do not capture images in the neighborhood of pole, since the pole on the
sphere is the dead-view regin to a class of catadioptical imaging systems.
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Fig. 3. Optical flow of synthetic and real world images. (a) A regular chess-board. A

catadioptica system translates along a line parallel to an axis of pattern. The central

circle is the invisible region of the camera system. (b) Optical flow on the imaging

plane computed the image sequence of the patten (a). (c) A image observed from the

translating robot. (d) Optical flow when the robot translates. (e) A image observed

from the rotating robot. (f) Optical flow when the robot rotates.
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Table 1. Discritization Parameters

Synthetic Data

Iteration time 2000

Grid length Δτ 0.002

Parameter α 1000

Grid pitch Δθ 0.25◦

Grid potch Δφ 0.25◦

Image size on the Sphere (φ × θ) 1440 × 360

Real World Images

Iteration times 2000

Grid length Δτ 0.002

Parameter α 1000

Grid pitch Δθ 0.20◦

Grid pitch Δφ 0.20◦

Image Size (φ × θ) 1800 × 900

the patten formed by the translation of the imaging system shows the direction
on the translation of the camera system mounted on a mobile robot. Figure 3
(d) and (f) show optical flow images of real world images both for the case that
objects move around stationary camera and that the camera system moves in
the stationary environment. These results show objects in the environment and
markers for the navigation yield typical flow patterns with these observed in the
synthetic patterns. These results lead to the conclusion flow vectors computed
by our method is suitable for the navigation of mobile robot with a catadioptic
imaging system which captures omni-directional images.

5 Conclusions

We have introduced some examples for image analysis on the sphere, which are
required from the context of robot vision. Since, the Hamiltonian-minimisation-
based variational methods for image analysis provide a coordinate-free expression
for the image analysis, our idea and extension of image analysis are applicable
to wide ranges of new problems, which would be interested in robot vision and
image analysis.
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Abstract. It is proposed an approach for the automatic description of scenes 
using a LSA–like technique. The described scenes are composed by a set of 
elements that can be geometric forms or iconic representation of objects. Every 
icon is characterized by a set of attributes like shape, colour and position. Each 
scene is related to a set of sentences describing their content. The proposed 
approach builds a data driven vector semantic space where the scenes and the 
sentences are mapped. A new scene can be mapped in this created space 
accordingly to a suitable metric. Preliminary experimental results show the 
effectiveness of the procedure. 

1   Introduction 

Many approaches in literature try to define the linguistic categories for the 
representation of spatial objects [3][4][7][10]. The reason could be found considering 
that spatial location is often expressed by closed-class forms and the concepts gained 
from this representation can act as fundamental structure in organizing  conceptual 
material of different nature [7] [10].  
    The description of visual scenes can be viewed as a form of language grounding[8] 
[10] that is the connection of symbols in the language domain to their referents in the 
language user's environment. Furthermore categorization of space can be considered 
as the foundation for successive levels of abstraction in the concept hierarchy[8].  The 
system proposed in this paper aims to capture the basic relation between language and 
spatial displaced entities. Natural language descriptions are used as atomic values and 
no a priori hypothesis about the structure of language is assumed.  
    This work aims to verify the thesis that as Latent Semantic Analysis (LSA) allows 
to extract semantic relationship among terms and documents also in this domain the 
semantic links among scene and sentences could be caught by the Singular Value 
Decomposition (SVD) approach. 
     A set of artificial scenes has been created. Each scene is composed by objects 
chosen among ten different shapes. Each object can be modified changing color, size 
and orientation.  
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    Scenes are represented by a set of sentences describing the contained objects and 
their properties. The relationship among sentences and scenes is described in matrix 
form, sentences being associated to the rows and columns being associated the scenes. 
The generic i,j-th element of the matrix is set to one if the i-th sentence can be applied 
to the j-th  scene, otherwise the i,j-th element is set to zero.  
    SVD is applied to this matrix to extract the latent relationship among entities in the 
two domains and to create a semantic vector space where are represented, in a 
subsymbolic way, both sentences and scenes. Subsequently, a new scene is mapped in 
the semantic space according to a suitable metric. After the mapping, its description in 
terms of sentences, which have been already codified in the generated semantic space, 
is automatically obtained. 
    The remainder of paper is organized as follows: in Section 2 related works in the 
field of visual entities description are reported, in Section 3 a background about LSA 
is given. Section 4 describes the proposed system and the procedure to extract the 
semantic relationships between scenes. In section 5 the results of experiments and in 
section 6 the conclusions are reported. 

2   Related Works 

The task of describing visual entities with natural language sentences have been 
tackled in different way in the attempt to link visual objects with their description in 
linguistic form.  
    Feldman et al. address the problem to learn a subset of natural language, called 
Miniature Language for the description of picture-sentences pairs. The problem is 
described not considering the methodology to be used and authors’ intention is to 
propose a well defined problem to be a touchstone for the cognitive science in this 
field[3]. In [2] are described the update of the project developed with main attention 
to language acquisition and induction of the grammar. The proposed solution is based 
on bayesian inference and model merging to build a probabilistic model of the 
grammar. The linguistic categorization of space allows to characterize the domain in a 
cross-linguistic environment to capture the conceptualization above the linguistic 
structure.  
    Representation of spatial terms has been also studied by Regier[7] conceiving a set 
of psychologically motivated perceptual features that are present in a wide range of 
spatial expressions in different languages. 
    The approach of Regier is based on connectionist learning of the acquired spatial 
terms. Input for experiments are synthetic images of pair of objects and their single 
word labels. His work aims to create a system able to adapt itself to the structuring of 
space in different languages.  
    The Visual Translator(VITRA)[4] is a knowledge-based system created by Herzog 
and Wazinski to integrate computer vision and natural language and in particular to 
address the task of description of images and image sequences. The system has been 
applied to complex real word domain as automobile traffic and soccer games and is 
based on a detailed representation of the objects of domain with their spatial relation. 
High level proposition are formed from these representations and expressed in natural 
language by a rule-based text planner.   
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Roy in [8] and [9] describes a system for the generation of spoken language for the 
task of describing objects in computer-generated visual scenes. The system is trained 
with a “show and tell” procedure, giving as input to the system, scenes coupled with 
their visual description. No prior knowledge is given about lexical semantics, word 
classes or syntactic structures. The DESCRIBER learns to generate natural language 
sentences through the creation of a probabilistic structure encoding the visual 
semantic of the phrase structure.   

Monay and Gatica-Perez in [5] use LSA [11][12] for the task of images annotation. 
The purpose is to give labels to images accordingly to the subject of the photo or 
image. Images are represented in a vector space gathering keywords referred to 
content and visual information from quantitative properties of the photo. Images are 
divided in three parts and for each part the RGB color histogram is evaluated. An 
image is represented as a vector containing the visual features and the correct 
keywords. The union of all the vectors is used to form a matrix and then LSA is 
applied. Images, without annotation, are characterized by the histogram values and 
are projected in the created space to get the annotations from near vectors. 

3   Latent Semantic Analysis 

Latent Semantic Analysis (LSA) [12] is a paradigm to extract and represent the 
meaning of words by statistical computations applied to a large corpus of texts.  LSA 
is based on the vector space method: given a text corpus of M words and N 
documents, it is represented as a matrix W where rows are associated to words and 
columns are associated to documents. The content of the i,j-th cell  of W is a function 
of the i-th word frequency in the j-th text. The matrix W is replaced with a low-rank 
(R-dimension) approximation generated by the truncated singular-value 
decomposition (SVD) technique [11]:  

TVUWW Σ=≈ ˆ  (1) 

where U is the (MxR) left singular matrix,  is (RxR) diagonal matrix with 
decreasing values 1   2 …   R > 0  and V is the (NxR) right singular matrix. U 
and V are column-orthogonal and so they both identify a basis to span the R 
dimensional space. 

Terms (represented as ui ) are projected on the basis formed by the column 
vectors of the right singular matrix V and documents (represented as vj ) are 
projected on the basis formed by the column of the matrix U to create their 
representation in the R-dimensional space. 

In [1] Bellegarda uses this methodology to extrapolate from a corpus of documents 
the latent relations between words and between documents. The semantic relationship 
among words (as synonymy) and among documents (topic covering) can be evaluated 
with distance assessment. In particular, words that are in documents describing the 
same contents will have a shorter distance than term found in uncorrelated documents. 
On the other side documents containing words with the same context will convey 
information on the same topic. 
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4   The Proposed Approach 

The target of the system is to automatically characterize scenes accordingly to the 
contained objects and the relationships among them.  
Our work goes in the same direction of Feldman[3] to tackle the problem of scene 
description but starts from a different approach. As difference from Feldman[2] and 
from Roy [8][9], there is no characterization of the language and the information of 
domain is not integrated in the system as in[4]. The work is based on the holistic 
connection among language and visual information. Our work differs from Monay [5] 
because his work is aimed to image annotation and starts from a hybrid representation 
of images by vector with quantitative values and keyword. Our approach tends to 
make the semantic link emerge only from the space of co-occurrences.  

 In our work, scenes contain a variable number of objects chosen from a fixed set. 
Objects can be geometric shapes (circle, triangle, square, rectangle, etc.) or iconic 
representation of more complex objects as table, chair, bottle, house, hammer. Objects 
are displaced in the scene, without overlapping each other and they are characterized 
by the following properties: colour, orientation, size. An example of scene is 
presented in Fig. 1. The following objects are present in the scene: two chairs, a tree, 
a rhombus and a house. The house is pink coloured, the rhombus is on the right of the 
scene, the tree is below the house. A chair is under the rhombus and the other is near 
the tree.  

A training set of scenes is built. Each scene is described by a set of sentences 
stating the presence of an object and its predicates or relations between couple of 
objects.  

 

Fig. 1. An example of a typical scene 

Considering a fixed order for all the sentences, a vector p is associated to each 
scene. If the sentence in position i is suitable for describing the scene, the i-th 
component of p is set to 1 otherwise it is set to 0. The set composed by all these 
vectors, considering to have N sentences and M scenes, is therefore a (NxM) matrix, 
called W in the remainder of the paper.   

The i-th column of the matrix W is the representation of the i-th scene in the N 
dimensional vector space and, at the same time, the j-th sentence is represented in the 
M dimensional vector space by the j-th row (in analogy to the representation words- 
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documents in LSA[12]). Truncated SVD is then applied to the matrix W, generated 
with the training set of scenes and sentences and the R-dimensional vector space is 
created.  

The created semantic space is used to represent both scenes and sentences. If vi is 
the i-th row of the matrix V, the vector vi  is the representation of the scene in the R-
dimensional space and is projected on the orthonormal basis formed by the column 
vectors of the left singular matrix U. The vector ui  is the representation of the i-th 
sentence in the R-dimensional space and it is projected in the basis formed by the 
column vectors of the left singular matrix V.  
In fig. 2 an example of Semantic Space created by the proposed approach is shown. 
The axes are represented by the columns of the matrix U when R is set to 3. The axes 
are orthogonal and can be labelled accordingly to the values of the vectors U1, U2, U3 
for each sentence (i.e. U1(i)  is referred to the i-th sentence). Labels are associated 
filtering the lower values and picking the sentences connected to the highest values. 
The rows of V represent the components of scenes and taking into account their 
belonging to one of the clusters identified by the axes they can be labelled with 
textual information associated with U axes. Two scenes with similar contents have 
little variation of components on these three axes so their representations are two near 
vectors in the semantic space. 

 
 

 

Fig. 2. The Semantic Space with automatically labeled axes 

 
To “fold-in” a new scene in the semantic space some consideration must be drawn. 

In traditional LSA documents are represented as decomposition on the set of words 
composing the vocabulary. If a new document has to be mapped in the semantic 
space, its representation can be easily found as weighted vector of words components 

(i.e. counting the occurrences of each word in the new document). If zd
~

is this vector 

of words occurrences in the document z, which does not belong to the training set, it 
can be considered as a column of the matrix  W and accordingly to eq. 1 can be 
written: 

 

U2 
“Triangle” 
“Square” 
“Circle” 
“Ellipse” 
“Rhombus”
”Red” 
“Cyan” 

U1:”Table”;” Chair”; “Tree”; ”Bottle”; “Black” 

U3  
“House”;”Yellow” 
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T
zz vUd ~~ =  (2) 

where T
zv~ is a R-dimensional row vector representing this new document in the same 

form of the row of matrix V. The representation in the semantic space can be derived 
as: 

Udvv z
T
z

T
z

~~~ ==  (3) 

T
zv~ is called pseudodocument vector[8] and is a good approximation of the document 

if the semantic space is generic enough to represent this new vector. If the insertion of 
this vector in the space would bring structural changes in the space the representation 
could be sensibly wrong [8].  

The aim pursued in this paper is, given a new scene, automatically obtaining its 
description in terms of sentences which have already codified in the semantic space. 
Starting from a new image, to retrieve its description a representation in the space 
must be assessed considering the distance between the new scene and the other scenes 
in the starting set of images. The vector considered is the weighted sum of the most 
similar scene found in the semantic space.  

The metric among scenes has been devised considering that distance between 
scenes cannot be calculated as differences of pixel but taking into account the objects 
present in the scene. For example the distance between two scenes containing the 
same objects (e.g. a tree and an house) but placed in different position, should have a 
value which reflects this similarity. 

For these reason distances between objects have been settled considering the type 
of the object, its color, its size and its position. The distances of all the objects of a 
scene with all the objects of another scene constitute a matrix having as its i,j-th 
element, the distance between the i-th element of the first scene and the j-th element 
of the second scene. To evaluate the distance between two scenes the best assignment 
among the objects of the scene must be calculated. The best matching among the 
object is evaluated in a polynomial time using Munkres' assignment algorithm[6]. 

The most similar scenes, according to this metric contribute to the building of the 
vector representing the new scene in the semantic space. Each vector is weighted with 
the coefficient i inversely proportional to the distance between the scene represented 
and the new scene: 

−

−
=

s

s

N
is

i
N

i

i rN

rr

)1(
α  

(4) 

where Ns is number of nearest scene considered and ri is the distance between the new 
scene and the i-th most similar scene. 

Description of the new scene is evaluated accordingly to eq. 2 where T
zv~  is 

replaced with the new generated vector. The vector 
zd

~  is replaced with the set of 

attivation values for the sentences allowing to describe the external scene. 
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5   Results 

To evaluate the effectiveness of the proposed approach, an artificial set of 150 scenes 
has been created. 100 scenes, with their associated sentences have been used as a 
training set, while 50 scenes have been used to test the system generalization 
capabilities. 

The experiments have been aimed to verify the representation capabilities in the 
semantic space of heterogeneous objects with the same meaning, the kind of 
connections emerging from data and the description of new scene not used for the 
generation of the semantic space. 

The set of 150 scenes has been created with rules for the colours of objects related 
to the presence or not of objects of the same type. After the application of the 
proposed technique, experiments show that a trade-off must be found between the 
precision in retrieving correct sentences suitable for a new scene and the regularities 
discovery 

The set of scene not contributing to the creation of the semantic space have been 
processed with the described method. For each scene the describing sentences are 
retrieved and the percentage of correctness has been calculated. The column 
“Correctly Associated Sentences” reports the percentage of sentences correctly 
describing the scene which have been retrieved by the procedure. The column “False 
Positive Sentences” reports the number of sentences, activated by new scenes but not 
belonging to the original images. The column “False Negative Sentences” reports the 
percentage of sentences describing the scene but not retrieved by the system.  

Table 1. New scene sentences association results 
 

R 
Correctly 
Associated 
Sentences 

False 
Positive 

Sentences 

False 
Negative 
Sentences 

5 51,1% 32,3% 16,6% 
10 58,9% 24,7% 16,4% 
15 58,1% 25,7% 16,1% 

6   Conclusions and Future Works 

An approach has been presented for the description of new scenes with natural 
language sentences. Experimental trials show interesting results obtained for the task 
of mapping new scenes in an automatically, data driven, created semantic space. 

Future works will regard the extension of the approach on real images where visual 
characteristic are described with features tightly connected to pixel distribution. The 
new experiments will be aimed to find the connection of verbal information with sets 
of computable features of real objects. 
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Abstract. Over the last decade or so, face recognition has become a popular 
area of research in computer vision and one of the most successful applications 
of image analysis and understanding. In addition, recognition of faces under 
varied poses has been a challenging area of research due to the complexity of 
pose dispersion in feature space. This paper presents a novel and robust pose-
invariant face recognition method. In this approach, first, the facial region is 
detected using the TSL color model. The direction of face or pose is estimated 
using facial features and the estimated pose vector is decomposed into X-Y-Z 
axes. Second, the input face is mapped by a deformable template using these 
vectors and the 3D CANDIDE face model. Finally, the mapped face is 
transformed to the frontal face which appropriates for face recognition by the 
estimated pose vector. Through the experiments, we come to validate the 
application of face detection model and the method for estimating facial poses. 
Moreover, the tests show that recognition rate is greatly boosted through the 
normalization of the poses. 

1   Background 

Person identification is a challenging problem which has received much attention 
during the recent years due to its many applications in different fields such as 
banking, law enforcement, security applications and others. Although extremely 
reliable techniques of biometric personal identification exist, e.g., fingerprint analysis 
and retinal or iris scans, these methods rely on the cooperation of the participants, 
whereas an identification system based on facial analysis could function without such 
a need. Thus research in this area, especially face recognition, has gained prominence 
with results being spontaneously incorporated into application systems. In this paper 
we focus on the issues in face recognition.  

Face recognition approaches on still images can be broadly grouped into geometric 
and template matching techniques. In the first case, geometric characteristics of faces 
to be matched, such as distances between different facial features, are compared. This 
technique provides limited results although it has been used extensively in the past. In 
the second case, face images represented as a two-dimensional array of pixel intensity 
values are compared to a single or several templates representing the whole face. In 
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most studies that have employed full frontal facial photos the rate of recognition has 
been hampered due to the effects of illumination and variation of facial poses [1].  

In order to overcome the insufficiency of the existing facial recognition methods, 
this paper proposes a pose-invariant face recognition system. Assessing and analyzing 
the ever-changing facial poses (external feature) we transform the face into a 
normalized form that can also be recognized by the existing face recognition systems. 
This approach boosts the accuracy of facial recognition and substantially reduces the 
FAR (False Acceptance Rate) and FRR (False Rejection Rate). 

2   Face Detection  

Tint-Saturation-Luminance (TSL) color model has been known to be efficient in 
extracting facial region on image since its T-S space is classified densely and 
independent from illumination [2]. Sometimes, however, T-S color model detects 
spurious regions when the background has a similarity with the facial color. In this 
case, we find the final facial region using labeling. 

Irregular illumination sometimes causes different facial colors, and these are 
classified as a different region [3, 4]. In order to reduce the effects of illumination we 
analyze the effects of brightness based on the facial angle. Then, after compensating 
the intensity value for the effected region we finally detect the facial color. 

3   Pose Estimation Using Geometrical Relationship  

Facial poses are then calculated using the relative position of facial features: two eyes, 
and mouth. Generally, geometrical and template-based techniques use edge detection 
methods in pre-processing while detecting facial features since most facial features 
are horizontal shapes. However, facial features may not be horizontal shapes when 
input faces are angularly dispersed. Facial features in this paper are detected using 
their geometric relationship such as the line connecting two ends of the mouth being 
parallel to the line connecting the centers of two eyes and the length of two lines are 
almost same, etc. 

Provided the facial features (two eyes, mouth) are detected correctly, connecting 
the center of each feature makes a triangle. With the exact frontal pose, the center of 
the triangle coincides with the center of the facial region. As the pose varies, there is 
the offset between two centers, a direction vector. As Figure (1) indicates, the 
direction of vector v gives indication of facial pose; the length of vector is shift offset 
from center of facial region. We can estimate the values of yaw and tilt after 
analyzing this vector. ),( 11 yxA is the gravity center of the facial region and 

),( 11 yxB  is the midpoint of the triangle made by facial features. It is possible to 

decompose ABv =  into vyaw and vtilt using Eqn. (1)-(3). The formulas (1)-(3) are 
represented in degrees. In addition, halfface_width and halfface_height imply a radius of 
major and minor axis on the momentum of facial region, respectively.  
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Fig. 1. Analyzing vector for estimation of angle 
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4   Synthesizing Deformable Face and Pose Normalization 

This paper uses the CANDIDE-3 3D wire frame model for input face mapping [6]. 
The process of pose normalization finds additional features including facial features 
for mapping the 3D wire frame model with the input image. The mapped face is 
normalized by transformation of texture using inverse value of the estimated pose 
vector for frontal face. 

4.1   Mapping Input Image to Facial Model Using Extracted Features 

This paper uses template matching for finding facial features since it is known to be 
more accurate than other geometrical techniques and although it is a slower technique 
the speed of searching can be increased if positions of eye, nose, and mouth are 
roughly acquainted [7]. However, a problem with template matching is that the mask 
has to be similar with the object. And in our case the need to match a proper mask to 
image in real time becomes difficult as the input data has varying poses thus requiring 
many templates. Therefore, this study suggests a deformable template which 
transforms one template mask to special template by estimated geometrical value in 
advance (as in Fig. 3).  

Mapping implies overlapping between input image and facial model using 
extracted features. In this case, we use additional features of face in order to map 
more accurately as in Fig 2.  
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(a)   (b)  (c) 

Fig. 2. Facial features for mapping. (a) Total features, (b) Features by deformable template, (c) 
Features by facial region we detected previous. 

Three dimensions decompose rotation ),,( zyx rrrR=ℜ into rotation of x-axis, y-

axis, and z-axis. We use the homogeneous form in rotation and translation. Moreover, 
scale vectors use equal transformation matrix to apply different scales to x, y, and z-
axis respectively. So we can deform a model through calculating parameters 

T
yxzyx ttsrrrP ],,,,,,[ σ=  using Eqn. (4)-(5) where g  is original model, σ  is 

parameter for shape, S is shape, t is translation matrix, R is rotation, and s is scale. 

tSgsRg ++= )( σ  (4) 

2
min featuresfg −  (5) 
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Fig. 3. Deformation of facial model using estimated angle 
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4.2   Input to Frontal Face Transformation 

Facial template consists of a phase model and texture. Therefore, total transformation 
of the facial template synthesizes a new model by transforming the coordinates of 
points and the textures of the triangle which comprises of these points. Generally, the 
pixel coordinates are always integers. But, in our approach, sometimes the 
coordinates of transformed texture can be non-integral. In this case we use a reverse 
direction warping which interpolate the points using adjacent four points before 
translation as shown in figure 4 [8]. Figure 4 shows how the transformed pixel bq  is 

calculated from pixel aq  which is located in )30(, ≤≤ ip ia  on original image af  

using rate of α and β  as
=

=
3

0
, )(),()(

i
iaaibb pfwqf βα .

 
 

Fig. 4. Compensation of pixel value using a reverse direction warping 

 The example of the complete process is presented in Fig. 5. The original template 
is deformed by estimated pose vector and mapped on to the input face. The texture is 
then transformed to normal value as shown in Fig. 5(e). The pose of the eyes is not 
rectified as it is not essential. 

 

             

(a)          (b)           (c)          (d)           (e) 

Fig. 5. Face mapping and pose normalization. (a) Original template, (b) Input image, (c) 
Deformation of template, (d) Mapping frame, (e) Mapping texture. 

5   Experimental Study  

Fig. 6 outlines the experimental framework and process. The experimentation consists 
of two processes; Ex1 is face recognition without compensation while Ex2 is with 
compensating pose. Fig. 7 presents a sampling of input faces from a total of 45 used 
in the empirical analysis. 
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Fig. 6. Flowchart of face recognition experiment 

 

Fig. 7. A variety of poses 

Fig. 8. Face examples for PCA; (a) Mean face, (b) Learning faces 

    Principle Component Analysis (PCA) is used for comparing the two processes Ex1 
and Ex2, and we analyze the Euclidean distance for rate of recognition [9,10]. For 
PCA, the face of ten people is used as learning data as shown in Fig. 8 [11]. 
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This paper measures Euclidean distance error k for each component between the 
normalized and DB faces using Eqn. (6) where kf represents the learning faces 

and if , the input faces. In these experiments the hair is also eliminated for an accurate 

measurement of face like in Fig. 9. 
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Fig. 9. Examples of extracting facial region for PCA 

5.1   Analysis of Results 

Fig. 10 shows estimated angle of input images from Fig. 7 using our proposed 
method. There is no bar where it fails calculation of angle. The reason of failure 
implies that it is difficult to extract the opposite eye if the angle of yaw is large. 

 

Fig. 10. Angle of face through estimated poses (yaw) 

 
Almost of facial models are transformed in the same direction. However, as we can 

observe from Fig. 3, the error is large when the pose is upward facing. This is due to 
the ambiguity between the jaw and forehead region. The estimated pose value is used 
to normalize face as well as map input face to facial model such as Fig. 11.  

In case that the angle of face is large, the mirroring process is needed due to the lack 
of facial information the region that is located on the other side of camera view [11]. For 
the mirroring process the visible half of face detected by the camera is duplicated and 
put it on the other side lacking information after transformation (see Fig. 11). 
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Fig. 11. Examples of facial pose normalization 

    We test input faces shown in Fig. 7 using the two processes Ex1 and Ex2 as 
depicted in Fig. 6. The result of test is shown in Fig. 12. The graph represents the 
distance values of PCA coefficients between input images before and after 
normalization. The lower the distance value, the higher is accuracy of face 
recognition. Naturally, when the angle of face is close to the center the distance error 
measured is small and the more a face points downward the larger the distance error. 

 

 

Fig. 12. Difference of principle vector from normalized face 
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    Fig. 13 presents the result of recognition where the x-axis and y-axis of graph 
imply the number of faces in Fig. 7 and Fig. 8, respectively. No. 6 on the y-axis is a 
face that we want to detect. After normalization, more input faces on x-axis are 
recognized as a No. 6 on the y-axis. 

 
(a)                                          (b) 

Fig. 13. Results of recognition; (a) Before normalization, (b) After normalization 

    To judge the accuracy of face recognition we use minimum Euclidean distance 
between input face in Fig.7 and learning face in Fig. 8. Although face recognition 
generally uses a threshold value for reducing FAR(false acceptance rate), in our case 
a face satisfying a minimum distance is considered as similar for reducing FRR(false 
rejection rate) because it just confirms the recognition. Fig. 14 shows a proportion of 
results from Fig.13. Face No. 6 is our target face and its rate of recognition can be 
seen to increase from 13% to 76%. 

 
(a)                                             (b) 

Fig. 14. Improvements in recognition rate - (a) Before normalization, (b) After normalization 

6   Conclusions  

There are many challenges to face recognition including pose variation, illumination 
conditions, scale variability, low quality image acquisition, partially occluded faces, 
etc. In general, varying facial poses create problems with acquisition, analysis, and 
recognition. Thus most studies showing plausible performance are restricted to frontal 
face and normalized face without rotation. In order to overcome this insufficiency of 
existing face recognition methods this paper proposes a novel pose-invariant face 
recognition system by using a normalized algorithm in preprocessing. 
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Numerous tests have been experimented categorically to evaluate proposed 
algorithm and many facial images which have various poses, and used to experiment 
on normalization. Through the experiments, we come to validate the rationale of our 
face detection model and method for estimating facial poses. Moreover, the tests 
show that recognition rate is greatly boosted through the normalization of poses by 
76%. The accuracy is improved six-fold than prior to pose transformation. In the 
future we would like to solve problems associated with distortion by large angles and 
design a facial model that it is optimized to warp the facial features. 
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